導航:首頁 > 網路數據 > 大數據挖掘模型

大數據挖掘模型

發布時間:2024-04-29 00:00:13

大數據挖掘是什麼

數據挖掘(DataMining)是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。

數據挖掘對象

根據信息存儲格式,北大青鳥南邵計算機學院認為用於挖掘的對象有關系資料庫、面向對象資料庫、數據倉庫、文本數據源、多媒體資料庫、空間資料庫、時態資料庫、異質資料庫以及Internet等。

數據挖掘流程

定義問題:清晰地定義出業務問題,確定數據挖掘的目的。

數據准備:數據准備包括:選擇數據_在大型資料庫和數據倉庫目標中提取數據挖掘的目標數據集;數據預處理_進行數據再加工,包括檢查數據的完整性及數據的一致性、去雜訊,填補丟失的域,刪除無效數據等。

數據挖掘:根據數據功能的類則明型和和數據的特點選擇相應的演算法,在凈化和轉換過的數據集上進行數據挖掘。

結果分析:對數據挖掘的結果進行解釋和評價,轉換成為能夠最終被用戶理解的知識。

數據挖掘分類

直接數據挖掘:目標是利用可用的數據建立一個模型,這個模型對剩餘的數據,對一個特定的變數(可以理解成資料庫中表的屬性,即列)進行描述。

間接數據挖掘:目標中沒有選出某一具體的變數,用模型進行描述;而是在所有的變數中建立起某種關系。

數據挖掘的方法

神經網路方法

神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。

遺傳演算法

遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性孫褲告、易於和其它模型結合等性質使得它純扮在數據挖掘中被加以應用。

決策樹方法

決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。


㈡ 大數據挖掘方法有哪些

方法1.Analytic Visualizations(可視化分析)


無論是日誌數據分析專家還是普通用戶,數據可視化都是數據分析工具的最基本要求。可視化可以直觀地顯示數據,讓數據自己說話,讓聽眾看到結果。


方法2.Data Mining Algorithms(數據挖掘演算法)


如果說可視化用於人們觀看,那麼數據挖掘就是給機器看的。集群、分割、孤立點分析和其他演算法使我們能夠深入挖掘數據並挖掘價值。這些演算法不僅要處理大量數據,還必須盡量縮減處理大數據的速度。


方法3.Predictive Analytic Capabilities(預測分析能力)


數據挖掘使分析師可以更好地理解數據,而預測分析則使分析師可以根據可視化分析和數據挖掘的結果做出一些預測性判斷。


方法4.semantic engine(語義引擎)


由於非結構化數據的多樣性給數據分析帶來了新挑戰,因此需要一系列工具來解析,提取和分析數據。需要將語義引擎設計成從“文檔”中智能地提取信息。


方法5.Data Quality and Master Data Management(數據質量和主數據管理)


數據質量和數據管理是一些管理方面的最佳實踐。通過標准化流程和工具處理數據可確保獲得預定義的高質量分析結果。


關於大數據挖掘方法有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈢ 一篇文章讓你知道什麼是大數據挖掘技術

一篇文章讓你知道什麼是大數據挖掘技術
大數據如果想要產生價值,對它的處理過程無疑是非常重要的,其中大數據分析和大數據挖掘就是最重要的兩部分。在前幾期的科普中,小編已經為大家介紹了大數據分析的相關情況,本期小編就為大家講解大數據挖掘技術,讓大家輕輕鬆鬆弄懂什麼是大數據挖掘技術。

什麼是大數據挖掘?
數據挖掘(Data Mining)是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
數據挖掘對象
根據信息存儲格式,用於挖掘的對象有關系資料庫、面向對象資料庫、數據倉庫、文本數據源、多媒體資料庫、空間資料庫、時態資料庫、異質資料庫以及Internet等。
數據挖掘流程
定義問題:清晰地定義出業務問題,確定數據挖掘的目的。
數據准備:數據准備包括:選擇數據–在大型資料庫和數據倉庫目標中 提取數據挖掘的目標數據集;數據預處理–進行數據再加工,包括檢查數據的完整性及數據的一致性、去雜訊,填補丟失的域,刪除無效數據等。
數據挖掘:根據數據功能的類型和和數據的特點選擇相應的演算法,在凈化和轉換過的數據集上進行數據挖掘。
結果分析:對數據挖掘的結果進行解釋和評價,轉換成為能夠最終被用戶理解的知識。
數據挖掘分類
直接數據挖掘:目標是利用可用的數據建立一個模型,這個模型對剩餘的數據,對一個特定的變數(可以理解成資料庫中表的屬性,即列)進行描述。
間接數據挖掘:目標中沒有選出某一具體的變數,用模型進行描述;而是在所有的變數中建立起某種關系。
數據挖掘的方法
神經網路方法
神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。
遺傳演算法
遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。
決策樹方法
決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。
粗集方法
粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。
覆蓋正例排斥反例方法
它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。
統計分析方法
在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。
模糊集方法
即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。
數據挖掘任務
關聯分析
兩個或兩個以上變數的取值之間存在某種規律性,就稱為關聯。數據關聯是資料庫中存在的一類重要的、可被發現的知識。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。一般用支持度和可信度兩個閥值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。
聚類分析
聚類是把數據按照相似性歸納成若干類別,同一類中的數據彼此相似,不同類中的數據相異。聚類分析可以建立宏觀的概念,發現數據的分布模式,以及可能的數據屬性之間的相互關系。
分類
分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,並用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的演算法而求得分類規則。分類可被用於規則描述和預測。
預測
預測是利用歷史數據找出變化規律,建立模型,並由此模型對未來數據的種類及特徵進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。
時序模式
時序模式是指通過時間序列搜索出的重復發生概率較高的模式。與回歸一樣,它也是用己知的數據預測未來的值,但這些數據的區別是變數所處時間的不同。
偏差分析
在偏差中包括很多有用的知識,資料庫中的數據存在很多異常情況,發現資料庫中數據存在的異常情況是非常重要的。偏差檢驗的基本方法就是尋找觀察結果與參照之間的差別。

㈣ 數據挖掘分析模型都有哪些

  1. 分類與預測,決策樹、神經網路、回歸、時間序列

  2. 聚類,K-means,快速聚類,系統聚類

  3. 關聯,apriori演算法等

  4. 異常值處理

㈤ 大數據挖掘的演算法有哪些

數據挖掘本質還是機器學習演算法
具體可以參見《數據挖掘十大常見演算法》
常用的就是:SVM,決策樹,樸素貝葉斯,邏輯斯蒂回歸等
主要解決分類和回歸問題

㈥ 數據挖掘常用的模型有哪些

1、監督學習模型


監督學習模型,就是人們經常說的分類,通過已經有的訓練樣本(即已知數據以及其對應的輸出)去訓練得到一個最優模型,然後再利用這個模型將所有的輸入映射為相應的輸出,對輸出進行簡單的判斷從而實現分類的目的,也就具有了對未知數據進行分類的能力。


2、無監督學習模型


在非監督式學習中,數據並不被特別標識,學習模型是為了推斷出數據的一些內在結構,應用場景包括關聯規則的學習以及聚類等。


3、半監督學習


半監督學習演算法要求輸入數據部分被標識,部分沒有被標識,這種學習模型可以用來進行預測,但是模型首先需要學習數據的內在結構以便合理的組織數據來進行預測。應用場景包括分類和回歸,演算法包括一些對常用監督式學習演算法的延伸,這些演算法首先試圖對未標識數據進行建模,在此基礎上再對標識的數據進行預測。

㈦ 大數據分析中,有哪些常見的大數據分析模型

很多朋友還沒有接觸過大數據分析方案,認為其僅僅算是個願景而非現實——畢竟能夠證明其可行性與實際效果的案例確實相對有限。但可以肯定的是,實時數據流中包含著大量重要價值,足以幫助企業及人員在未來的工作中達成更為理想的結果。那麼,那些領域需要實時的數據分析呢?

1、醫療衛生與生命科學

2、保險業

3、電信運營商

4、能源行業

5、電子商務

6、運輸行業

7、投機市場

8、執法領域

9、技術領域

常見數據分析模型有哪些呢?

1、行為事件分析:行為事件分析法具有強大的篩選、分組和聚合能力,邏輯清晰且使用簡單,已被廣泛應用。

2、漏斗分析模型:漏斗分析是一套流程分析,它能夠科學反映用戶行為狀態以及從起點到終點各階段用戶轉化率情況的重要分析模型。

3、留存分析模型留存分析是一種用來分析用戶參與情況/活躍程度的分析模型,考察進行初始化行為的用戶中,有多少人會進行後續行為。這是用來衡量產品對用戶價值高低的重要方法。

4、分布分析模型分布分析是用戶在特定指標下的頻次、總額等的歸類展現。

5、點擊分析模型即應用一種特殊亮度的顏色形式,顯示頁面或頁面組區域中不同元素點點擊密度的圖標。

6、用戶行為路徑分析模型用戶路徑分析,顧名思義,用戶在APP或網站中的訪問行為路徑。為了衡量網站優化的效果或營銷推廣的效果,以及了解用戶行為偏好,時常要對訪問路徑的轉換數據進行分析。

7、用戶分群分析模型用戶分群即用戶信息標簽化,通過用戶的歷史行為路徑、行為特徵、偏好等屬性,將具有相同屬性的用戶劃分為一個群體,並進行後續分析。

8、屬性分析模型根據用戶自身屬性對用戶進行分類與統計分析,比如查看用戶數量在注冊時間上的變化趨勢、省份等分布情況。

模型再多,選擇一種適合自己的就行,如何利益最大化才是我們追求的目標

閱讀全文

與大數據挖掘模型相關的資料

熱點內容
ps入門必備文件 瀏覽:348
以前的相親網站怎麼沒有了 瀏覽:15
蘋果6耳機聽歌有滋滋聲 瀏覽:768
怎麼徹底刪除linux文件 瀏覽:379
編程中字體的顏色是什麼意思 瀏覽:534
網站關鍵詞多少個字元 瀏覽:917
匯川am系列用什麼編程 瀏覽:41
筆記本win10我的電腦在哪裡打開攝像頭 瀏覽:827
醫院單位基本工資去哪個app查詢 瀏覽:18
css源碼應該用什麼文件 瀏覽:915
編程ts是什麼意思呢 瀏覽:509
c盤cad佔用空間的文件 瀏覽:89
不銹鋼大小頭模具如何編程 瀏覽:972
什麼格式的配置文件比較主流 瀏覽:984
增加目錄word 瀏覽:5
提取不相鄰兩列數據如何做圖表 瀏覽:45
r9s支持的網路制式 瀏覽:633
什麼是提交事務的編程 瀏覽:237
win10打字卡住 瀏覽:774
linux普通用戶關機 瀏覽:114

友情鏈接