A. 商業智能bi,大數據,傳統報表,數據分析有何區別
作者:胡海
鏈接:https://www.hu.com/question/56839362/answer/151311039
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。
BI(BusinessIntelligence)即商業智能,它是一套完整的解決方案,用來將企業中現有的數據進行有效的整合,快速准確的提供報表並提出決策依據,幫助企業做出明智的業務經營決策。
標簽:ETL、數據倉庫、OLAP、可視化報表
BI工具:Tableau、Qlikview、帆軟大數據BI ——FineBI
技術發展方向:自助式BI(工具簡單易用)、移動BI、雲BI(SAAS級);數據挖掘技術、R語言等分析語言的結合,拓展專業數據分析的功能
大數據(Big Data)是指在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
標簽:Hadoop、MPP、HDFS、MapRece、流處理等。
大數據工具:Hadoop、HPCC、Cloudera 、Storm、Apache Drill等等
技術發展方向:內存技術、機器科學、預測分析、關系挖掘
傳統報表就是用於展示固定格式的報表,可以是業務報表也可以是分析報表。形式上可以用表格、圖表等格式來動態顯示數據。
標簽:表格、填報、Dashboard、行式報表、分組報表、交叉報表等。
報表工具:帆軟報表FineReport、Excel高級功能、水晶報表
技術發展方向:近年來報表有向BI方向發展的趨勢
數據分析是運用各種統計方法將數據進行剖析,最大化地發現數據價值,以發揮數據的作用。說白了就是基於數據事實找出規律的方法。
B. 智能製造:工業製造中的大數據分析
搞清出工業大數據分析,第一步我們應該如何定義製造業的大數據?這里我和大家通過大數據的三個特性,來經一步了解大數據的特性。
1
關注#1 -工業大數據數據來源
工業大數據的主要來源有兩個,第一類數據來源與智能設備。普適計算有很大的空間,現代工人可以帶一個普適感應器等設備來參加生產和管理。所以工業數據源是280億左右大量設備之間的關聯,這個是我們未來需要去採納的數據源之一。
第二個數據來源於人類軌跡產生的數據,包括在現代工業製造鏈中,從采購,生產,物流與銷售市場的內部流程以及外部互聯網訊息等,都是此類大數據的戰場。通過行為軌跡數據與設備數據的結合,大數據可以幫助我們實現客戶的分析和挖掘,它的應用場景包括了實時核心,交易,服務,後台服務等。
2
關注#2 -數據的關系
數據必須要放到相應的環境中一起分析,這樣才能了解數據之間的關系,可以分析出問題的根本原因(root cause)。譬如,每一款新機型在交付給航空公司之前都會接受一系列殘酷的飛行測試。極端天氣測試就是多項嚴酷的測試之一。該測試的目的是為了確保飛機的發動機、材料和控制系統能在極端天氣條件下正常運行。
問題的處理關鍵在於找到產生問題的根源,而以知錯誤的消除,關鍵在於解決方案的可靠有效。一旦找到並確定了根本原因,同時產生了可接受的應急措施,就可把問題當成一個已知錯誤來處理。問題調查的過程一定需要收集所有可用,與事件相關的信息來確定並消除引起事件和問題的根本原因。數據採集與分析必須要事件/問題發生的環境數據結合。
3
關注#3 -數據的收益
對於數字化轉型的其他方面而言,大數據不僅要關注實際數據量的多少,而最重要的是關注在大數據的處理方法在特定的場合的應用,讓數據產生巨大的創新價值。如果離開了收益考慮或投資回報的設計,一味尋求大數據既無法落地也無法為企業創造價值。
工業大數據分析的定義
生產執行系統(MES)與飛機發動機 健康 管理系統如出一轍。我們可以從工廠的生產中,實時採集到海量的流程,變數,測量結果等數據。這些數據來源的原因都是因為在製造環境中,設備或資產連接後所產生的現象。然而基於大量數據集而生成的報表,或是基礎統計的分析並不足以稱之為製造業的大數據分析。
所以如果製造業大數據分析不僅僅意味著數據的量,作為一個行業,我們應該如何定義製造業的大數據分析?「大數據不僅僅是大量的數據」這句話裡麵包含了多重涵義。
當代大數據處理技術的價值在於技術進步,同時也是因為技術進步,使大數據成為商業中有價值的核心驅動因素。作為智能製造的三駕馬車之一,工業大數據分析已經被多數的製造企業所認知並接受。許多製造業企業認為自己在生產運營方面也累積了大量的數據,是時候可以用到大數據了。
數據類型的多樣性
大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,便是,人們設法收集,並弄清楚,不斷變化的數據類型。如果只是大量採集同一類型的數據的話,再大的數據量都不能稱之為大數據。
數據必須包括高度可變性和種類多樣性。製造工廠中存在無數的大數據應用,但並不包括簡單地分類和展示一連串的流程測量結果,這些工作基本的統計展現就可以完成。一些大數據資料庫或數據湖的構成部分數據類型也是文本信息、圖像數據、地理或地質信息和非結構信息,例如,通過社交媒體或其他協作平台獲得的數據類型。
製造業信息結構概括起來分為兩層,一個是管理層,一個是自動化層。從經營管理,生產執行與控制三個緯度來實現決策支持、管理、生產執行、過程式控制制以及設備的連接與感測。製造業中大數據分析是指利用通用的數據模型,將管理層與自動化層的結構性系統數據與非結構性數據結合,進而通過先進的分析工具發現新的洞見。
大數據分析對生產的意義
製造業的創新的核心就是要依託大量的前沿 科技 。先進的技術是創新的手段。在新技術的支持下,可以通過一體化的製造運作管理系統MOM將企業管理應用系統,例如ERP,MES等系統與工業自動化的相關系統整合為一體。
從兩化融合的角度來看,信息系統供應商要從企業的主信息系統提供商定位來做好規劃、標准、功能設計、實施策略的統一性工作。協助企業做好風險控制,降低投資,降低操作維護成本,實現企業信息系統全集成。
C. 大數據 BI兩者什麼關系企業用BI嗎
大數據與BI是兩種不同的概念和工具,是社會發展到不同階段的產物,大數據對於BI,既有傳承,也有發展。
大數據(Big Data)是指在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。大數據更偏重於發現,以及猜測並印證的循環逼近過程。
BI(BusinessIntelligence)即商業智能,它是一套完整的解決方案,用來將企業中現有的數據進行有效的整合,快速准確的提供報表並提出決策依據,幫助企業做出明智的業務經營決策。
大數據和BI從思想角度上來看,都是遵循「數據→信息→知識→智慧」這個發展過程的,兩者的區別在於下面幾點:
01數據來源
大數據與BI的數據來源側重點是不同的,BI的數據來源一般為企業內部信息化系統中的數據,大數據的數據來源不僅包含企業內部的信息化系統的數據,還包括各種外部系統、機器設備、資料庫的數據。
大數據的數據來源更廣泛,而且數據多來自於雲端,可無限擴展。
02發展方向
BI在企業中的應用是一種管理和思維方式的轉變,對企業內部數據進行分析,支撐企業運營與決策,從傳統商業模式走向商業智能。
大數據除了解決企業業務問題,還包括與行業、產業的深度融合,不同行業所呈現的內容與分析維度各不相同,是用全新的數據技術手段來拓展和優化企業業務。
03技術標簽
BI的技術標簽:ETL、數據倉庫、OLAP、可視化報表。
大數據的技術標簽:Hadoop、MPP、MapRece、HDFS、流處理等。
隨著時代變革與技術迭代,相應的,BI在技術上也經歷了多次優化和變革,新型BI被賦予了更多「大數據」潛能,既滿足海量實時數據分析,也滿足決策型的業務分析。
以分析雲為例,就是最典型的大數據與BI相結合的產物,也解決了大數據和BI之間如何取捨的問題。
大數據≠BI,大數據也不是BI的簡單升級,大數據涉及了思想、工具和技術的深層次變革。無論企業當前如何選擇,未來終將迎來數字化轉型,走到數據驅動時代。
D. 大數據和BI商業智能有何區別有何相關
大數據 ≠BI商業智能,大數據也不是傳統商業智能的簡單升級。
1、大數據和BI兩者的區別
BI(BusinessIntelligence)即商業智能,它是企業數據化管理的一整套的方案,用來將企業中現有的數據進行有效的整合,快速准確的提供報表並提出決策依據,幫助企業做出明智的業務經營決策,解決的是管理運營戰略的問題。
大數據(Big
Data)是指在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。大數據側重於解決某一類問題的方法,比如全網用戶畫像,對網路、感測器等非結構化海量數據的分析。
不管定義如何不同,大數據與傳統BI是社會發展到不同階段的產物,大數據對於傳統BI,既有繼承,也有發展,從"道"的角度講,BI與大數據區別在於前者更傾向於決策,對事實描述更多是基於群體共性,幫助決策者掌握宏觀統計趨勢,適合經營運營指標支撐類問題,大數據則內涵更廣,傾向於刻畫個體,更多的在於個性化的決策。
當然純粹從思想的角度講,兩者在概念上是可以實現統一的,都遵循數據-信息-知識-智慧這個脈絡,甚至在更高的層次,兩者也是可以統一的。
大數據不是空口說說,它的第一要務就是解決業務問題,大數據一定程度上就是用全新的數據技術手段來拓展和優化業務,傳統企業需要聚集一撥人來研究這個問題,需要有人專門研究和探索。如果對外,想清楚新的商業模式,如果對內,想清楚在哪個場景,可以用大數據的手段提升效率。
當前大數據可以產生價值的地方,從行業的角度看,金融、銀行、互聯網、醫療、科研都有廣闊的前景。從領域的角度看,廣告、營銷、風控、供應鏈都是大數據發揮價值的地方,對於特定企業,比如電信運營商,大數據也可以在網路優化等方面提供新方法。
並不是每個企業都需要打造自己的大數據平台,需要考慮到企業的信息化水平和各項成本,量力而行吧,可以自行研發 ,比如BAT;也可以選型采購,比如傳統大企業;中小型企業也可以租用,比如用阿里雲和AWS。
就事實來講,BI的應用是遠遠大於大數據應用的,有其通用的道理。大數據相對於傳統BI,也不僅僅是簡單的PLUS的關系,它涉及了思想、工具和人員深層次的變革,BI人員既不要一提大數據,就嗤之以鼻,認為它是新包裝的馬甲,其實就那麼回事;也不需妄自菲薄,以為搞大數據就那麼高大上,它的確是BI大多數思想的傳承。
E. 工業製造大數據分析
工業製造大數據分析
大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,是人們設法收集並弄清楚不斷變化的數據類型。如果只是大量採集同一類型的數據,再大的數據量都不能稱之為大數據。
如何實現智能製造是大家都關心的問題。從哈佛商學院的邁克爾·波特到賓夕法尼亞大學沃頓商學院,有一個普遍的共識,即數字化轉型是智能製造實現的途徑。重要的是,這個共識也來自於眾多的世界級製造業企業與企業家們。
這一共識是基於無數技術趨勢的融合,例如,物聯網、賽博系統(CPS)、工業物聯網、移動技術、人工智慧、雲計算、虛擬/虛擬增強現實(VR/AR),以及大數據分析等。我們一定要保持清醒,不要簡單地認為有了這些技術,未來五年就是製造業的黃金時期。道理很簡單,這個新製造業文化的變革進程是相當復雜和艱難的,沒有行業、企業與用戶的融合推進,無法實現這次變革。數字化轉型不僅僅意味著企業簡單的數字化,而是把數字作為智能製造的核心驅動力,利用數據去整合產業鏈和價值鏈。
自工業革命以來,為了改進運營,製造商一直以來都在有意地採集並存儲數據。隨著時間的推移,數據在製造業分析的需求將越來越大。然而在過去的許多年間,利用數據的根本動因並沒有改變,數據的復雜性增強,數據轉化為情報的能力越來越大。
2012年高德納給出大數據定義,其中特別強調大數據是多樣化信息資產,不僅關注實際數據,更關注大數據處理方法。數據量大小本身並不是判斷大數據價值的核心指標,而數據的實時性和多元性對大數據的定義和價值更具直接的影響。
在討論工業大數據分析的時候,我注意到兩種不同的觀點:
第一種觀點認為,製造業向來都有大數據。幾十年來我們的企業一直在通過歷史記錄、MES、ERP、EAM等各種應用系統採集數據。在部分產業鏈環節,特別在市場營銷方面,大數據算是一個新的熱詞。
第二種觀點認為,從工業大數據角度看,製造業是一個尚未打開的市場或剛剛開啟的市場。存在大量不同類型的數據,但如今它們還未被應用到分析之中。
考慮到這些觀點,面對任何新的市場提法,包括名詞解釋、定義或分析框架,我們始終都應該保持適當的懷疑精神。這里我更多傾向於第二個觀點。我們的製造業的確有「大量數據」,但這並不是我們大多數人從市場上所理解的「大數據」涵義。在搞清楚工業大數據分析之前,我們應該如何定義製造業的大數據?這里可以通過大數據的三個特性,進一步了解大數據的特性。
數據來源
工業大數據的主要來源有兩個,第一是智能設備。普適計算有很大的空間,現代工人可以帶一個普適感應器等設備來參加生產和管理。所以工業數據源是280億左右大量設備之間的關聯,這個是我們未來需要去採集的數據源之一。
第二個數據來源於人類軌跡產生的數據,包括在現代工業製造鏈中,從采購、生產、物流與銷售內部流程以及外部互聯網信息等。通過行為軌跡數據與設備數據的結合,大數據可以幫助我們實現對客戶的分析和挖掘,它的應用場景包括了實時核心交易、服務、後台服務等。
數據關系
數據必須要放到相應的環境中分析,才能了解數據之間的關系。譬如,每一款新機型在交付給航空公司之前都會接受一系列殘酷的飛行測試。極端天氣測試就是測試之一。該測試的目的是為了確保飛機的發動機、材料和控制系統能在極端天氣條件下正常運行。
問題的處理關鍵在於找到可能產生問題的根源,消除已知錯誤,並確保解決方案的可靠有效。一旦找到並確定了根本原因,同時具備了可接受的應急措施,就可把問題當成一個已知錯誤來處理。問題調查的過程一定需要收集所有可用、與事件相關的信息,以確定並消除引起事件和問題的根本原因。數據採集與分析必須要事件/問題發生的環境數據結合。
數據價值
對於數字化轉型,大數據不僅要關注實際數據量的多少,最重要的是關注大數據的處理方法在特定場合的應用,讓數據產生巨大的創新價值。如果離開了收益考慮或投資回報(ROI)的設計,一味尋求大數據,則大數據分析既無法落地也無法為企業創造價值。
工業大數據分析的定義
發動機是飛機的心臟,也是關乎航空安全,生命安全的重中之重。為了實時監控發動機的狀況,現代民航大多安裝了飛機發動機健康管理系統。通過感測器、發射系統、信號接收系統、信號分析系統等方式採集到的數據,會經由飛機通信定址與報告系統,通過甚高頻或者衛星通信傳輸出來,這就是為何GE的發動機監控系統每天會獲取超過1PB數據的原因。
生產執行系統(MES)與飛機發動機健康管理系統如出一轍。我們可以從工廠的生產中,實時採集到海量的流程變數、測量結果等數據。基於大量數據集而生成的報表,或是基礎統計的分析並不足以稱為製造業的大數據分析。
數據類型的多樣性是工業大數據分析的重要屬性
大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,是人們設法收集並弄清楚不斷變化的數據類型。如果只是大量採集同一類型的數據,再大的數據量都不能稱之為大數據。
例如,生產環境中收集的時間序列模擬流程變數,數據的類型是單一的,很容易建立索引,即使存在千千萬萬,也不足以成為大數據。
數據必須包括高度可變性和種類多樣性。製造工廠中存在無數的大數據應用,但並不包括簡單地分類和展示一連串的流程測量結果,對這些工作,基本的統計展現就可以完成。一些大數據的資料庫或數據湖的構成部分也是文本信息、圖像數據、地理或地質信息和非結構信息,例如,通過社交媒體或其他協作平台獲得的數據類型。
製造業信息結構概括起來分為兩層,一個是管理層,一個是自動化層。從經營管理、生產執行與控制三個緯度來實現決策支持、管理、生產執行、過程式控制制以及設備的連接與感測。製造業中大數據分析是指利用通用的數據模型,將管理層與自動化層的結構性系統數據與非結構性數據結合,進而通過先進的分析工具發現新的洞見。
大數據分析對企業生產智能的意義
製造業創新的核心就是要依託大量的前沿科技。先進的技術是創新的手段。在新技術的支持下,可以通過一體化的製造運作管理系統MOM將企業管理應用系統,例如ERP、EAM等系統與工業自動化的相關系統整合為一體。在一體化製造運作管理的基礎上,我們可以實現集IT+MOM+MES+BI的一體化製造企業信息系統解決方案。
從兩化融合的角度來看,信息系統供應商要從企業的主信息系統提供商(MIV,MainInformation systems Vendor )定位來做好規劃、標准、功能設計、實施策略的統一性工作。協助企業做好風險控制,降低投資,降低操作維護成本,實現企業信息系統全集成。
特別需要注意的是,企業管理信息平台被普遍認為是製造企業管理的集成和儀錶板工具。許多供應商既大量投資其與ERP和自動化系統專有的集成,也投資開放式集成,還投資儀錶板和移動技術,希望隨時隨地為需要正確信息的決策者提供衡量標准。
製造業大數據分析的三種途徑
途徑一,利用開放技術與平台,將任何系統的數據移動到任何其他地方。
製造運作管理系統建設項目是系統工程,不僅僅是一套我們理解的傳統軟體系統,更多的是項目執行和服務的平台。這需要在項目管理與製造企業的策略「客戶服務」上,體現出製造企業的綜合管理能力與軟實力。
整個平台要從前期、工程實施以及售後服務這三個大的階段來架構。在前期規劃中,要重視標准、設計與實施,特別是與管理一體化的信息系統形成統一的對接。有了前期統一規劃的制定,工程實施的環節可把行業的經驗、集成能力、實施能力、軟體開發能力等融合。特別需要在組織上建立和形成超級團隊的制度。而持續服務、長期經營,將物聯網應用融入與「軟體+雲服務」的互聯網+戰略是後續服務的考慮重點。
在製造業大數據分析工作中,必須要加強通過物聯網科技的應用對後續持續服務的支撐作業。通過工業物聯網,實現的及時響應客戶、物聯網軟硬體系統定期巡檢、提供應急備件、提供易耗品、完善應用等功能來加強和鎖定與企業的供應鏈企業之間的長期合作。通過管理平台與物聯網數據,可以持續為客戶提供有價值的服務。
途徑二,投資工廠內外系統架構堆棧中能夠處理結構性和非結構性數據的數據模型。
新技術是創新革命的核心,其中很重要一個特點就是集成,即製造運作管理系統MOM與ERP、EAM、OA、商業分析的集成,包括一鍵登錄、界面集成、消息推送、工作流集成、主數據、應用集成匯流排與平台。
由於這些系統之間主數據全部統一,所有系統之間的數據交互依靠應用系統匯流排進行數據交互,整合了跨系統的業務流程、工作流、服務流程等之後即實現無縫集成和分析。對於企業管理者來說,一鍵登錄後,可以根據不同的崗位,個性化制定並且顯示與管理最相關的必要信息。這就是互聯網所帶給我們的分享思路。
途徑三,通過時間序列、圖像、視頻、機器學習、地理空間、預測模型、優化、模擬和統計過程式控制制等先進的分析工具與製造業企業內的大數據平台結合分析,從而洞見尚未顯現的情況。通過感測器、感應器、傳輸網路和應用軟體等物聯網數據,與管理應用軟體結合起來,將是今後製造業大數據分析的一大方向。
培養企業內部大數據分析專家
作為一個行業,我們需要有機地發展行業特定的大數據分析工具集,這樣才能讓現在的行業專家,從足夠的數據科學中實現數字化轉型。為了推動轉型,我們需要一大批優秀的企業利用這種方法,並向其他人或同行證明其價值。
F. BI與大數據的關系
商業智能(BI,Business Intelligence)。商業智能的概念最早在1996年提出。當時將商業智能定義為一類由數據倉庫(或數據集市)、查詢報表、數據分析、數據挖掘、數據備份和恢復等部分組成的、以幫助企業決策為目的技術及其應用。目前,商業智能通常被理解為將企業中現有的數據轉化為知識,幫助企業做出明智的業務經營決策的工具。商務智能系統中的數據來自企業其他業務系統。例如商貿型企業,其商務智能系統數據包括業務系統的訂單、庫存、交易賬目、客戶和供應商信息等,以及企業所處行業和競爭對手的數據、其他外部環境數據。而這些數據可能來自企業的CRM、SCM等業務系統。
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法)大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、veracity(真實性)。
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。我會從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。我將分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。我將分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
所以事先BI,離不開大數據的技術支撐。
具了解7月18至20號,在北京大學開辦首期大數據總裁班,全名「北京大學電子商務總裁班(大數據與互聯網金融專題)」,屆時有很多大數據方面專家及企業實操案例分享。
望採納
G. 什麼是大數據分析 主要應用於哪些行業以製造業為例
大數據作為IT行業最流行的詞彙,圍繞大數據的商業價值的使用,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等,逐漸成為業界所追求的利潤焦點。隨著大數據時代的到來,大數據分析也應運而生。
1.大數據分析主要應用於哪些行業?
製造業: 利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
金融業: 大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
汽車行業: 利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。
互聯網行業: 藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
餐飲行業: 利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。
2.大數據分析師就業前景如何?
從20世紀90年代起,歐美國家開始大量培養數據分析師,直到現在,對數據分析師的需求仍然長盛不衰,而且還有擴展之勢。
根據美國勞工部預測,到2018年,數據分析師的需求量將增長20%。就算你不是數據分析師,但數據分析技能也是未來必不可少的工作技能之一。在數據分析行業發展成熟的國家,90%的市場決策和經營決策都是通過數據分析研究確定的。
3.關於大數據分析具體含義?
1、數據分析可以讓人們對數據產生更加優質的詮釋,而具有預知意義的分析可以讓分析員根據可視化分析和數據分析後的結果做出一些預測性的推斷。
2、大數據的分析與存儲和數據的管理是一些數據分析層面的最佳實踐。通過按部就班的流程和工具對數據進行分析可以保證一個預先定義好的高質量的分析結果。
3、不管使用者是數據分析領域中的專家,還是普通的用戶,可作為數據分析工具的始終只能是數據可視化。可視化可以直觀的展示數據,讓數據自己表達,讓客戶得到理想的結果。
什麼是大數據分析 主要應用於哪些行業?中琛魔方大數據平台指出大數據的價值,遠遠不止於此,大數據針對各行各業的滲透,大大推動了社會生產和生活,未來必將產生重大而深遠的影響。
我們可以看看億信華辰關於製造業的案例,
某電建集團主要從事國內外高速公路、市政、鐵路、軌道交通、橋梁、隧 道、城市綜合體開發、機場、港口、航道、地下綜合管廊以及生態水環境治理、海綿 城市建設、環境保護等項目投資、建設、運營等,為客戶提供投資融資、咨詢規劃、 設計建造、管理運營一攬子解決方案和集成式、一體化服務。成立以來,投資建設了 一大批體量大、強度高、領域寬的基礎設施及環保項目。
該公司的數據化建設,或將成為新型基礎設施建設的一個縮影。
項目背景 數字經濟時代,數據資源已經成為企業的核心資源和核心競爭力,各類企業信息化建設的重心正從 IT(信息技術) 向 DT(數據技術) 轉化,未來信息化建設的重心將是如何對組織內外部的數據進行深入、多維、實時的挖掘和分析,以滿足決策層的需求,推動信息化向更高層面進化,構築公司數字經濟時代的新優勢。目前,由於各級各部門大量的時間用在內外部各種繁雜的報表填報、匯總、統計和分析上,同時各級領導有對公司或者所轄單位的整體經營情況仍舊通過傳統的匯報、傳統的報表等了解,缺乏直觀和可視化系統支撐決策分析,主要存在問題如下:1、數據孤島嚴重各級各部門數據無法有效共享,跨部門跨層級的數據採集、共享和分析利用困難。2、數據採集方式落後數據採集仍舊採用傳統 EXCEL 方式進行,缺乏自下而上的數據採集、數據審核、數據報送、匯總分析的數據採集平台支撐,導致數據源分散、數據標准不統一、數據質量難以保證、數據採集效率低下。3、缺乏統一的決策經營指標體系和數據資源統一管理機制導致數據資源不能有效利用,價值無法充分發揮,無法為各級領導決策提供有效支持。
建設內容 為徹底解決以上問題,根據需求和數據資產類項目建設方式,系統實現按照「指標資源整理-應用場景展現設計--數據獲取-指標資源池-頁面實現-決策門戶 」的方式設計。即根據梳理的指標體系應用場景需要確定設計展現界面展現內容,根據展現內容確定指標體系,根據指標體系來並收集相關數據。
1、搭建智能填報系統 梳理指標體系,構建決策指標和主題指標,明確指標類型,指標數據來源,各指標輸出口徑:是否填報、填報維度與對象、填報周期等等。實現公司各級各部門自下而上決策數據填報、數據審核、 數據報送、匯總查詢、數據補錄等全過程網路化數據採集的需要。
2、構建經營決策指標體系構建公司經營決策指標體系。收集數據分析需求,分析匯總形成公司市場、經營、履約、運營、項目等生產經營關鍵指標和相關數據分析主題、指標,形成指標 資源池,實現決策數據的體系化、指標化和模型化。
3、決策指標體系建設根據某電建集團提供數據的內容和主要特徵,將決策指標體系的指標分為運營指標、經營指標、整體指標、市場指標、履約指標五類一級指標。每類一級指標又分別由若干個二級指標組成。
4、建設決策支持系統通過億信BI工具,基於報表採集的數據和相關信息系統積累的數據, 初步構建管理駕駛艙,滿足面向公司決策層和部門領導的數據分析,可視化圖表化輔助領導管理決策,並集成電建通APP應用,實現決策移動化。
5、搭建自助式BI通過豌豆BI工具搭建自助式 BI。為市場營銷、建設管理、資產運營、財務管理等部門有自助探索數據分析的業務人員提供自助式可視化分析工具。
價值體現 在合作中,億信華辰根據當前數據分析應用的訴求,幫助該電建集團建設決策整體指標、市場指標、履約指標、運營指標五個模塊,提供了從數據採集、數據匯總到指標口徑定義、指標建模、指標數據落地和數據可視化分析於一體的完整的解決方案。決策管理平台以業務分析平台為基礎,以更核心的指標、更直觀的展現方式實現數據的分析與監控,支撐領導層的管理決策。主要包括管理駕駛艙、項目看板專題、市場專題、經營專題、履約專題、運營專題等場景。使數據資源得到充分利用,最大程度的發揮數據價值。
H. 大數據、BI、AI,三者之間的關系是什麼_大數據和bi的區別
BI目前實現的是收集數據,提供反饋,輔助決策的能力,以數據為基礎的,面向數據管理和分析,段橡乎屬被動角色。而AI則輔以大數據,演算法等得到更有價值的信息,實現收集預測的能力,更多的是主動角色。
雖然AI的應用范圍非常廣,但結合BI現仍是處理結構化的數據。而此處二者的交集在於機器學習和數據挖掘,但又略有不同。AI的機器學習強調演算法,BI的數據挖掘還包括對數據的管理,演算法選擇上也較為簡單,沒有神經網路和深度學習等復雜AI演算法。
未來,AI與BI的區別在於BI負責梳理生產關系,AI是先進生產力。那麼AIBI模式通過將AI嵌入BI,構建基於AI的BI平台,利用AI的智能讓BI系如納統能夠解決更復雜的業務場景,產出更精準的分析結果,從而使決策更為科學和准確。
對於結構化的數據,BI系統握悉可應用機器學習演算法,得到更精確的分析結果。例如上文提到的總結用戶畫像,分析人群行為數據,得到千人千面,實現精準營銷的結果。還有金融領域的風險監測,AIBI的模式可以分析出金融風險和其他指標、行為之間的內在聯系,預測更為准確。
對於非結構化的數據,BI可以應用圖像處理、語音工程和文本分析等AI技術,智能化地處理復雜業務場景。如語音轉文字,錄入數據及產出想要的報表等。
業務場景除了在IT信息化基礎比較扎實的行業,也會在深度場景化的細分領域,且這些領域不具備通用性。也可理解為解決方案不具備復用性。這個時候通過AI完成一些演算法匹配,根據匹配的結果來驅動業務執行。