⑴ 如何利用大數據來改善醫療服務質量
近年來,大數據不斷向世界的各行各業滲透,影響著我們的衣食住行。例如,網上購物時,經常會發現電子商務門戶網站向我們推薦商品,往往這類商品都是我們最近需要的。這是因為用戶上網行為軌跡的相關數據都會被搜集記錄,並通過大數據分析,使用推薦系統將用戶可能需要的物品進行推薦,從而達到精準營銷的目的。下面簡單介紹幾種大數據的應用場景。
大數據讓就醫看病更簡單。過去,對於患者的治療方案,大多數都是通過醫師的經驗來進行,優秀的醫師固然能夠為患者提供好的治療方案,但由於醫師的水平不相同,所以很難保證患者都能夠接受最佳的治療方案。
而隨著大數據在醫療行業的深度融合,大數據平台積累了海量的病例、病例報告、治癒方案、葯物報告等信息資源.所有常見的病例、既往病例等都記錄在案,醫生通過有效、連續的診療記錄,能夠給病人優質、合理的診療方案。這樣不僅提高醫生的看病效率,而且能夠降低誤診率,從而讓患者在最短的時間接受最好的治療。下面列舉大數據在醫療行業的應用,具體如下。
(1) 優化醫療方案,提供最佳治療方法。
面對數目及種類眾多的病菌、病毒,以及腫瘤細胞時,疾病的確診和治療方案的確定也是很困難的。藉助於大數據平台,可以搜集不同病人的疾病特徵、病例和治療方案,從而建立醫療行業的病人分類資料庫。如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診,明確地定位疾病。在制訂治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制訂出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業研發出更加有效的葯物和醫療器械。
(2)有效預防預測疾病。
解決患者的疾病,最為簡單的方式就是防患於未然。通過大數據對於群眾的人體數據監控,將各自的健康數據、生命體征指標都集合在資料庫和健康檔案中。通過大數據分析應用,推動覆蓋全生命周期的預防、治療、康復和健康管理的一體化健康服務,這是未來賣耐健康服務管理的新趨勢。當然,這一點不僅需 要醫療機構加快大數據的建設,還需要群眾定期去做檢查,及時更新數據,以便通過大數據來預防和預測疾病的發生,做到早治療、早康復。當然,隨著大數據的不斷發展,以及在各個領域的應用,一些大規模的流感也能夠通過大數據實現預測。
隨著大數據技術的應用,越來越多的金融企業也開始投身到大數據應用實踐中。麥肯錫的一份研究顯示,金融業在大數據價值潛力指數中排名第一。下面列舉若干大數據在金融行業的典型應用,具體如下。
(1) 精準營銷。
銀行在純配遲互聯網的沖擊下,迫切需要掌握更多用戶信息,繼而構建用戶360立體畫像,即可對細分的客戶進行精準營銷、實時營銷等個性化智慧營銷。
(2) 風險管控。
應用大數據平台,可以統一管理金融企業內部多源異構數據和外部徵信數據,更好地完善風控體系。內部可保證數據的完整性與安全性,外部可控制用戶風險。
(3) 決策支持。
通過大數據分析方法改善經營決策,為管理層提供可靠的數據支撐,從而使經營決策更高效、敏捷、精準。
(4) 服務創新。
通過對大數據的應用,改善與客戶之間的交互、增加用戶黏性,為個人與政府提供增值服務,不斷增強金融企業業務核心競爭力。
(5) 產品創新。
通過高端數據分析和綜合化數據分享,有效對接銀行、保險、信託、基金等各類金融產品,使金融做李企業能夠從其他領域借鑒並創造出新的金融產品。
美國零售業曾經有這樣一個傳奇故事,某家商店將紙尿褲和啤酒並排放在一起銷售,結果紙尿褲和啤酒的銷量雙雙增長!為什麼看起來風馬牛不相及的兩種商品搭配在一起,能取到如此驚人的效果呢?後來經過分析發現,這些購買者多數是已婚男士,這些男士在為小孩購買尿不濕的同時,會同時為自己購買一些啤酒。發現這個秘密後,沃爾瑪超市就大膽地將啤酒擺放在尿不濕旁邊,這樣顧客購買的時候更方便,銷量自然也會大幅上升。
之所以講「啤酒-尿布」這個例子,其實是想告訴大家,挖掘大數據潛在的價值,是零售業競爭的核心競爭力,下面列舉若干大數據在零售業的創新應用,具體如下。
(1) 精準定位零售行業市場。
企業想進人或開拓某一區域零售行業市場,首先要進行項目評估和可行性分析,只有通過項目評估和可行性分析才能最終決定是否適合進人或者開拓這塊市場。通常需要分析這個區域流動人口是多少?消費水平怎麼樣?客戶的消費習慣是什麼?市場對產品的認知度怎麼樣?當前的市場供需情況怎麼樣等等,這些問題背後包含的海量信息構成了零售行業市場調研的大數據,對這些大數據的分析就是市場定位過程。
(2) 支撐行業收益管理。
大數據時代的來臨,為企業收益管理工作的開展提供了更加廣闊的空間。需求預測、細分市場和敏感度分析對數據需求量很大,而傳統的數據分析大多採集的是企業自身的歷史數據來進行預測和分析,容易忽視整個零售行業信息數據,因此難免使預測結果存在偏差。企業在實施收益管理過程中如果能在自有數據的基礎上,依靠一些自動化信息採集軟體來收集更多的零售行業數據,了解更多的零售行業市場信息,這將會對制訂准確的收益策略,贏得更高的收益起到推進作用。
(3) 挖掘零售行業新需求。
作為零售行業企業,如果能對網上零售行業的評論數據進行收集,建立網評大資料庫,然後再利用分詞、聚類、情感分析了解消費者的消費行為、價值取向、評論中體現的新消費需求和企業產品質量問題,以此來改進和創新產品,量化產品價值,制定合理的價格及提高服務質量,從中獲取更大的收益。
⑵ 大數據在醫療行業的應用有哪些
大數據專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。所以大數據在眾多行業都有應用,下面說說其在醫療領域的應用。
隨著互聯網規模不斷的擴大,大數據正在改變著這個時代的絕大一部分的行業或者企業,醫療行業也不例外,醫療健康正在成為人們關注的重點問題,以智能化、數字化為特徵的醫療信息化正在蓬勃興起,醫療行業的數據類型也在向海量、復雜、多樣的類型方式轉變。
1.就醫數據進行電子化管理
對電子醫療記錄的收集,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。在信息系統中進行分享,每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。
2.健康預測
通過智能手錶等可穿戴設備的數據,建立健康預測模型,通過這些可穿戴設備持續不斷地收集健康數據並存儲在雲端,實時匯報病人的健康狀況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。
3.醫學影像以及臨床診斷
通過讓大數據機器人來識別記住各類海量的醫學影像,例如X射線、核磁共振成像、超聲波……等各種的圖像。對大量病歷進行深度挖掘與學習,訓練其對影片的診斷,最終實現輔助醫生進行臨床決策,規范診療路徑,提高醫生的工作效率。
4.葯品研發
利用大數據進行數據建模並進行分析,預測葯物的臨床結果,可以為臨床階段的實驗結果提供參考,節省臨床階段的時間並優化臨床實驗結果。制葯公司也可以通過數據建模進行分析,從而生產出治療成功率更高的葯品並極大地縮短葯品從研發到投入市場的時間。
⑶ 醫療行業大數據應用的三個案例
醫療行業大數據應用的三個案例
文章從華大基因推出腫瘤基因檢測服務、大數據預測早產兒病情、廣東省人民醫院利用大數據調配床位3個醫療行業大數據應用案例中,以應用背景、數據源、圖說場景、實現途徑、應用效果5個視角去看待大數據在醫療的應用狀況。
案例一:華大基因推出腫瘤基因檢測服務
應用背景:
伴隨著生物技術、大數據技術的發展,個體基因檢測治療疾病已經成為現實。其中,最廣為人知的是美國好萊塢女星安吉麗娜?朱莉,在 2013 年經過檢測她發現自身攜帶致癌基因——BRCA1 基因,為防止罹患卵巢癌,於 2015 年切除了卵巢和輸卵管。目前,國內外已經有多家基因檢測機構,如我國的華大基因、貝瑞和康、 美國的 23andMe、 Illumina 公司等。華大基因一直致力於腫瘤基因組學研究,已經研究 20 多類癌症。近日,華大基因推出了自主研究的腫瘤基因檢測服務,採用了高通量測序手段對來自腫瘤病人的癌組織進行相關基因分析,對肺癌、乳腺癌、胃癌等多種常見高發癌症進行早期、無創傷檢測。
數據源:
檢測數據:患者血清、口腔黏膜數據、基因測序等。
其它數據:體檢數據、電子病歷、遺傳記錄、患者調查、地理區域以及生活條件等。
圖說場景:
實現路徑:
首先採取患者樣本,通過測序得到基因序列,接著採用大數據技術與原始基因比對,鎖定突變基因,通過分析做出正確的診斷,進而全面、系統、准確地解讀腫瘤葯物與突變基因的關系,同時根據患者的個體差異性,輔助醫生選擇合適的治療葯物,制定個體化的治療方案,實現「 同病異治」 或「 異病同治」 ,從而延長患者的生存時間。
應用效果:
癌症診斷和預測。腫瘤醫院的病人中有 60%至 80%剛到醫院時就已經進入中晚期,癌症早期的篩查可以幫助患者有針對性的改善生活習慣或者採取個體化的輔助治療,有益於身體健康;同時將癌症扼殺在搖籃里,從而降低日後巨大的醫葯開支和生活困擾。助力個性化醫療。結合生物大數據,挖掘疾病分子機制最終可以做到更好的篩查,更好的臨床指導以及更好用葯的過程。
案例二:大數據預測早產兒病情
應用背景:
安大略理工大學的卡羅琳·麥格雷戈( Carolyn McGregor)博士和一支研究隊伍與 IBM 一起和很多醫院合作,用一個軟體來監測處理即時的病人信息,然後把它用於早產兒的病情診斷。
數據源:
個人體征數據:心率、呼吸、體溫、血壓和血氧含量。
其它數據:孕婦產檢數據、電子病歷、遺傳數據等。
實現路徑:
系統會監控 16 個不同地方的數據,比如心率、呼吸、體溫、血壓和血氧含量,這些數據可以達到每秒鍾 1260 個數據點之多。在明顯感染症狀出現的 24 小時之前,系統就能監測到早產兒細微的身體變化發出的感染信號,及早預測控制早產兒的病情,從而提高新生兒的出生率。
應用效果:
預測病情。早產兒的穩定不是病情好轉的標志,只有通過海量的數據並且找出隱含的相關性才能發現提早知道病情,醫生就能夠提早治療,也能更早地知道某種療法是否有效,這一切都有利於病人的康復。
案例三:廣東省人民醫院利用大數據調配床位
應用背景:
起因於國外醫院的經驗以及廣東省人民醫院各專業科室差異很大的病床使用率。長期以來,優勢專業病源充足,病人候床情況嚴重,排隊入院,相反有些專業空床情況明顯,病床使用率僅 65%左右。為此管理層打出了模糊臨床二級分科、跨科收治病人、集中床位調配權的一套「 組合拳」 。
數據源:
患者數據:掛號數據、電子病歷、患者基本數據等。
醫院數據:各科室床位使用情況、診療活動、平均住院費用、平均住院周期等。
實現路徑:
對跨科收治病人之後的科與科之間的工作量、收入、支出、分攤成本等指標進行合理的劃分,強化了入院處的集中床位調配權,解決病人入院排隊情況,使醫院更好地履行了社會責任,同時也給增加了醫院的效益。
應用效果:
提高病床使用率。病床使用率由 87%提高到 92%,優勢專業候床排隊現象明顯減少。
支持決策判斷。優勢專科與弱勢專科的病人在地域構成比、平均住院費用等標上存在顯著差異,支持決策判斷。
⑷ 大數據技術應用在醫療行業的哪些方面
【導讀】大數據技術可以說目前已經應用到了各行各業中,對於各行各業都是有很大的幫助和促進作用的,在醫療行業,能夠促進醫學研究,幫助改善我們的生活質量,有效促進相關疾病的治療等等,那麼大數據技術應用在醫療行業的哪些方面呢?下面我們就來一起了解一下。
1、新型冠狀病毒大數據搜索報告
該數據有可能更好地預測各種情況和當前公共衛生問題引起的區域性暴發疫情的情況。反過來,醫療服務提供者能夠採取適當的預防措施,並分配必要的資源,以應對與健康有關的特定疾病的區域性升級。
2、區域醫療保健監控
可以將數據用於預測醫學研究,從而有助於預防可能的疾病傳播。例如,通過跟蹤他們搜索的醫療問題來了解患者人群及其醫療保健需求以及跟蹤他們在醫療站點上提供的信息,這些都是促進預防保健和研究的方法。
3、打擊性傳播疾病
如果及時報告,則可以治療性傳播疾病(STD)和性傳播感染(STI)。但是,諸如缺乏性教育等問題通常會導致症狀不受控制。大數據可以利用本地經驗,並幫助科技公司和醫療保健提供商填補信息空白並傳播對性健康的認識。
4、機器人護士
如今,在醫學研究和發展中使用大數據至關重要。人工智慧和機器學習正在引領醫學數據的收集,新葯療法的發現以及患者預後的改善。通過實時分析公共衛生問題,大數據可以促進多個領域的醫學研究,改善患者護理並防止致命疾病的傳播。
5、改善醫療保健支持系統
醫療技術的主要進步之一是醫療保健機器人技術,預計到2021年其收入將增長到28億美元。醫療保健機器人技術包括外科機器人培訓,機器人護士,智能假肢和仿生學等專業,以及治療,葯丸,遠程呈現和後勤方面的幫助。使用大數據驅動的機器人技術有可能極大地改善醫療保健支持的質量,這已經通過少數著名的機器人護士(如Robot
Dinsow)看到,它可以監控患者並提醒他們用葯;Paro機器人可以提醒護理人員。
關於大數據技術在醫療行業應用,就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於大數據工程師相關內容,可以點擊本站的其他文章進行學習。
⑸ 大數據和人工智慧在醫療智能決策分析過程中有哪些應用場景
智慧醫療行業的上游主要是醫院相關方,主要涉及:
1、醫療器械設備:目前主要是指智能化的醫療器械設備。
2、醫療信息化握裂頃:即醫療服務的數字化、網路化、信息化,是指通過計算源中機科學和現代網路通信技術及資料庫技術,為各醫院之間以及醫院所屬各部門之間提供病人信息和管理信息的收集、存儲、處理、提取和數據交換。
3、遠程醫療:著移動通信、物聯網、雲計算、視聯網等新技術的發展,眾多的智能健康醫療產品逐漸面世,遠程醫療也處於第二階段向段陸第三階段邁進的過渡時期。
而智慧健康行業的下游主要面對患者,可以涉及以下產業:
1、可穿戴設備:穿戴設備正被用在不同的場景中幫助帕金森症、糖尿病、心臟病、高血壓和其他疾病患者管理疾病,這項技術降低了住院率和就診率,是智慧醫療領域的一項重大技術。
2、移動醫療APP:基於移動終端的醫療類應用軟體,主要為患者提供尋醫問診、預約掛號、購買醫葯產品以及查詢專業信息等服務。
⑹ 大數據醫療行業的5大應用
一、電子病歷
到目前為止,大數據最強大的應用就是電子醫療記錄的收集。每一個病人都有自己的電子記錄,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。
這些記錄通過安全的信息系統(究竟是否安全值得商榷)在不同的醫療機構之間共享。每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。
二、健康監控
醫療業的另一個創新是“可穿戴設備”的應用,這些設備能夠實時匯報病人的健康狀況。
和醫院內部分析醫療數據的軟體類似,這些新的分析設備具備同樣的功能,但能在醫療機構之外的場所使用,降低了醫療成本,病人在家就能獲知自己的健康狀況,同時還獲得智能設備所提供的治療建議。這些可穿戴設備持續不斷地收集健康數據並存儲在雲端。
三、醫護資源配置
這個看似不可能完成的任務,已經在大數據的幫助幫助下在一些“試點”單位實現。在法國巴黎,有四家醫院通過多個來源的數據預測每家醫院每天和每小時的患者數量。
他們採用一種被稱為“時間序列分析”的技術,分析過去10年的患者入院記錄。這項研究能夠幫助研究人員發現患者入院的規律並利用機器學習,找到能夠預測未來入院規律的演算法。
四、大數據與人工智慧
人工智慧技術通過演算法和軟體,分析復雜的醫療數據,達到近似人類認知的目的。因此AI使得計算機演算法能夠在沒有直接人為輸入的情況下預估結論成為可能。由AI支持的腦機介面可以幫助恢復基本的人類體驗,例如因神經系統疾病和神經系統創傷而喪失的說話和溝通功能。
五、醫學影像
醫學影像包括X射線、核磁共振成像、超聲波等,這些都是醫療過程中的關鍵環節。
放射科醫生往往需要單獨查看每一個檢查結果,不但產生了巨大的工作量,同時也有可能耽誤患者的最佳治療時間。但是大數據卻可以有效解決這一問題。
關於大數據醫療行業的5大應用的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。