❶ 大數據需要什麼學歷才可以學。
本科學歷
從企業方面來說,大數據人才大致可以分為產品和市場分析、安全和風險分析以及商業智能三大領域。產品分析是指通過演算法來測試新產品的有效性,是一個相對較 新的領域。在安全和風險分析方面,數據科學家們知道需要收集哪些數據、如何進行快速分析,並最終通過分析信息來有效遏制網路入侵或抓住網路罪犯。
一、ETL研發
隨著數據種類的不斷增加,企業對數據整合專業人才的需求越來越旺盛。ETL開發者與不同的數據來源和組織打交道,從不同的源頭抽取數據,轉換並導入數據倉庫以滿足企業的需要。
ETL研發,主要負責將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
目前,ETL行業相對成熟,相關崗位的工作生命周期比較長,通常由內部員工和外包合同商之間通力完成。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。
二、Hadoop開發
Hadoop的核心是HDFS和MapRece.HDFS提供了海量數據的存儲,MapRece提供了對數據的計算。隨著數據集規模不斷增大,而傳統BI的數據處理成本過高,企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapRece、Pig等的需求將持續增長。如今具備Hadoop框架經驗的技術人員是搶手的大數據人才。
三、可視化(前端展現)工具開發
海量數據的分析是個大挑戰,而新型數據可視化工具如Spotifre,Qlikview和Tableau可以直觀高效地展示數據。
可視化開發就是在可視開發工具提供的圖形用戶界面上,通過操作界面元素,由可視開發工具自動生成應用軟體。還可輕松跨越多個資源和層次連接您的所有數 據,經過時間考驗,完全可擴展的,功能豐富全面的可視化組件庫為開發人員提供了功能完整並且簡單易用的組件集合,以用來構建極其豐富的用戶界面。
過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。
四、信息架構開發
大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。
五、數據倉庫研究
數據倉庫是為企業所有級別的決策制定過程提供支持的所有類型數據的戰略集合。它是單個數據存儲,出於分析性報告和決策支持的目的而創建。為企業提供需要業務智能來指導業務流程改進和監視時間、成本、質量和控制。
六、OLAP開發
隨著資料庫技術的發展和應用,資料庫存儲的數據量從20世紀80年代的兆(M)位元組及千兆(G)位元組過渡到現在的兆兆(T)位元組和千兆兆(P)位元組,同時,用戶的查詢需求也越來越復雜,涉及的已不僅是查詢或操縱一張關系表中的一條或幾條記錄,而且要對多張表中千萬條記錄的數據進行數據分析和信息綜合。聯機分析處理(OLAP)系統就負責解決此類海量數據處理的問題。
OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。
❷ 大數據需要哪些人才_大數據人才需要具備的能力有哪些
大數據需要以下六類人才含讓:
一、大數據系統研發工程師。
這一專業人才負責大數據系統研發,包括大規模非結構化數據業務模型構建、大數據存儲、資料庫構設、優化資料庫構架、解決資料庫中心設計等,同時,還要負責數據集群的日常運作和系統的監測等,這一類人才是任何構設大數據系統的機構都必須的。
二、大數據應用開發工程師。
此類人才負責搭建大數據應用平台以及開發分析應用程序,他們必須熟悉工具或演算法、編程、優化以及部署不同的MapRece,他們研發各種基於大數據技術的應用程序及行業解決方案。其中,ETL開發者是很搶手的人才,他們所做的是從不同的源頭抽取數據,轉換並導入數據倉庫以滿足企業的需要,將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫,成為聯機分析處理、數據挖掘的基礎,為提取各類型的需要數據創造條件。
三、大數據分析師。
此類人才主要從事數據挖掘工作,運用演算法來解決和分析問題,讓數據顯露出真相,同時,他們還推動數據解決方案的不斷更新。隨著數據集規模不斷增大,殲清企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapRece、Pig等的需求將持續增長,具備Hadoop框架經驗的技術人員是最搶手的大數據人才,他們所從事的是熱門的分析師工作。
四、數據可視化工程師。
此類人才負責在收集到的高質量數據中,利用圖形化的工具及手段的應用,清楚地揭示數據中的復雜信息,幫助用戶更好地進行大數據應用開發,如果能使用新型數據可視化工具如Spotifre,Qlikview和Tableau,那麼,就成為很受歡迎的人才。
五、數據安全研發人才。
此類人才主要負氏老前責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施,而對於數據安全方面的具體技術的人才就更需要了,如果數據安全技術,同時又具有較強的管理經驗,能有效地保證大數據構設和應用單位的數據安全,那就是搶手的人才。
六、數據科學研究人才。
數據科學研究是一個全新的工作,夠將單位、企業的數據和技術轉化為有用的商業價值,隨著大數據時代的到來,越來越多的工作、事務直接涉及或針對數據,這就需要有數據科學方面的研究專家來進行研究,通過研究,他們能將數據分析結果解釋給IT部門和業務部門管理者聽,數據科學專家是聯通海量數據和管理者之間的橋梁,需要有數據專業、分析師能力和管理者的知識,這也是搶手的人才。
❸ 在新時期,如何利用大數據成為不可或缺的人才
感謝悟空的邀請!
在新時期,談起大數據,相信很多人都不陌生了吧!其實大數據已經悄無聲息的走入了我們的生活,大數據也是未來互聯網發展的重要方向。
那麼在新時期,大數據對人才的能力有何要求?如何利用大數據成為新時代不可多得的人才?下面帶你詳細分析下:
大家都知道,其實現在的中國市場,最缺乏的就是復合型的大數據開發人才,我認為,在新時代,要想成為大數據人才,應該從以下幾方面著手:
1、大數據人才首先要擁有技術
大數據自然離不開人才,要想成為大數據不可或缺的人才 ,就必須要擁有相關大數據技能。大家都知道,大數據對人才的能力提出了更加高的要求,技術能力上大數據人才要具備java、大數據開發、大數據架構、軟體開發工程等技術背景,會用大數據分析工具,了解統計模型相關知識;在一定程度上掌握Python等一類通用型編程語言,特別是編程方面一定要精通,沒有哪一種大數據不需熟練掌握一門編程語言的。
2、大數據人才需要強大的跨學科學習
隨著大數據向各行業的滲透,大數據從業者往往身兼數職,需要同時掌握數據技術和業務知識。一個好的大數據人才,必須具備強大的數據分析、數據挖掘的能力,而一個既能做業務數據分析,又懂機器學習和工程開發的分析師就是數據科學家。
3、 大數據人才需要堅持
任何技術的掌握都不是一朝一夕的事情,當然大數據也不例外。大數據人才對人提出了更高的需要,不僅需要掌握相關的編程語言,還需要掌握數據分析能力,這就要求我們想要全方位提升自己的大數據業務水平,必須要堅持學習,只有具備大數據知識了,我們才能投入到大數據行業添磚加瓦。
4、 堅持學習的能力
大數據人才要有較強的溝通協調能力、學習能及推動能力、善於執行和監控,有較強的組織和責任意識,還需要強大的邏輯思維能力、歸納演繹能力幫助理解業務,能快速學習全新領域的商業模式和生態。
5、心態很重要
學習大數據的時候,一定要有良好的心態,大數據學習是一個枯燥的國產。要想學有所成,心態極其重要,不是什麼東西一學就會的。
總結:在新時期,目前大數據人才已經成為市場上不可或缺的人才,大數據已經悄無聲息的進入到很多行業了。但學習大數據不是一朝一夕的事情,需要有規劃有計劃的學習、要有堅持學習的能力,只有這樣,才會在新時期,成為新時代所需要的大數據不可多得的人才…
大數據是我的主要研究方向之一,同時也在帶大數據、機器學習方向的研究生,所以我來回答一下這個問題。
首先,當前正處在大數據時代,大數據未來將創造出一個巨大的新價值領域,而這個領域的核心就是圍繞數據價值化的一系列環節。從目前大數據領域所形成的初步產業鏈來看,涉及到數據採集、數據整理、數據存儲、數據安全、數據分析和數據引用,目前數據分析是比較常見的落地應用之一。所以,要想利用大數據成為不可或缺的人才應該從大數據產業鏈入手。
對於當前沒有進入職場的大學生來說,根據自身的知識結構來掌握相應的大數據技術能夠在一定程度上提升自身的職場競爭力。比如具備數學基礎的同學可以考慮學習一下大數據分析技術,未來對於大量的職場人來說,數據分析將是日常工作的一部分。對於動手能力比較強的同學,可以考慮學習一下大數據運維的相關技術,包括數據採集、大數據平台部署等。隨著大數據逐漸開始落地到傳統行業,大數據分析、大數據運維、大數據開發等崗位將有大量的人才需求。
對於當前的職場人來說,要想通過大數據成為不可或缺的人才,需要從三個方面入手,其一是掌握大數據技術;其二是把大數據技術與行業相結合;其三是能夠通過大數據技術創造出源源不斷的價值。
學習大數據技術要根據自身的知識結構來學習,對於職場人來說,可以從大數據分析工具開始學習,基本的學習路線是Excel、BI工具、資料庫、Python編程。大數據與行業的結合有多種不同的方式,目前場景大數據分析是比較常見的落地應用。要想通過大數據技術來創造出價值,一個重要的出發點就是通過大數據完成各自決策的制定,大數據不是目的,通過大數據完成各自決策才是目的。大數據一方面是給人力崗位使用,另一方面是給智能體使用,未來智能體的應用空間將非常廣闊。
我是從以前做淘寶天貓的,今年不做的。在我看來大數據有點類似淘寶的生意參謀,它會給您提供行業各種數據,只是現在應該這個數據維度更豐富了。比如這個行業同行的轉化率,有些行業的轉化率,進店訪客等等;在電商平台都是可以看到的,但是實體以前是做不到的。
現在隨著數字技術的發展,以及實體行業對消費反饋收集困難等原因,才有了大數據的概念。比如現在好多行業面臨的問題是自己設計的產品,消費者不喜歡,賣不出去。可以如果有了大數據,你就知道你的客戶男女比例多少,年齡分布、喜好什麼價位的產品等等,讓你設計的產品更精準。
其實在我看來,你成為數字化的運營高手,你就可以成為不可或缺的人才。
大數據在我看來就是「1+1=N」。
怎麼說呢,比如大數據提供給您行業轉化率是多少,你的實體轉化率是多少?等等,你想成為不可或缺的人才,那你就要有通過這些數據知道我公司現在問題出現在什麼地方了?是什麼因素刺激的出現了這種情況的能力,比如這周你店鋪成交額漲了多少?這是數據給您能提供的,但是為什麼漲了,數據給您提供不了,這你要自己分析,是有節氣,還是因為你做了一個什麼活動等,並針對現有數據對下一周做出計劃。
數據給你的是「1+1=N」你要做的就是把這個數據反映到實物上,並進行分析,並制定下一步公司運作計劃。
比如現在是數據給你1+1=3,那你就要分析為什麼是3,不是2或者1甚至0呢?是什麼刺激這個數據的增長了,是因為你在某些方面優化了還是因為有節氣等,下一步什麼安排等,也就是說你的每一步都能從數據反映出來,並能分析數據,做出下一步的安排等。
好了就說這么多吧,說太細我怕我理解的不準確,誤導人。
對於一個企業來說,大數據可以拓寬產品的銷售渠道和提升服務質量。有利於獲取市場的動態和了解分析用戶需求體驗。
大數據如何才能發揮其作用,最重要的還是得有相對應的人才為它進行分析整理。
大數據可以讓業內的情況變得清晰明了,是事實的支撐,通過數據可以知道業內的最新動態,根據數據分析,及時做出方案調整 有利於企業的發展。
大數據的工作中最重要的是什麼?
1. 細致精準的數據採集;
2. 同時具備邏輯性與適用性;
3. 數據標簽的規劃切實可行(務實);
4. 具備行業垂直度的商業性思維能力;
5. 能夠做到更強的擴展性構架。
總結來說,商業化的大數據最重要的價值便是邏輯性與適用性,而擴展性也能保證在實踐中更有競爭力,最後便是務實和思維能力的支撐。
任何時代的任何職業都需要面對競爭,所以能夠產生的價值決定了我們被需求的程度,如想成為那個不可或缺的人,不僅要具備能力,還要具備務實的心態!
感謝悟空邀請回答。當今世界是 科技 高速發展的時代,也同樣是大數據時代,競爭也是十分的激烈,要想成為大數據不可或缺的人才,必須要保證自己的專業知識過硬,這是一個看技術的活,弱者會被淘汰只有強者才能生存!
大數據可以拓寬產品的銷售渠道和提升服務質量。有利於獲取市場的動態和了解分析用戶需求體驗。
大數據如何才能發揮其作用,最重要的還是得有相對應的人才為它進行分析整理。
大數據可以讓業內的情況變得清晰明了,是事實的支撐,通過數據可以知道業內的最新動態,根據數據分析,及時做出方案調整 有利於企業的發展。
❹ 大數據處理需要什麼樣的人才需要具備哪些技能
想要學習大數據開發,第一件事並不是要找書籍或者是找視頻教程,而是要了解一下大數據行業前景,了解一下成為大數據工程師需要具備什麼樣的能力,掌握哪些技能我當初學習大數據之前也有過這樣的問題,作為一個過來人,今天就跟大家聊下大數據人才應該具備的技能。
首先我們要知道對於大數據開發工程師需要具備的技能,下面我們分別來說明:
用人單位對於大數據開發人才的能力要求有
技能要求:
1.精通JAVA開發語言,同時熟悉Python、Scala開發語言者優先;
2.熟悉Spark或Hadoop生態圈技術,具有源碼閱讀及二次開發工作經驗;精通Hadoop生態及高性能緩存相關的各種工具,有源碼開發實戰經驗者優先;
3.熟練使用SQL,熟悉資料庫原理,熟悉至少一種主流關系型資料庫;熟悉Linux操作系統,熟練使用常用命令,熟練使用shell腳本;熟悉ETL開發,能熟練至少一種ETL(talend、kettle、ogg等)轉化開源工具者優先;
4.具有清晰的系統思維邏輯,對解決行業實際問題有濃厚興趣,具備良好的溝通協調能力及學習能力。
以上就是想要成為大數據人才需要具備的技能
那麼如何具備這些能力,怎麼學習了,對於大多數人來說,目前只有通過參加大數據的學習,才能夠系統的掌握以上的大數據技能,從而勝任大數據工程師的工作。