❶ 電子商務在大數據時代下的「包容性增長」
電子商務在大數據時代下的「包容性增長」
隨著企業處理的數據量越來越大,數據處理工具的智能化程度越來越高,處理速度越來越快,價格也越來越實惠。大數據分析不僅僅是一種趨勢,而是許多大型電子商務公司必不可少的一項工作內容。在大數據時代的背景下,靈活運用各項數據分析手段提煉商業智能已經成為電子商務企業的一項必修課。
所謂的大數據,是需要跨視角、跨媒介、跨行業的海量數據,也可以理解為數據的收集方法。當數據的規模和豐富度達到一定程度,大家才開始提出大數據的概念。那麼,電商大數據現狀如何?
電子商務在大數據時代下的「包容性增長」
中國電子商務受益於良好的市場環境,政策的扶持,迎來了井噴時代,生態鏈亦初具雛形。2010年5月21日,第四屆APEC電子商務工商聯盟論壇就打造電子商務生態產業鏈、電子商務政策環境與發展趨勢、e時代消費、三網合一、無線領域的商業機會、電子商務的競爭格局與投資轉型等主題展開討論。電子商務生態鏈作為一種新型交易工具,雖然具有平台效應,但其發揮積極外溢效應將有一定前提條件、約束機制。這也要求政府在促進電子商務發展的同時,為電子商務生態鏈增長提供支持的同時;另外也需要考慮到數字鴻溝可能產生的負面影響。政府應從包容性增長的角度對觀察電子商務生態鏈對區域經濟增長、區域福利的效果。
「包容性增長」這一概念最早由亞洲開發銀行在2007年首次提出。它的原始意義在於「有效的包容性增長戰略需集中於能創造出生產性就業崗位的高增長、能確保機遇平等的社會包容性以及能減少風險,並能給最弱勢群體帶來緩沖的社會安全網。」最終目的是把經濟發展成果最大限度地讓普通民眾來受益。包容性增長即為倡導機會平等的增長。包容性增長最基本的含義是公平合理地分享經濟增長。它涉及平等與公平的問題,包括可衡量的標准和更多的無形因素。
政府應該積極鼓勵電子商務運營商開發更多適合減少貧困的業務,促使這些業務更好融入到和諧社會建設中。總之政府、企業、公眾應共同探討如何在大數據時代藉助電子商務生態鏈惠及貧困人口,從而緩解數字鴻溝以及負面影響。
電商從大數據里謀發展必須具備要素
駕馭大數據
數據集往往非常龐大,很難用傳統的資料庫管理工具進行處理,截至2012年,數據集由幾十兆位元組至數拍位元組的數據組成。這些數據包括訪問網頁、登陸、在線交易等等。目前數據集的規模在不斷增大。企業應使用相應工具對數據進行壓縮和篩選,僅展現與特定內容相關的數據。目前一些企業已實施大數據策略,一些企業正在開發或者打算開發大數據。
2、捕捉和存儲
這是第一步,大數據改變了業務模式,比如通過捕捉、存儲和分析用戶在社交媒體上發表的售後體驗,可以提高質量,改進服務。企業不僅應捕捉和存儲大數據,還應開發和利用大數據,因為只有開發和利用大數據,才能挖掘出大數據蘊藏的巨大價值,特別是應使用專門工具分析和開發雜亂的、非結構化的數據。
3、篩選
了解消費者情緒,優化供應鏈,去除虛假數據,為此,企業應對基礎設施和軟體進行投資,運用相應演算法處理大數據,並聘請數據科學家完成相應工作。只有對數據進行壓縮處理,智能地展現與特定內容相關的數據,才能更好地利用大數據。
4、分析
電子商務企業的規模在不斷增大,企業需要對其核心業務數據進行分析,不能再憑感覺或直覺制定關鍵決策,最好對所有與客戶相關的業務數據進行分析,以留住現有客戶,吸引他們購買更多的商品,同時羸得更多新客戶。
5、提供定製產品和個性化服務
分析和細分市場,根據個人或消費群體的喜好或者消費行為提供富有個性化的產品,比如,營銷部門可以收集一些有價值的信息,找出購物者的興趣所在,然後有針對性地組織一些營銷活動,從而增加了企業在競爭中的優勢,
電商應著眼情報數據挖掘
除了大數據工具的運用,情報數據也是電商公司真正應該關注的。
所謂的情報數據處理人員,從日常的工作場景來看,出去奔波收集情報的工作佔了多數份額。他們會跟上下游供應鏈,以及進行跨部門溝通。例如,一個采購人員應該去生產線,去分析每家供應商的生產水平如何,優秀的工廠和二線工廠的生產周期區別,哪裡的原材料采購價格最低。一般來講,這樣的一條情報能使用一到三年。
雖然數據性不強,但這些情報價值十分高。郝欣誠說得更為直截了當:「講數據挖掘不如講情報挖掘,情報挖掘才能夠為電商企業提供真正生產力級的支持,如果情報挖掘都沒做好,就想把它數字化和量化,有點操之過急。」
結語
現在的電子商務企業,日均能達到十萬單的少之又少。在有海量數據積累的基礎上,還要有一套優秀的BI系統,而且必須是按公司需求定製,才可能實現大數據。然而,在表面繁華的背後,又有誰知道在銷售記錄屢創新高的同時,電子商務的利潤率是否也得到同步的增長呢?實際上,能夠真正實現銷量與利潤率雙增長的電商少之又少,而且在越來越少。因為,不少電商的銷售業績是通過價格戰和付出大量促銷成本來實現的。