A. 大數據如何推動醫療行業的發展
區域醫療保健監控
可以將數據用於預測醫學研究,從而有助於預防可能的疾病傳播。例如,通過跟蹤他們搜索的醫療問題來了解患者人群及其醫療保健需求以及跟蹤他們在醫療站點上提供的信息,這些都是促進預防保健和研究的方法。
新型冠狀病毒大數據搜索報告
該數據有可能更好地預測各種情況和當前公共衛生問題引起的區域性暴發疫情的情況。反過來,醫療服務提供者能夠採取適當的預防措施,並分配必要的資源,以應對與健康有關的特定疾病的區域性升級。
打擊性傳播疾病
如果及時報告,則可以治療性傳播疾病(STD)和性傳播感染(STI)。但是,諸如缺乏性教育等問題通常會導致症狀不受控制。大數據可以利用本地經驗,並幫助科技公司和醫療保健提供商填補信息空白並傳播對性健康的認識。
改善醫療保健支持系統
醫療技術的主要進步之一是醫療保健機器人技術,預計到2021年其收入將增長到28億美元。醫療保健機器人技術包括外科機器人培訓,機器人護士,智能假肢和仿生學等專業,以及治療,葯丸,遠程呈現和後勤方面的幫助。使用大數據驅動的機器人技術有可能極大地改善醫療保健支持的質量,這已經通過少數著名的機器人護士(如Robot Dinsow)看到,它可以監控患者並提醒他們用葯;Paro機器人可以提醒護理人員。
機器人護士
如今,在醫學研究和發展中使用大數據至關重要。人工智慧和機器學習正在引領醫學數據的收集,新葯療法的發現以及患者預後的改善。通過實時分析公共衛生問題,大數據可以促進多個領域的醫學研究,改善患者護理並防止致命疾病的傳播。
關於大數據如何推動醫療行業的發展,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
B. 大數據和人工智慧技術在健康產業有哪些具體應用請舉例說明,謝謝!
大健康產業順應了中國經濟轉型升級、綠色發展的趨勢,全球醫療健康產業投融資金額最多集中在2021年,全年達到6846.03億元,投融資數量最多在2019年,達2044起。大數據和人工智慧技術賦能多個大健康產業領域,包括公共衛生大數據、疾病快速診斷、遠程醫療、識別診斷、葯物研發、康復治療等
在數字健康產業供應鏈,智慧眼一方面「深挖洞」,縱向深耕數字健康產業,形成自主可控、安全可靠的AI核心技術;另一方面是「廣積糧」,橫向擴展健康產業多元化市場應用場景,幫助政府、醫院、群眾乃至整個產業界激發數字化力量。
AI+社會保障
基於大數據+人臉識別技術的養老金待遇資格認證系統應用於全國社保二十餘個省份的省級平台,解決了養老金防冒領的世界難題,保障社保基金安全,穩定社會大局。
AI+醫療保障
基於大數據+生物識別技術的醫保智能場景監控系統已應用於全國近二十個省級醫保平台,實現了門診、住院、購葯、血透、健康理療等場景的智能監控,防範醫保欺詐騙保行為,確保醫保基金安全。
AI+血透管理
遵循醫院血液透析中心臨床業務流程,從患者管理、透析日程准備、患者治療排班、臨床輔助決策等不同環節對血液透析治療進行智能管理和監控。以患者為核心,從根本上改變診療信息的採集處理、分析查詢和傳輸方式,為醫護人員提供智能化工作方式,輔助醫生制定更加人性、優質的治療決策,提高科室工作質量和院內服務水平,提升患者滿意度,做到醫療行為溯源全記錄,保障醫療質量和醫療安全。
AI+慢病管理
依託智慧眼雲慢病管理系統,門診慢病患者可在就診醫生處便捷化生成健康管理檔案,通過機器學習和醫學知識圖譜資料庫,智能化形成疾病管理目標,幫助醫生快速掌握患者信息,指導開葯和開展疾病管理,形成以患者為中心的數字化病程管理體系,實現診前導診、疾病預判,診後用葯提醒等閉環服務,助力醫療健康行業的持續發展。
AI+健康鄉村
以健康鄉村綜合服務平台&智能終端為載體,將大醫院的優質資源通過平台與基層衛生室進行互聯,提高基層衛生室的首診能力和水平,幫助基層的醫生在診斷方面有更大的把握和信心,讓村民「足不出村」就能享受到便捷的健康服務,助力國家鄉村振興戰略落地。
C. 智雲健康怎麼幫助患者進行慢病管理的,有用嗎
智雲健康,他就是引導你怎樣是健康的,讓你吃膳食標準的食服務,讓你每天堅持鍛煉,從健康方面引導你去進行健康的活動
D. 大數據技術發展之下 醫療行業現狀如何
【導讀】大數據技術的使用最早是應用於互聯網公司,隨著社會的發展,大數據技術也已經應用到了醫療行業,雖然大數據都是孤立的數據,不能大規模應用,但是在醫療行業,我們能夠通過大數據技術,進行患者的信息收集,建立詳細就醫檔案,更好地幫助醫生進行病情診斷,那麼大數據技術發展之下,醫療行業現狀如何呢?接下來就一起看看吧。
1、除了互聯網公司是大數據的早期採用者之外,醫療保健行業也是最早推動大數據分析的傳統行業之一。醫療行業有大量的病例、病理報告、治療計劃、葯物報告等。如果這些大數據能夠被整理和應用,將會對醫生和病人有很大的幫助。我們所面臨的細菌、病毒和腫瘤細胞的數量和類型都在進化。在疾病的發現和診斷中,疾病的診斷和治療是最困難的。
2、未來,藉助大數據平台,我們可以收集不同的病例和治療方案,以及患者的基本特徵,建立基於疾病特徵的資料庫。如果未來的基因技術成熟,可以根據患者的基因序列特徵進行分類,建立醫療行業的患者分類資料庫。在對患者進行診斷時,醫生可以查閱患者的疾病特徵、實驗室報告和檢測報告,查閱疾病資料庫,幫助患者進行快速診斷,明確疾病定位。
3、大數據在醫療行業的應用一直在進行,但大數據尚未開放。這是孤立的數據,沒有辦法放大。未來,這些大數據應該統一收集,整合成統一的大數據平台,造福人類健康。政府和衛生保健是這一趨勢的重要推動因素。
關於大數據技術發展之下醫療行業現狀,就和大家分享到這里了,未來,大數據技術必將造福於社會,為了我們提供更多的可能性。
E. 大數據醫療行業發展的5大趨勢
一、影像識別智能化
醫療數據中有超過90%來自於醫學影像,但是影像診斷過於依賴人的主觀意識,容易發生誤判。AI可以通過大量學習醫學影像,可以幫助醫生進行病灶區域定位,減少漏診誤診問題。
二、智能診療通用化
智能診療是人工智慧在醫療領域最重要、也最核心的應用場景。
智能診療就是將人工智慧技術應用於疾病診療中,計算機可以幫助醫生進行病理,體檢報告等的統計,通過大數據和深度挖掘等技術,對病人的醫療數據進行分析和挖掘,自動識別病人的臨床變數和指標。計算機通過“學習”相關的專業知識,模擬醫生的思維和診斷推理,從而給出可靠診斷和治療方案。
三、葯物研發提速
依託大數據,人工智慧系統可以快速、准確的挖掘和篩選出適合的葯物。通過計算機模擬,人工智慧可以對葯物活性、安全性和副作用進行預測,找出與疾病匹配的最佳葯物。這一技術將會大大縮短葯物研發周期、降低新葯成本並且提高新葯的研發成功率。
四、醫療機器人廣泛應用
機器人在醫療領域的應用范圍很廣泛,比如智能假肢、外骨骼和輔助設備等技術修復人類受損身體,醫療保健機器人輔助醫護人員的工作等。目前,關於機器人在醫療界中的應用的研究主要集中在外科手術機器人、康復機器人、護理機器人和服務機器人方面。國內醫療機器人領域也經歷了快速發展,進入了市場應用。
五、健康管理實時追蹤
根據人工智慧而建造的智能設備可以監測到人們的一些基本身體特徵,如飲食、身體健康指數、睡眠等。對身體素質進行簡單的評估,提供個性的健康管理方案,及時識別疾病發生的風險,提醒用戶注意自己的身體健康安全。目前人工智慧在健康管理方面的應用主要在風險識別、虛擬護士、精神健康、在線問診、健康干預以及基於精準醫學的健康管理。
關於大數據醫療的5大趨勢的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
F. 健康醫療大數據的安全與應用
健康醫療大數據的安全與應用
醫療健康大數據是覆蓋自然人的全生命周期,既包括個人健康,又涉及醫葯服務、疾病防控、健康保障和食品安全、養生保健等多方面數據的匯聚和聚合。
簡單講就是涉及到健康的、醫療的跟個人相關的數據的合集,不僅在醫院,在互聯網,在企業、醫院都存在。
同時會議上也提到要利用健康醫療大數據,創新業態,創新應用,促進醫療行業發展。
利用健康醫療大數據,不僅對改進健康醫療服務模式,而且對經濟社會發展都有著重要的促進作用,是國家重要的基礎性戰略資源。
健康醫療數據從哪來?
我們可以大致分為五方面。
第一來自診療數據:
患者在醫療機構、體檢機構等就醫過程中產生並由信息系統記錄的數據;
包括電子病歷、檢驗檢查、基因測序、用葯、醫學影像等;
第二來自研究數據:葯品或器械研究機構,由研究機構錄入或採集的個人健康數據,比如臨床試驗、生物樣本庫等;
第三是個人數據:個人在醫療機構外自行記錄的健康數據,比如可穿戴設備採集的心率、脈搏、睡眠等數據;互聯網行為記錄的檢索、問診、查詢、病患交流數據等;
第四是結算數據: 由商業保險公司、醫保機構、物價管理機關存儲的報銷和流通數據;最後是公共醫學:由臨床指南、醫療健康期刊、醫學文獻,循證醫學數據資源庫等組成。這就是醫療大數據的來源。
健康醫療數據核心在醫療機構
因為醫院的數據是真實的疾病數據,其他的社會葯品采買數據等等跟真正核心醫療健康的核心還有些距離。
而在醫院包括護理記錄、電子病歷、用葯信息、疾病診斷等等,這些數據綜合一個特點就是敏感度非常高。
第二就是真實,為什麼真實?看病有醫囑、處方、病案等,這些醫療文書是可以作為法律證據的。
同時質量比較高,在醫療信息化20年時間的不斷積累和持續改進,數據的完整度和質量也在不斷地提高。
行業要求
醫療健康大數據據作為新生事物,在行業標准和行業規范上尚有欠缺。直至近一年,國家衛計委陸續出台的全國醫院信息化"功能指引"和"建設標准和規范",其中提到大數據平台,就是希望醫院須要建設大數據平台,執行國家十三五規劃中大數據戰略落地的內容和時間計劃,要求三甲醫院最終要建設面向大數據和人工智慧技術的服務架構,高效高質組織數據資源,形成數據生產力。
行業現狀
健康大醫療數據共享及應用不易。
針對於醫院來說:客觀存在"不敢、不願、不會"三種形態。
不敢,因為數據共享、數據安全這些問題沒有解決,所以不敢去做。
沒有規定,或者不太明確,不敢做。不願,因為醫院權益、政府權益、社會權益,不清楚。還有醫院內部科室的數據擔心被拿走,不願意。
不會,因為大數據必須要有大數據的技術支撐,沒有技術支撐就沒法兒對數據進行挖掘和利用,同樣在數據共享開放過程中,技術、標准、機制、體制突破仍存在較大的障礙,造成各部門在推動過程當中不會做,這些現狀造成了「不會」現象。
這些都是現狀,但核心是數據安全和無法做到安全可控,讓醫院放心。
安全和隱私保護
數據安全挑戰
數據安全沒有解決,能不能用?怎麼建立安全體系?
首先醫院安全受到不斷的挑戰。
我在昨天看到一個新聞,我不知道大家看到沒看到,就是新加坡的某醫院集團,其醫院數據被黑,包括他們總理在內的就診數據都在裡面,非常敏感。
黑客拿走了。
為什麼大家盯到了醫院?說明黑客對醫療數據還是感興趣的。
比如勒索數據,過去病毒很少到醫院,但去年勒索病毒剛爆發時就是針對醫院,英國到中國都有中招,但是中國醫院被曝光的很少。所以說安全形勢比較嚴峻。
醫院安全管理
第一是物理安全
醫院的網路物理網是分內部網:掛號、結算、收費。一個是外網辦公網,再往外才是英特網。
整個物理是隔離的,而且網路也是隔離的。
第二數據安全,主要是指醫療內部數據,數據保護採用了加密、資料庫審計、防篡改等技術。
第三是網路安全,從網路角度講,國家衛計委提出2015年全部三甲醫院要建立信息安全三級等級保護,逐步實現了基本的安全。
第四隱私安全,這是新的命題,因為我們數據在內部用的話是不去隱私的明文。
那些是隱私數據?
國內還沒明確法律規定細則。
我們可借鑒美國HIPPA法案,其明確規定了個人姓名、社保號、車牌號等18項隱私數據,或者說只要能指向患者個體的都算隱私。
那麼數據如何去隱私?
現在通用的還是基本加密技術。
醫院內部不需要加密,所謂外部就是科研研究、葯物研究時需要大量統計分析時需要加密,我們現在用的是MD5加密等機密技術,有可逆的和不可逆的。
健康大數據應用
在安全前提下要放開應用。
借用國家衛計委規劃信息司領導所言"一分部署、九分落地"。健康醫療大數據也需要一分建設,九分要應用。從產業應用現狀看,公司多,投資多,期望大,產出還未確定。
從應用方向上,我們可以分為:臨床決策支持(AI),醫保控費和險種開發,醫院管理,醫療器械和新葯研發,慢病和健康管理等多個方向。
G. 大數據能給醫療帶來哪些改變_大數據在醫療方面的作用
如慧遲今是大數據時代,前景自然好了,據前瞻產業研究院《2016-2021年中國行業大數據市場發展前景預測與投資戰略規劃分析報告》顯示,總的來說,醫療大數據應用主要體現在臨床操作、研發、新的商業模式、付款/定價、公眾健康五大領域,在這孫碧基些場景中,大數據的分析和應用都將發揮巨大的作用。
醫療大數據的應用對於臨床醫學研究、科學管理和醫療服務模式轉型發展都具有重要意義,而大數據技術的運用前景是十分光明的。
醫院和醫療行業面臨的大數據主要有醫學影像、視頻(教學、監控)及文獻等非結構化數據。由於這些數據增長很快且結構復雜,給數據管理和利用帶來較大的壓力,存儲與管理成本不斷提高,數據利用困難、利用率低。除了數據數量和形態的迅速增加,醫療數據還需要越來越長的保留期。一旦存儲系統的安全性出現問題,導致醫療數據丟失,醫院會面臨嚴重不良局面。醫療大數據的應用要保證數據的全面性、准確性、實時性和使用的便捷性,要能快速運算和快速展現,要與日常工作平台緊密結合。
國人已經把健康大數據上升為國家戰略,而面對「大數據」的挑戰,醫院必須考慮三大主要問題。
(1)數據存儲是否安全可靠?因為系統一旦出現故障,首先考驗的就是數據的存儲、災備和恢復能力。如果數據不能迅速恢復,而且恢復不能到斷點,則將對醫院的業務、患者滿意度構成直接損害。
(2)如何提高醫院運行和服務的效率?提高效率就是節省醫生的時間,從而緩解醫療資源的緊張狀況,在一定程度上可以幫助解決「看病難」的問題。
(3)如何控制大數據的成本?存儲架構是否合理,不僅影響醫院IT系統的成本,而且關乎醫院的運營成本,醫療數據激增,使醫院普遍存在著較大的存儲擴容壓力。如今,醫院的存儲設備大多是由不同廠商構成的完全異構的存儲系統。這些不同的存儲設備利用各自不同的軟體工具來進行控制和管理,這樣就增加了整個系統的復雜性,使管理成本非常高。
未來,大數據必將影響醫療行業,未來醫療行業的大數據將會具體應用在:臨床輔助決策,則謹醫療質量監管,疾病預測模型,臨床實驗分析。其發展空間有:個人健康門戶,慢病管理和健康管理,電子病歷和臨床質量監控,醫學知識管理,臨床路徑和循證醫學,遠程醫療和移動醫療,醫學研究數據倉庫和共享平台,跨醫療機構協作平台。
H. 人工智慧和大數據技術在醫院慢病管理中起到了什麼作用
在慢病領域,通過AI創新應用促進慢性病積極管理,用信息化的手段提高醫療服務的安全質量猛纖,緩解醫療資源的不平衡,更能夠有效推動主動健康管理與服務的發展,實現醫保治理效能的提升。
智慧眼圍繞慢病管理的痛點,通過AI、大數據、智能設備手段的介入,為慢病管理帶來了新的思路。
AI+大數埋數據能力,提高慢病服務效率。
將治療服務延伸至院外,通過慢病管理平台提升醫院的服務效率。通過打通院內外系統及物聯網設備中的數據,匯總患者包括健康狀況、病情發展、用葯記錄、治療手段、過敏反應等信息,利用AI演算法循證醫學知識圖譜,對數據進行智能化分析,形成慢病患者生理指標、代謝和行為關聯的數據模型,為後續的診療提供依據和便利。
IoT感知,慢病管理更精準。
在醫療場景,IoT設備解決了數據持續監測的問題,可以讓醫生獲取更完整的監測數據完成診斷和治療,實現「院內+院外「的一體化服務。智慧眼結合智能物聯設備,通過線上智能互動方式引導患者進行病情自測,枝畢仿健康數據上傳,智能定製個性化健康管理方案,實現人機交互,精準追蹤患者健康狀態,提高醫療服務質量。