導航:首頁 > 網路數據 > 大數據信息系統

大數據信息系統

發布時間:2024-04-28 11:29:55

大數據系統和市場調研信息系統有啥區別和聯系

1.區別:
大數據系統是一種能夠處理大量復雜數據的信息系統,它戚廳早可以通過對數據進行分析、挖掘和可視化等技術手段來提取有價值的信息。而市場調研信息系統則是一伏晌種專門用於收集、整理、分析和報告市場數據的信息系統,它主要用於幫助企業了解市場需求和競爭狀高雀況等信息,從而做出決策。
2.聯系:
雖然大數據系統和市場調研信息系統的目的不同,但是它們也有很多相似之處。在市場調研中,大數據系統可以幫助企業更全面地了解市場情況,包括市場規模、消費者行為、競爭對手等方面的信息。同時,市場調研信息系統也可以提供大量的數據源,為大數據系統提供支持。
此外,大數據系統和市場調研信息系統都需要採用一些相同的技術手段,如數據挖掘、機器學習、人工智慧等等。這些技術手段都可以幫助企業更好地利用數據,提高決策的准確性和效率。
綜上所述,大數據系統和市場調研信息系統雖然有一些區別,但是它們也有很多聯系。通過充分利用它們之間的聯系,企業可以更好地了解市場情況,提高決策的質量和效率。

⑵ 大數據時代已經到來,什麼是大數據

大數據時代已經到來,什麼是大數據

大數據時代已經到來,你了解嗎?什麼是大數據?一、大數據出現的背景進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。它已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的證券公司等寫進了投資推薦報告。數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然現在企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識 到數據對企業的重要性。大數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。最早提出大數據時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的 挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日, 卻因為近年來互聯網和信息行業的發展而引起人們關注。大數據在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量,大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。二、什麼是大數據?信息技術領域原先已經有「海量數據」、「大規模數據」等概念,但這些概念只著眼於數據規模本身,未能充分反映數據爆發背景下的數據處理與應用需求,而「大數據」這一新概念不僅指規模龐大的數據對象,也包含對這些數據對象的處理和應用活動,是數據對象、技術與應用三者的統一。1、大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據對象既可能是實際的、有限的數據集合,如某個政府部門或企業掌握的資料庫,也可能是虛擬的、無限的數據集合,如微博、微信、社交網路上的全部信息。大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,「大數據」指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。亞馬遜網路服務(AWS)、 大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。研發小組對大數據的定義:「大數據是最大的 宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。」Kelly說:「大數據是可能不包含所有的 信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。2、大數據技術,是指從各種各樣類型的大數據中,快速獲得有價值信息的技術的能力,包括數據採集、存儲、管理、分析挖掘、可視化等技術及其集成。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。3、大數據應用,是 指對特定的大數據集合,集成應用大數據技術,獲得有價值信息的行為。對於不同領域、不同企業的不同業務,甚至同一領域不同企業的相同業務來說,由於其業務 需求、數據集合和分析挖掘目標存在差異,所運用的大數據技術和大數據信息系統也可能有著相當大的不同。惟有堅持「對象、技術、應用」三位一體同步發展,才 能充分實現大數據的價值。當你的技術達到極限時,也就是數據的極限」。大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。三、大數據的類型和價值挖掘方法1、大數據的類型大致可分為三類:1)傳統企業數據(Traditionalenterprisedata):包括 CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。2)機器和感測器數據(Machine-generated/sensor data):包括呼叫記錄(CallDetail Records),智能儀表,工業設備感測器,設備日誌(通常是Digital exhaust),交易數據等。3)社交數據(Socialdata):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平台。2、大數據挖掘商業價值的方法主要分為四種:1)客戶群體細分,然後為每個群體量定製特別的服務。2)模擬現實環境,發掘新的需求同時提高投資的回報率。3)加強部門聯系,提高整條管理鏈條和產業鏈條的效率。4)降低服務成本,發現隱藏線索進行產品和服務的創新。四、大數據的特點業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。具體來說,大數據具有4個基本特徵:1、是數據體量巨大數據體量(volumes)大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量; 網路資料表明,其新首頁導航每天需要提供的數據超過1.5PB(1PB=1024TB),這些數據如果列印出來將超過5千億張A4紙。有資料證實,到目前 為止,人類生產的所有印刷材料的數據量僅為200PB。2、是數據類別大和類型多樣數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化 數據范疇,囊括了半結構化和非結構化數據。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。3、是處理速度快在數據量非常龐大的情況下,也能夠做到數據的實時處理。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。4、是價值真實性高和密度低數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。以視頻為例,一小時的視頻,在不間斷的監控過程中,可能有用的數據僅僅只有一兩秒。五、大數據的作用1、對大數據的處理分析正成為新一代信息技術融合應用的結點移動互聯網、物聯網、社交網路、數字家庭、電子商務等是新一代信息技術的應用形態,這些應用不斷產生大數據。雲計算為這些海量、多樣化的大數據提供存儲和運算平台。通過對不同來源數據的管理、處理、分析與優化,將結果反饋到上述應用中,將創造出巨大的經濟和社會價值。大數據具有催生社會變革的能量。但釋放這種能量,需要嚴謹的數據治理、富有洞見的數據分析和激發管理創新的環境(Ramayya Krishnan,卡內基·梅隆大學海因茲學院院長)。2、大數據是信息產業持續高速增長的新引擎面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。3、大數據利用將成為提高核心競爭力的關鍵因素各 行各業的決策正在從「業務驅動」 轉變「數據驅動」。對大數據的分析可以使零售商實時掌握市場動態並迅速做出應對;可以為商家制定更加精準有效的營銷策略提供決策支持;可以幫助企業為消費 者提供更加及時和個性化的服務;在醫療領域,可提高診斷准確性和葯物有效性;在公共事業領域,大數據也開始發揮促進經濟發展、維護社會穩定等方面的重要作 用。4、大數據時代科學研究的方法手段將發生重大改變例如,抽樣調查是社會科學的基本研究方法。在大數據時代,可通過實時監測、跟蹤研究對象在互聯網上產生的海量行為數據,進行挖掘分析,揭示出規律性的東西,提出研究結論和對策。六、大數據的商業價值1、對顧客群體細分「大數據」可以對顧客群體細分,然後對每個群體量體裁衣般的採取獨特的行動。瞄準特定的顧客群體來進行營銷和服務是商家一直以來的追求。雲存儲的海量數據和「大數據」的分析技術使得對消費者的實時和極端的細分有了成本效率極高的可能。2、模擬實境運用「大數據」模擬實境,發掘新的需求和提高投入的回報率。現在越來越多的產品中都裝有感測器,汽車和智能手機的普及使得可收集數據呈現爆炸性增長。Blog、Twitter、Facebook和微博等社交網路也在產生著海量的數據。雲計算和「大數據」分析技術使得商家可以在成本效率較高的情況下,實時地把這些數據連同交易行為的數據進行儲存和分析。交易過程、產品使用和人類行為都可以 數據化。「大數據」技術可以把這些數據整合起來進行數據挖掘,從而在某些情況下通過模型模擬來判斷不同變數(比如不同地區不同促銷方案)的情況下何種方案 投入回報最高。3、提高投入回報率提高「大數據」成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。「大數據」能力強的部門可以通過雲計算、互聯網和內部搜索引擎把」大數據」成果和「大數據」能力比較薄弱的部門分享,幫助他們利用「大數據」創造商業價值。4、數據存儲空間出租企業和個人有著海量信息存儲的需求,只有將數據妥善存儲,才有可能進一步挖掘其潛在價值。具體而言,這塊業務模式又可以細分為針對個人文件存儲和針對企業用 戶兩大類。主要是通過易於使用的API,用戶可以方便地將各種數據對象放在雲端,然後再像使用水、電一樣按用量收費。目前已有多個公司推出相應服務,如亞 馬遜、網易、諾基亞等。運營商也推出了相應的服務,如中國移動的彩雲業務。5、管理客戶關系客戶管理應用的目的是根據客戶的屬性(包括自然屬性和行為屬性),從不同角度深層次分析客戶、了解客戶,以此增加新的客戶、提高客戶的忠誠度、降低客戶流失 率、提高客戶消費等。對中小客戶來說,專門的CRM顯然大而貴。不少中小商家將飛信作為初級CRM來使用。比如把老客戶加到飛信群里,在群朋友圈裡發布新 產品預告、特價銷售通知,完成售前售後服務等。6、個性化精準推薦在運營商內部,根據用戶喜好推薦各類業務或應用是常見的,比如應用商店軟體推薦、IPTV視頻節目推薦等,而通過關聯演算法、文本摘要抽取、情感分析等智能分 析演算法後,可以將之延伸到商用化服務,利用數據挖掘技術幫助客戶進行精準營銷,今後盈利可以來自於客戶增值部分的分成。以日常的「垃圾簡訊」為例,信息並不都是「垃圾」,因為收到的人並不需要而被視為垃圾。通過用戶行為數據進行分析後,可以給需要的人發送需要的信息,這樣「垃圾簡訊」就成了有價值的信息。在日本的麥當勞,用戶在手機上下載優惠券,再去餐廳用運營商DoCoMo的手機錢包優惠支付。運營商和麥當勞搜集相關消費信息,例如經常買什麼漢堡,去哪個店消費,消費頻次多少,然後精準推送優惠券給用戶。7、數據搜索數據搜索是一個並不新鮮的應用,隨著「大數據」時代的到來,實時性、全范圍搜索的需求也就變得越來越強烈。我們需要能搜索各種社交網路、用戶行為等數據。其商業應用價值是將實時的數據處理與分析和廣告聯系起來,即實時廣告業務和應用內移動廣告的社交服務。運營商掌握的用戶網上行為信息,使得所獲取的數據「具備更全面維度」,更具商業價值。典型應用如中國移動的「盤古搜索」。七、大數據對經濟社會的重要影響1、能夠推動實現巨大經濟效益比如對中國零售業凈利潤增長的貢獻,降低製造業產品開發、組裝成本等。預計2013年全球大數據直接和間接拉動信息技術支出將達1200億美元。2、能夠推動增強社會管理水平大數據在公共服務領域的應用,可有效推動相關工作開展,提高相關部門的決策水平、服務效率和社會管理水平,產生巨大社會價值。歐洲多個城市通過分析實時採集的交通流量數據,指導駕車出行者選擇最佳路徑,從而改善城市交通狀況。3、如果沒有高性能的分析工具,大數據的價值就得不到釋放對大數據應用必須保持清醒認識,既不能迷信其分析結果,也不能因為其不完全准確而否定其重要作用。1) 由於各種原因,所分析處理的數據對象中不可避免地會包括各種錯誤數據、無用數據,加之作為大數據技術核心的數據分析、人工智慧等技術尚未完全成熟,所以對 計算機完成的大數據分析處理的結果,無法要求其完全准確。例如,谷歌通過分析億萬用戶搜索內容能夠比專業機構更快地預測流感暴發,但由於微博上無用信息的 干擾,這種預測也曾多次出現不準確的情況。2)必須清楚定位的是,大數據作用與價值的重點在於能夠引導和啟發大數據應用者的創新思維,輔助決策。簡單而言,若是處理一個問題,通常人能夠想到一種方法,而大數據能夠提供十種參考方法,哪怕其中只有三種可行,也將解決問題的思路拓展了三倍。所以,客觀認識和發揮大數據的作用,不誇大、不縮小,是准確認知和應用大數據的前提。八、總結不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。1、從大數據的價值鏈條來分析,存在三種模式:1)手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。2)沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。3)既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。2、未來在大數據領域最具有價值的是兩種事物:1)擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;2)還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。大 數據是信息技術與專業技術、信息技術產業與各行業領域緊密融合的典型領域,有著旺盛的應用需求、廣闊的應用前景。為把握這一新興領域帶來的新機遇,需要不 斷跟蹤研究大數據,不斷提升對大數據的認知和理解,堅持技術創新與應用創新的協同共進,加快經濟社會各領域的大數據開發與利用,推動國家、行業、企業對於 數據的應用需求和應用水平進入新的階段。

⑶ 五種大數據處理架構

五種大數據處理架構
大數據是收集、整理、處理大容量數據集,並從中獲得見解所需的非傳統戰略和技術的總稱。雖然處理數據所需的計算能力或存儲容量早已超過一台計算機的上限,但這種計算類型的普遍性、規模,以及價值在最近幾年才經歷了大規模擴展。
本文將介紹大數據系統一個最基本的組件:處理框架。處理框架負責對系統中的數據進行計算,例如處理從非易失存儲中讀取的數據,或處理剛剛攝入到系統中的數據。數據的計算則是指從大量單一數據點中提取信息和見解的過程。
下文將介紹這些框架:
· 僅批處理框架:
Apache Hadoop
· 僅流處理框架:
Apache Storm
Apache Samza
· 混合框架:
Apache Spark
Apache Flink
大數據處理框架是什麼?
處理框架和處理引擎負責對數據系統中的數據進行計算。雖然「引擎」和「框架」之間的區別沒有什麼權威的定義,但大部分時候可以將前者定義為實際負責處理數據操作的組件,後者則可定義為承擔類似作用的一系列組件。
例如Apache Hadoop可以看作一種以MapRece作為默認處理引擎的處理框架。引擎和框架通常可以相互替換或同時使用。例如另一個框架Apache Spark可以納入Hadoop並取代MapRece。組件之間的這種互操作性是大數據系統靈活性如此之高的原因之一。
雖然負責處理生命周期內這一階段數據的系統通常都很復雜,但從廣義層面來看它們的目標是非常一致的:通過對數據執行操作提高理解能力,揭示出數據蘊含的模式,並針對復雜互動獲得見解。
為了簡化這些組件的討論,我們會通過不同處理框架的設計意圖,按照所處理的數據狀態對其進行分類。一些系統可以用批處理方式處理數據,一些系統可以用流方式處理連續不斷流入系統的數據。此外還有一些系統可以同時處理這兩類數據。
在深入介紹不同實現的指標和結論之前,首先需要對不同處理類型的概念進行一個簡單的介紹。
批處理系統
批處理在大數據世界有著悠久的歷史。批處理主要操作大容量靜態數據集,並在計算過程完成後返回結果。
批處理模式中使用的數據集通常符合下列特徵…
· 有界:批處理數據集代表數據的有限集合
· 持久:數據通常始終存儲在某種類型的持久存儲位置中
· 大量:批處理操作通常是處理極為海量數據集的唯一方法
批處理非常適合需要訪問全套記錄才能完成的計算工作。例如在計算總數和平均數時,必須將數據集作為一個整體加以處理,而不能將其視作多條記錄的集合。這些操作要求在計算進行過程中數據維持自己的狀態。
需要處理大量數據的任務通常最適合用批處理操作進行處理。無論直接從持久存儲設備處理數據集,或首先將數據集載入內存,批處理系統在設計過程中就充分考慮了數據的量,可提供充足的處理資源。由於批處理在應對大量持久數據方面的表現極為出色,因此經常被用於對歷史數據進行分析。
大量數據的處理需要付出大量時間,因此批處理不適合對處理時間要求較高的場合。
Apache Hadoop
Apache Hadoop是一種專用於批處理的處理框架。Hadoop是首個在開源社區獲得極大關注的大數據框架。基於谷歌有關海量數據處理所發表的多篇論文與經驗的Hadoop重新實現了相關演算法和組件堆棧,讓大規模批處理技術變得更易用。
新版Hadoop包含多個組件,即多個層,通過配合使用可處理批數據:
· HDFS:HDFS是一種分布式文件系統層,可對集群節點間的存儲和復制進行協調。HDFS確保了無法避免的節點故障發生後數據依然可用,可將其用作數據來源,可用於存儲中間態的處理結果,並可存儲計算的最終結果。
· YARN:YARN是Yet Another Resource Negotiator(另一個資源管理器)的縮寫,可充當Hadoop堆棧的集群協調組件。該組件負責協調並管理底層資源和調度作業的運行。通過充當集群資源的介面,YARN使得用戶能在Hadoop集群中使用比以往的迭代方式運行更多類型的工作負載。
· MapRece:MapRece是Hadoop的原生批處理引擎。
批處理模式
Hadoop的處理功能來自MapRece引擎。MapRece的處理技術符合使用鍵值對的map、shuffle、rece演算法要求。基本處理過程包括:
· 從HDFS文件系統讀取數據集
· 將數據集拆分成小塊並分配給所有可用節點
· 針對每個節點上的數據子集進行計算(計算的中間態結果會重新寫入HDFS)
· 重新分配中間態結果並按照鍵進行分組
· 通過對每個節點計算的結果進行匯總和組合對每個鍵的值進行「Recing」
· 將計算而來的最終結果重新寫入 HDFS
優勢和局限
由於這種方法嚴重依賴持久存儲,每個任務需要多次執行讀取和寫入操作,因此速度相對較慢。但另一方面由於磁碟空間通常是伺服器上最豐富的資源,這意味著MapRece可以處理非常海量的數據集。同時也意味著相比其他類似技術,Hadoop的MapRece通常可以在廉價硬體上運行,因為該技術並不需要將一切都存儲在內存中。MapRece具備極高的縮放潛力,生產環境中曾經出現過包含數萬個節點的應用。
MapRece的學習曲線較為陡峭,雖然Hadoop生態系統的其他周邊技術可以大幅降低這一問題的影響,但通過Hadoop集群快速實現某些應用時依然需要注意這個問題。
圍繞Hadoop已經形成了遼闊的生態系統,Hadoop集群本身也經常被用作其他軟體的組成部件。很多其他處理框架和引擎通過與Hadoop集成也可以使用HDFS和YARN資源管理器。
總結
Apache Hadoop及其MapRece處理引擎提供了一套久經考驗的批處理模型,最適合處理對時間要求不高的非常大規模數據集。通過非常低成本的組件即可搭建完整功能的Hadoop集群,使得這一廉價且高效的處理技術可以靈活應用在很多案例中。與其他框架和引擎的兼容與集成能力使得Hadoop可以成為使用不同技術的多種工作負載處理平台的底層基礎。
流處理系統
流處理系統會對隨時進入系統的數據進行計算。相比批處理模式,這是一種截然不同的處理方式。流處理方式無需針對整個數據集執行操作,而是對通過系統傳輸的每個數據項執行操作。
· 流處理中的數據集是「無邊界」的,這就產生了幾個重要的影響:
· 完整數據集只能代表截至目前已經進入到系統中的數據總量。
· 工作數據集也許更相關,在特定時間只能代表某個單一數據項。
處理工作是基於事件的,除非明確停止否則沒有「盡頭」。處理結果立刻可用,並會隨著新數據的抵達繼續更新。
流處理系統可以處理幾乎無限量的數據,但同一時間只能處理一條(真正的流處理)或很少量(微批處理,Micro-batch Processing)數據,不同記錄間只維持最少量的狀態。雖然大部分系統提供了用於維持某些狀態的方法,但流處理主要針對副作用更少,更加功能性的處理(Functional processing)進行優化。
功能性操作主要側重於狀態或副作用有限的離散步驟。針對同一個數據執行同一個操作會或略其他因素產生相同的結果,此類處理非常適合流處理,因為不同項的狀態通常是某些困難、限制,以及某些情況下不需要的結果的結合體。因此雖然某些類型的狀態管理通常是可行的,但這些框架通常在不具備狀態管理機制時更簡單也更高效。
此類處理非常適合某些類型的工作負載。有近實時處理需求的任務很適合使用流處理模式。分析、伺服器或應用程序錯誤日誌,以及其他基於時間的衡量指標是最適合的類型,因為對這些領域的數據變化做出響應對於業務職能來說是極為關鍵的。流處理很適合用來處理必須對變動或峰值做出響應,並且關注一段時間內變化趨勢的數據。
Apache Storm
Apache Storm是一種側重於極低延遲的流處理框架,也許是要求近實時處理的工作負載的最佳選擇。該技術可處理非常大量的數據,通過比其他解決方案更低的延遲提供結果。
流處理模式
Storm的流處理可對框架中名為Topology(拓撲)的DAG(Directed Acyclic Graph,有向無環圖)進行編排。這些拓撲描述了當數據片段進入系統後,需要對每個傳入的片段執行的不同轉換或步驟。
拓撲包含:
· Stream:普通的數據流,這是一種會持續抵達系統的無邊界數據。
· Spout:位於拓撲邊緣的數據流來源,例如可以是API或查詢等,從這里可以產生待處理的數據。
· Bolt:Bolt代表需要消耗流數據,對其應用操作,並將結果以流的形式進行輸出的處理步驟。Bolt需要與每個Spout建立連接,隨後相互連接以組成所有必要的處理。在拓撲的尾部,可以使用最終的Bolt輸出作為相互連接的其他系統的輸入。
Storm背後的想法是使用上述組件定義大量小型的離散操作,隨後將多個組件組成所需拓撲。默認情況下Storm提供了「至少一次」的處理保證,這意味著可以確保每條消息至少可以被處理一次,但某些情況下如果遇到失敗可能會處理多次。Storm無法確保可以按照特定順序處理消息。
為了實現嚴格的一次處理,即有狀態處理,可以使用一種名為Trident的抽象。嚴格來說不使用Trident的Storm通常可稱之為Core Storm。Trident會對Storm的處理能力產生極大影響,會增加延遲,為處理提供狀態,使用微批模式代替逐項處理的純粹流處理模式。
為避免這些問題,通常建議Storm用戶盡可能使用Core Storm。然而也要注意,Trident對內容嚴格的一次處理保證在某些情況下也比較有用,例如系統無法智能地處理重復消息時。如果需要在項之間維持狀態,例如想要計算一個小時內有多少用戶點擊了某個鏈接,此時Trident將是你唯一的選擇。盡管不能充分發揮框架與生俱來的優勢,但Trident提高了Storm的靈活性。
Trident拓撲包含:
· 流批(Stream batch):這是指流數據的微批,可通過分塊提供批處理語義。
· 操作(Operation):是指可以對數據執行的批處理過程。
優勢和局限
目前來說Storm可能是近實時處理領域的最佳解決方案。該技術可以用極低延遲處理數據,可用於希望獲得最低延遲的工作負載。如果處理速度直接影響用戶體驗,例如需要將處理結果直接提供給訪客打開的網站頁面,此時Storm將會是一個很好的選擇。
Storm與Trident配合使得用戶可以用微批代替純粹的流處理。雖然藉此用戶可以獲得更大靈活性打造更符合要求的工具,但同時這種做法會削弱該技術相比其他解決方案最大的優勢。話雖如此,但多一種流處理方式總是好的。
Core Storm無法保證消息的處理順序。Core Storm為消息提供了「至少一次」的處理保證,這意味著可以保證每條消息都能被處理,但也可能發生重復。Trident提供了嚴格的一次處理保證,可以在不同批之間提供順序處理,但無法在一個批內部實現順序處理。
在互操作性方面,Storm可與Hadoop的YARN資源管理器進行集成,因此可以很方便地融入現有Hadoop部署。除了支持大部分處理框架,Storm還可支持多種語言,為用戶的拓撲定義提供了更多選擇。
總結
對於延遲需求很高的純粹的流處理工作負載,Storm可能是最適合的技術。該技術可以保證每條消息都被處理,可配合多種編程語言使用。由於Storm無法進行批處理,如果需要這些能力可能還需要使用其他軟體。如果對嚴格的一次處理保證有比較高的要求,此時可考慮使用Trident。不過這種情況下其他流處理框架也許更適合。
Apache Samza
Apache Samza是一種與Apache Kafka消息系統緊密綁定的流處理框架。雖然Kafka可用於很多流處理系統,但按照設計,Samza可以更好地發揮Kafka獨特的架構優勢和保障。該技術可通過Kafka提供容錯、緩沖,以及狀態存儲。
Samza可使用YARN作為資源管理器。這意味著默認情況下需要具備Hadoop集群(至少具備HDFS和YARN),但同時也意味著Samza可以直接使用YARN豐富的內建功能。
流處理模式
Samza依賴Kafka的語義定義流的處理方式。Kafka在處理數據時涉及下列概念:
· Topic(話題):進入Kafka系統的每個數據流可稱之為一個話題。話題基本上是一種可供消耗方訂閱的,由相關信息組成的數據流。
· Partition(分區):為了將一個話題分散至多個節點,Kafka會將傳入的消息劃分為多個分區。分區的劃分將基於鍵(Key)進行,這樣可以保證包含同一個鍵的每條消息可以劃分至同一個分區。分區的順序可獲得保證。
· Broker(代理):組成Kafka集群的每個節點也叫做代理。
· Procer(生成方):任何向Kafka話題寫入數據的組件可以叫做生成方。生成方可提供將話題劃分為分區所需的鍵。
· Consumer(消耗方):任何從Kafka讀取話題的組件可叫做消耗方。消耗方需要負責維持有關自己分支的信息,這樣即可在失敗後知道哪些記錄已經被處理過了。
由於Kafka相當於永恆不變的日誌,Samza也需要處理永恆不變的數據流。這意味著任何轉換創建的新數據流都可被其他組件所使用,而不會對最初的數據流產生影響。
優勢和局限
乍看之下,Samza對Kafka類查詢系統的依賴似乎是一種限制,然而這也可以為系統提供一些獨特的保證和功能,這些內容也是其他流處理系統不具備的。
例如Kafka已經提供了可以通過低延遲方式訪問的數據存儲副本,此外還可以為每個數據分區提供非常易用且低成本的多訂閱者模型。所有輸出內容,包括中間態的結果都可寫入到Kafka,並可被下游步驟獨立使用。
這種對Kafka的緊密依賴在很多方面類似於MapRece引擎對HDFS的依賴。雖然在批處理的每個計算之間對HDFS的依賴導致了一些嚴重的性能問題,但也避免了流處理遇到的很多其他問題。
Samza與Kafka之間緊密的關系使得處理步驟本身可以非常鬆散地耦合在一起。無需事先協調,即可在輸出的任何步驟中增加任意數量的訂閱者,對於有多個團隊需要訪問類似數據的組織,這一特性非常有用。多個團隊可以全部訂閱進入系統的數據話題,或任意訂閱其他團隊對數據進行過某些處理後創建的話題。這一切並不會對資料庫等負載密集型基礎架構造成額外的壓力。
直接寫入Kafka還可避免回壓(Backpressure)問題。回壓是指當負載峰值導致數據流入速度超過組件實時處理能力的情況,這種情況可能導致處理工作停頓並可能丟失數據。按照設計,Kafka可以將數據保存很長時間,這意味著組件可以在方便的時候繼續進行處理,並可直接重啟動而無需擔心造成任何後果。
Samza可以使用以本地鍵值存儲方式實現的容錯檢查點系統存儲數據。這樣Samza即可獲得「至少一次」的交付保障,但面對由於數據可能多次交付造成的失敗,該技術無法對匯總後狀態(例如計數)提供精確恢復。
Samza提供的高級抽象使其在很多方面比Storm等系統提供的基元(Primitive)更易於配合使用。目前Samza只支持JVM語言,這意味著它在語言支持方面不如Storm靈活。
總結
對於已經具備或易於實現Hadoop和Kafka的環境,Apache Samza是流處理工作負載一個很好的選擇。Samza本身很適合有多個團隊需要使用(但相互之間並不一定緊密協調)不同處理階段的多個數據流的組織。Samza可大幅簡化很多流處理工作,可實現低延遲的性能。如果部署需求與當前系統不兼容,也許並不適合使用,但如果需要極低延遲的處理,或對嚴格的一次處理語義有較高需求,此時依然適合考慮。
混合處理系統:批處理和流處理
一些處理框架可同時處理批處理和流處理工作負載。這些框架可以用相同或相關的組件和API處理兩種類型的數據,藉此讓不同的處理需求得以簡化。
如你所見,這一特性主要是由Spark和Flink實現的,下文將介紹這兩種框架。實現這樣的功能重點在於兩種不同處理模式如何進行統一,以及要對固定和不固定數據集之間的關系進行何種假設。
雖然側重於某一種處理類型的項目會更好地滿足具體用例的要求,但混合框架意在提供一種數據處理的通用解決方案。這種框架不僅可以提供處理數據所需的方法,而且提供了自己的集成項、庫、工具,可勝任圖形分析、機器學習、互動式查詢等多種任務。
Apache Spark
Apache Spark是一種包含流處理能力的下一代批處理框架。與Hadoop的MapRece引擎基於各種相同原則開發而來的Spark主要側重於通過完善的內存計算和處理優化機制加快批處理工作負載的運行速度。
Spark可作為獨立集群部署(需要相應存儲層的配合),或可與Hadoop集成並取代MapRece引擎。
批處理模式
與MapRece不同,Spark的數據處理工作全部在內存中進行,只在一開始將數據讀入內存,以及將最終結果持久存儲時需要與存儲層交互。所有中間態的處理結果均存儲在內存中。
雖然內存中處理方式可大幅改善性能,Spark在處理與磁碟有關的任務時速度也有很大提升,因為通過提前對整個任務集進行分析可以實現更完善的整體式優化。為此Spark可創建代表所需執行的全部操作,需要操作的數據,以及操作和數據之間關系的Directed Acyclic Graph(有向無環圖),即DAG,藉此處理器可以對任務進行更智能的協調。
為了實現內存中批計算,Spark會使用一種名為Resilient Distributed Dataset(彈性分布式數據集),即RDD的模型來處理數據。這是一種代表數據集,只位於內存中,永恆不變的結構。針對RDD執行的操作可生成新的RDD。每個RDD可通過世系(Lineage)回溯至父級RDD,並最終回溯至磁碟上的數據。Spark可通過RDD在無需將每個操作的結果寫回磁碟的前提下實現容錯。
流處理模式
流處理能力是由Spark Streaming實現的。Spark本身在設計上主要面向批處理工作負載,為了彌補引擎設計和流處理工作負載特徵方面的差異,Spark實現了一種叫做微批(Micro-batch)*的概念。在具體策略方面該技術可以將數據流視作一系列非常小的「批」,藉此即可通過批處理引擎的原生語義進行處理。
Spark Streaming會以亞秒級增量對流進行緩沖,隨後這些緩沖會作為小規模的固定數據集進行批處理。這種方式的實際效果非常好,但相比真正的流處理框架在性能方面依然存在不足。
優勢和局限
使用Spark而非Hadoop MapRece的主要原因是速度。在內存計算策略和先進的DAG調度等機制的幫助下,Spark可以用更快速度處理相同的數據集。
Spark的另一個重要優勢在於多樣性。該產品可作為獨立集群部署,或與現有Hadoop集群集成。該產品可運行批處理和流處理,運行一個集群即可處理不同類型的任務。
除了引擎自身的能力外,圍繞Spark還建立了包含各種庫的生態系統,可為機器學習、互動式查詢等任務提供更好的支持。相比MapRece,Spark任務更是「眾所周知」地易於編寫,因此可大幅提高生產力。
為流處理系統採用批處理的方法,需要對進入系統的數據進行緩沖。緩沖機制使得該技術可以處理非常大量的傳入數據,提高整體吞吐率,但等待緩沖區清空也會導致延遲增高。這意味著Spark Streaming可能不適合處理對延遲有較高要求的工作負載。
由於內存通常比磁碟空間更貴,因此相比基於磁碟的系統,Spark成本更高。然而處理速度的提升意味著可以更快速完成任務,在需要按照小時數為資源付費的環境中,這一特性通常可以抵消增加的成本。
Spark內存計算這一設計的另一個後果是,如果部署在共享的集群中可能會遇到資源不足的問題。相比HadoopMapRece,Spark的資源消耗更大,可能會對需要在同一時間使用集群的其他任務產生影響。從本質來看,Spark更不適合與Hadoop堆棧的其他組件共存一處。
總結
Spark是多樣化工作負載處理任務的最佳選擇。Spark批處理能力以更高內存佔用為代價提供了無與倫比的速度優勢。對於重視吞吐率而非延遲的工作負載,則比較適合使用Spark Streaming作為流處理解決方案。
Apache Flink
Apache Flink是一種可以處理批處理任務的流處理框架。該技術可將批處理數據視作具備有限邊界的數據流,藉此將批處理任務作為流處理的子集加以處理。為所有處理任務採取流處理為先的方法會產生一系列有趣的副作用。
這種流處理為先的方法也叫做Kappa架構,與之相對的是更加被廣為人知的Lambda架構(該架構中使用批處理作為主要處理方法,使用流作為補充並提供早期未經提煉的結果)。Kappa架構中會對一切進行流處理,藉此對模型進行簡化,而這一切是在最近流處理引擎逐漸成熟後才可行的。
流處理模型
Flink的流處理模型在處理傳入數據時會將每一項視作真正的數據流。Flink提供的DataStream API可用於處理無盡的數據流。Flink可配合使用的基本組件包括:
· Stream(流)是指在系統中流轉的,永恆不變的無邊界數據集
· Operator(操作方)是指針對數據流執行操作以產生其他數據流的功能
· Source(源)是指數據流進入系統的入口點
· Sink(槽)是指數據流離開Flink系統後進入到的位置,槽可以是資料庫或到其他系統的連接器
為了在計算過程中遇到問題後能夠恢復,流處理任務會在預定時間點創建快照。為了實現狀態存儲,Flink可配合多種狀態後端系統使用,具體取決於所需實現的復雜度和持久性級別。
此外Flink的流處理能力還可以理解「事件時間」這一概念,這是指事件實際發生的時間,此外該功能還可以處理會話。這意味著可以通過某種有趣的方式確保執行順序和分組。
批處理模型
Flink的批處理模型在很大程度上僅僅是對流處理模型的擴展。此時模型不再從持續流中讀取數據,而是從持久存儲中以流的形式讀取有邊界的數據集。Flink會對這些處理模型使用完全相同的運行時。
Flink可以對批處理工作負載實現一定的優化。例如由於批處理操作可通過持久存儲加以支持,Flink可以不對批處理工作負載創建快照。數據依然可以恢復,但常規處理操作可以執行得更快。
另一個優化是對批處理任務進行分解,這樣即可在需要的時候調用不同階段和組件。藉此Flink可以與集群的其他用戶更好地共存。對任務提前進行分析使得Flink可以查看需要執行的所有操作、數據集的大小,以及下游需要執行的操作步驟,藉此實現進一步的優化。
優勢和局限
Flink目前是處理框架領域一個獨特的技術。雖然Spark也可以執行批處理和流處理,但Spark的流處理採取的微批架構使其無法適用於很多用例。Flink流處理為先的方法可提供低延遲,高吞吐率,近乎逐項處理的能力。
Flink的很多組件是自行管理的。雖然這種做法較為罕見,但出於性能方面的原因,該技術可自行管理內存,無需依賴原生的Java垃圾回收機制。與Spark不同,待處理數據的特徵發生變化後Flink無需手工優化和調整,並且該技術也可以自行處理數據分區和自動緩存等操作。
Flink會通過多種方式對工作進行分許進而優化任務。這種分析在部分程度上類似於SQL查詢規劃器對關系型資料庫所做的優化,可針對特定任務確定最高效的實現方法。該技術還支持多階段並行執行,同時可將受阻任務的數據集合在一起。對於迭代式任務,出於性能方面的考慮,Flink會嘗試在存儲數據的節點上執行相應的計算任務。此外還可進行「增量迭代」,或僅對數據中有改動的部分進行迭代。
在用戶工具方面,Flink提供了基於Web的調度視圖,藉此可輕松管理任務並查看系統狀態。用戶也可以查看已提交任務的優化方案,藉此了解任務最終是如何在集群中實現的。對於分析類任務,Flink提供了類似SQL的查詢,圖形化處理,以及機器學習庫,此外還支持內存計算。
Flink能很好地與其他組件配合使用。如果配合Hadoop 堆棧使用,該技術可以很好地融入整個環境,在任何時候都只佔用必要的資源。該技術可輕松地與YARN、HDFS和Kafka 集成。在兼容包的幫助下,Flink還可以運行為其他處理框架,例如Hadoop和Storm編寫的任務。
目前Flink最大的局限之一在於這依然是一個非常「年幼」的項目。現實環境中該項目的大規模部署尚不如其他處理框架那麼常見,對於Flink在縮放能力方面的局限目前也沒有較為深入的研究。隨著快速開發周期的推進和兼容包等功能的完善,當越來越多的組織開始嘗試時,可能會出現越來越多的Flink部署
總結
Flink提供了低延遲流處理,同時可支持傳統的批處理任務。Flink也許最適合有極高流處理需求,並有少量批處理任務的組織。該技術可兼容原生Storm和Hadoop程序,可在YARN管理的集群上運行,因此可以很方便地進行評估。快速進展的開發工作使其值得被大家關注。
結論
大數據系統可使用多種處理技術。
對於僅需要批處理的工作負載,如果對時間不敏感,比其他解決方案實現成本更低的Hadoop將會是一個好選擇。
對於僅需要流處理的工作負載,Storm可支持更廣泛的語言並實現極低延遲的處理,但默認配置可能產生重復結果並且無法保證順序。Samza與YARN和Kafka緊密集成可提供更大靈活性,更易用的多團隊使用,以及更簡單的復制和狀態管理。
對於混合型工作負載,Spark可提供高速批處理和微批處理模式的流處理。該技術的支持更完善,具備各種集成庫和工具,可實現靈活的集成。Flink提供了真正的流處理並具備批處理能力,通過深度優化可運行針對其他平台編寫的任務,提供低延遲的處理,但實際應用方面還為時過早。
最適合的解決方案主要取決於待處理數據的狀態,對處理所需時間的需求,以及希望得到的結果。具體是使用全功能解決方案或主要側重於某種項目的解決方案,這個問題需要慎重權衡。隨著逐漸成熟並被廣泛接受,在評估任何新出現的創新型解決方案時都需要考慮類似的問題。

⑷ 大數據背景管理信息系統有哪些

大數據背景管理信息系統有騰訊純孝分析、阿里雲大數據、國家電網智能化管理信息系統。
1、騰訊分析:騰訊分析是騰訊公司推出的一款大數據分析工具,主要用於對社交媒體、電子商務、游戲等業務數據進行分析和挖掘,以幫助企業做出更好的決策。
2、阿里雲大數據:阿里雲大數據是阿里雲推出的一整套大數據解決方案,包括數據存儲、計算、分析和可視化等各個環節,能夠滿足企業在大數據管理和應用方面的需求。
3、國家電網智能化管理信息系統:國家電網智能化管理信息系統是叢褲液中國國家電網公司推出的一款大滲物數據管理和決策支持系統,主要用於電力系統的數據採集、存儲、分析和決策支持。

⑸ 新興信息技術和大數據對管理信息系統產生了哪些影響

新興信息技術和大數據對管理信息系統產生了以下幾方面的影響:

1、數據採集和處理能力的提升:新興信息技術和大數據技術的發展,使得管理信息譽兆悉系統可以更加高效地採集和處理海量數據,從而為企業提供更加精準的決策支持。

⑹ 大數據分析系統平台方案有哪些

目前常用的大數據解決方案包括以下幾類
一、Hadoop。Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
二、HPCC。HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。HPCC主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。

三、Storm。Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。 Storm支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來
四、Apache Drill。為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。該項目幫助谷歌實現海量數據集的分析處理,包括分析抓取Web文檔、跟蹤安裝在Android Market上的應用程序數據、分析垃圾郵件、分析谷歌分布式構建系統上的測試結果等等。

⑺ 大數據系統有哪些

大數據可視化系統(一)思邁特軟體Smartbi

思邁特軟體Smartbi是一款商業智能BI工具,做數據分析和可視化數據展現,以分析為主,提供多種數據接入方式,可視化功能強大,平台更適合掌握分析方法了解分析的思路的用戶,其他用戶的使用則依賴於分析師的結果輸出。

Smartbi也是小編找了很久感覺很不錯的一款大數據可視化系統。其中還有很多對數據處理的公式和方法,圖表也比較全面。相對於網路的echarts,Smartbi還是一款比較容易入手的數據分析工具。最後,Smartbi提供了免費的版本,功能齊全,更加適合個人對數據分析的學習和使用。

大數據可視化系統(二)ChartBlocks

ChartBlocks是一款網頁版的大數據可視化系統,在線使用。通過導入電子表格或者資料庫來構建可視化圖表。整個過程可以在圖表的向導指示下完成。它的圖表在HTML5的框架下,使用強大的JavaScript庫D3js來創建圖表。

圖表是響應式的,可以和任何的屏幕尺寸及設備兼容。還可以將圖表嵌入任何網頁中。

大數據可視化系統(三)Tableau

Tableau公司將數據運算與美觀的圖表完美地嫁接在一起。它的程序很容易上手,各公司可以用它將大量數據拖放到數字」畫布」上,轉眼間就能創建好各種圖表。這一軟體的理念是,界面上的數據越容易操控,公司對自己在所在業務領域里的所作所為到底是正確還是錯誤,就能了解得越透徹。

它們都是為與大數據有關的組織設計的。企業使用這個工具非常方便,而且提供了閃電般的速度。還有一件事對這個工具是肯定的,Tableau具有用戶友好的特性,並與拖放功能兼容。但是在大數據方面的性能有所缺陷,每次都是實時查詢數據,如果數據量大,會卡頓。

大數據可視化系統(四)AntV

AntV是螞蟻金服的大數據可視化系統,主要包含專註解決流程與關系分析的圖表庫G6、適於對性能、體積、擴展性要求嚴苛場景下使用的移動端圖表庫F2以及一套完整的圖表使用指引和可視化設計規范。

已為阿里集團內外2000+個業務系統提供數據可視化能力,其中不乏日均千萬UV級的產品。

⑻ 大數據分析系統具體指的是什麼

隨著大數據時代的來臨,大數據分析應運而生。據我所知,九舞數字已經擁有了大數內據分析系統容。這個系統包括:智能大數據分析、智能招商成果統計、獨立賬號管理。再詳細點就是智能大數據分析是根據二維碼微沙盤掃描成果,在後台生成大數據追蹤系統,形成不同時段的大數據分析,並分析傳播效果;智能招商成果的統計是根據不同客戶的訪問量,分析出意向客戶的存在,篩選優質客戶,確定意向後拜訪交流,節約人力輸出,減少時間浪費;獨立賬號管理是根據不同招商主體,設定不同許可權的賬號,每個賬號旗下的招商信息均可生成獨立報表。

閱讀全文

與大數據信息系統相關的資料

熱點內容
ps入門必備文件 瀏覽:348
以前的相親網站怎麼沒有了 瀏覽:15
蘋果6耳機聽歌有滋滋聲 瀏覽:768
怎麼徹底刪除linux文件 瀏覽:379
編程中字體的顏色是什麼意思 瀏覽:534
網站關鍵詞多少個字元 瀏覽:917
匯川am系列用什麼編程 瀏覽:41
筆記本win10我的電腦在哪裡打開攝像頭 瀏覽:827
醫院單位基本工資去哪個app查詢 瀏覽:18
css源碼應該用什麼文件 瀏覽:915
編程ts是什麼意思呢 瀏覽:509
c盤cad佔用空間的文件 瀏覽:89
不銹鋼大小頭模具如何編程 瀏覽:972
什麼格式的配置文件比較主流 瀏覽:984
增加目錄word 瀏覽:5
提取不相鄰兩列數據如何做圖表 瀏覽:45
r9s支持的網路制式 瀏覽:633
什麼是提交事務的編程 瀏覽:237
win10打字卡住 瀏覽:774
linux普通用戶關機 瀏覽:114

友情鏈接