導航:首頁 > 網路數據 > 大數據filetypeppt

大數據filetypeppt

發布時間:2024-03-27 07:28:39

⑴ ppt 什麼是大數據

大數據(Big Data)又稱為巨量資料,指需要新處理模式才能具有更強的決策力、洞察力和流程回優化能力的海量、高答增長率和多樣化的信息資產。「大數據」概念最早由維克托·邁爾·舍恩伯格和肯尼斯·庫克耶在編寫《大數據時代》中提出,指不用隨機分析法(抽樣調查)的捷徑,而是採用所有數據進行分析處理。大數據有4V特點,即Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。

⑵ 要做一個介紹大數據的PPT,求大神幫幫忙,感激不盡!

問題描述不清楚喲,不過還是提供點信息給你吧。

1.大數據是什麼?怎麼理解大數據?

數據就好比地球上的水,單個數據就是一滴水,小溪、河流、湖泊,對應不同的數據體量,所有的水最終匯到海洋,大數據就象地球上的海洋,它足夠大,水滴足夠多,多到用人工數不清楚,裡面的資源超級豐富,那些資源也是數據。這么說,你明白大數據了嗎?就是把超級多數據信息匯集到一起,然後在裡面「釣大魚」。

2.都說大數據有4V的特徵,是什麼意思?

大數據的4V,就是「容量大Volume」「多樣性Variety」「價值高Value」「速度快Velocity」,同樣以海洋為例:

A.容量大:地球表面有70%左右都是海洋,想想裡面都有多少水滴?大數據時代,每一個人、每一件物品的信息、狀態,都能夠形成一系列隨時更新的數據,數據量也呈現出指數級的增長;

B.多樣性:海洋裡面的物產非常多樣化,就拿海鮮來說,小智一天吃一種,這輩子都可能吃不完一遍(所以小智不會糾結吃什麼的問題),太平洋的海水和大西洋的海水是有區別的,不同地方海水裡面蘊含的物質、生活的物種都有不同,海洋就是超級大寶藏,裡面有原油、有萌寵、也有大白鯊之類的獵手……大數據也和海洋一樣復雜,各種結構化、非結構化數據,匯成了數據海洋;

C.價值高:說到這個,資深吃貨口水直流,海里好吃的有大龍蝦、石斑魚、三文魚……更不用說其它寶貝啦,數據海洋裡面各種資源同樣豐富到極致,人們利用海洋,開發海洋中無窮的價值;

D.速度快,有兩個層面的意思,一是海水流動快,二是隨著技術的提升,我們對海水的利用也加快了速度(看看快艇、游輪的發展),畢竟嘛,先來吃肉、後來喝湯,這個道理,你懂的。

3.對大數據的處理,以海洋捕魚為例:

通過技術手段,在茫茫大海中找到魚群較集中的地點,這是數據挖掘;

捕到的魚進行初步分類,把太小的魚放回海中(養大了才好吃,原諒我是吃貨),這是數據清洗;

然後把魚運上岸,仔細分類,根據實際情況決定哪些魚送到海鮮市場賣活的,哪些魚用於做魚干,這是數據分析;

魚干、魚罐頭、魚子醬、魚肝油……目不暇接的海產品最終呈現在我們面前,此為數據可視化。

更多的,可進一步交流。

⑶ 怎麼找電子版七上歷史大數據

怎麼找電子版七上歷史大數據
資料搜集是個相當繁瑣與累的工作,也是投資入門的基本,良好的信息資料搜集能力有利於我們快速了解投資主體的基本情況,為後續的調研及一手資料的獲得打下較好的基礎。

一、搜索引擎(重點掌握)

搜索引擎是我們信息資料搜集的最重要的渠道之一,用搜索引擎查找信息資料需要使用恰當的關鍵詞和一些搜索技巧。目前國內主要的搜集引擎有如下10個,近期還有較多行業型搜索冒出來,需找專業型行業資料可以使用行業型搜索引擎。

由於每個搜索引擎都有一定的局限性,可以把要搜索的關鍵詞在多個搜索引擎試一下,可能會搜出你意想不到的結果。

大家對國內的引擎基本都很熟悉,尤其是網路和google,需要搜索同一主題的資料,不同的人所搜出來的結果可能就天差地別了,主要原因在於如下兩點:

1、搜索關鍵字的選擇

舉例說明,假如我們要搜索大數據行業發展相關資料,如果我們就在網路上搜索「大數據」,結果非常多,無法進行篩選,可以對關鍵詞進一步界定,如「大數據行業」、「大數據市場規模」、「中國大數據產業」、「大數據技術」、「大數據企業」等等,需要不停地變換搜索關鍵詞,直到查到滿意的搜索結果,在查找的過程中可以根據查找結果內容再進行對關鍵詞進行修正,修正有些名稱專業表達方式,因為最開始搜索我們表達的不一定準確。

2、搜索技巧

主要是針對網路、google等搜索引擎一些高級搜索技巧。常用技巧主要有如下幾個方面:

(1)文件類型搜索:使用filetype,如在網路或google中鍵入「filetype:pdf 大數據」搜索出有關大數據內容pdf內容,而且這些文檔基本都是可直接下載。還可以變換為其他的如「filetype:doc」、「filetype:ppt」、「filetype:xls」等等,注意其中的冒號為英文的冒號,一定要變換為英文冒號。

(2)定位於哪個網站上搜索:使用site,如在網路或google中鍵入「大數據空格site:sina.com」,則在http://sina.com搜索有關大數據的一些資料信息,這個特別適用針對某些信息可能在哪些網站上出現的一個快速搜索方法,注意冒號也是英文的,網站名稱也不用加www。

(3)精確匹配搜索:使用「」,如在網路中鍵入「大數據行業」,表示搜索「大數據行業」五個必須聯在一起的,如果不加「」,搜到的為大數據及行業兩個詞並列顯示結果,沒有這么精確匹配。

(4)限制性的網頁搜索:使用intitle,如在網路鍵入「intitie:大數據」,限定於搜索標題中含有「大數據」網頁,如果輸入「intitie:大數據市場規模」限定於搜索標題中含有「大數據」和「市場規模」的網頁。

3、搜索引擎推薦

1)http://scholar.google.com/ 雖然還是Beta版,但個人已覺得現在已經是很好很強大了,Google學術搜索濾掉了普通搜索結果中大量的垃圾信息,排列出文章的不同版本以及被其它文章的引用次數。略顯不足的是,它搜索出來的結果沒有按照權威度(譬如影響因子、引用次數)依次排列,在中國搜索出來的,前幾頁可能大部分為中文的一些期刊的文章。

2)http://www.scirus.com Scirus 是目前互聯網上最全面、綜合性最強的科技文獻搜索引擎之一,由Elsevier科學出版社開發,用於搜索期刊和專利,效果很不錯!Scirus覆蓋的學科 范圍包括:農業與生物學,天文學,生物科學,化學與化工,計算機科學,地球與行星科學,經濟、金融與管理科學,工程、能源與技術,環境科學,語言學,法 學,生命科學,材料科學,數學,醫學,神經系統科學,葯理學,物理學,心理學,社會與行為科學,社會學等。

3)http://www.base-search.net/ BASE是德國比勒費爾德(Bielefeld)大學圖書館開發的一個多學科的學術搜索引擎,提供對全球異構學術資源的集成檢索服務。它整合了德國比勒費爾德大學圖書館的圖書館目錄和大約160個開放資源(超過200 萬個文檔)的數據。

4)http://www.vascoda.de/ Vascoda是一個交叉學科門戶網站的原型,它注重特定主題的聚合,集成了圖書館的收藏、文獻資料庫和附加的學術內容。

5)http://www.goole.com/ 與google比較了一下發現,能搜索到一些google搜索不到的好東東 。它界面簡潔,功能強大,速度快,YAHOO、網易都採用了它的搜索技術。各位可以一試。

6)http://www.a9.com Google在同一水平的搜索引擎。是Amazon.com推出的,Webresult部分是基於Google的,所以保證和Google在同一水平,另外增加了Amazon的在書本內搜索的功能和個性化功能:主要是可以記錄你的搜索歷史。現在還是Beta,不過試用後感覺很好,向大家推薦一試 ,不過缺憾是現在書本內搜索沒有中文內容。

7)http://www.ixquick.com 嚴格意義上講不是搜索引擎,是連接搜索引擎和網路用戶的信息立交橋。新一代的搜索引擎應運而生,Ixquick meta-search正是目前最具光芒的新星。但是對於大多數國內用戶來說,Ixquick還很陌生。Ixquick眾多獨特的功能我不一一介紹了,只介紹我們最關心的,搜索資料庫密碼。使用方法:先進入Ixquick,以「Proquest」資料庫為例。填入Proquest Username Password History Online後點擊search,看看出來的結果,第一頁中第6個,proquest的username和password赫然在目,別急,再看第4個結 果「HB Thompson Subscription Online Databases」,即http://homework.syosset.k12.ny.us/onlinedbs/HBTDatabases/,進入 後發現這是一個密碼頁,選擇Magazines& Journals欄,就有 EBSCO、Electric Library Elementary、Electric LibraryElementary、ProQuest Platinum (in school)、ProQuest Platinum(remote)等眾多資料庫的密碼,都有uesrname和password,隨便試一下EBSCO,OK,成功登陸。

8)http://vivisimo.com/ cmu的作品,對搜索的內容進行分類,這樣可以有效地做出選擇,比較有特色。可實現分類檢索,檢索速度也很好,如EBSCO 密碼幾分鍾就可找一大堆 .http://search.epnet.com/,User ID:mountain,Password: ridge,這個密碼可以試試。

9)http://www.findarticles.com/ 一個檢索免費paper的好工具。進入網頁以後,可以看到他有三個功能,driectory web article,其中article對我們很有幫助,你可以嘗試輸入你要找的文章,會有很多發現的!

10)http://www.chmoogle.com 現點擊後或跳轉到http://www.emolecules.com ,在此搜索引擎里可以搜索到超過千萬種化學品信息或相應的供應商,與Chemblink有點相似,但提供的化學品理化信息沒有Chemblink詳細,與其不同的是該搜索引擎可提供化學品結構式搜索(主頁上有在線繪制化學結構式的搜索框)。

11)http://www.ojose.com/ OJOSE (Online JournalSearch Engine,在線期刊搜索引擎)是一個強大的免費科學搜索引擎,通過OJOSE,你能查找、下載或購買到近60個資料庫的資源。但是感覺操作比較復雜。

12)http://citeseer.ist.psu.e/ 一個關於計算機和信息科學的搜索引擎。

13)http://hpsearch.uni-trier.de/ 專家個人主頁搜索引擎。

14)www.aol.com 裡面的搜索引擎功能由google提供,搜索結果與google一樣,如果google無法登陸,可以用這個網站代替。

二、資料庫

資料庫是研究人員重要的數據來源之一,目前券商、基金研究研究機構都購買有商業資料庫,目前研究用的資料庫主要分為兩大類,一是商業資料庫,二是學術資料庫。

1、商業資料庫

商業資料庫大多為金融投資所用,主要分為國內與國外資料庫兩大類。1)國內商業資料庫國內資料庫主要有如萬德、恆生聚源、銳思資料庫、CSMAR資料庫、巨潮資料庫等。目前萬德資料庫主要定位於國內高端客戶,市場佔有率較高,80%左右,當然其售價較高。恆生聚源也定位為機構客戶,性價比較高,售價要比萬德便宜的多。CSMAR資料庫定位於學術與高校,其中金融數據比較全,強大。銳思資料庫定位於學術,質量一般。巨潮資料庫為深交所旗下資料庫,有一定的特殊優勢。

2)國外商業資料庫

國外資料庫主要有彭博、路透社、CEIC、OECD、Haver Database、Thomson Financial One Banker等,國外資料庫中彭博是比較全也大的,在國內銷售也較好,但是售價奇貴。一般不做國際市場研究,大多用不到國外資料庫,畢竟國外資料庫公司對國內的行業數據及公司數據不如本土資料庫公司的做得好。

2、學術資料庫

學術資料庫基本為高校、研究機構所用,也分為國內與國外兩大類,學術資料庫中一些學術論文、行業數據、統計年鑒還是有用的,缺點就是其中有些數據的相對較舊,無法做到實時更新。

1)國內學術資料庫

中國知網:國內最大學術資料庫,包括期刊、學位論文、統計年鑒等。

萬方數據:僅次於中國知網,包括期刊、學位論文等。

人大復印資料:期刊、論文等。

維普:期刊、論文等。

中經網:有較多行業研究報告,宏觀數據較全。

國研網:數據較為權威,有些報告可以一看。

上海公共研發平台:可以注冊,人工審核,內包含較多資料庫。

2)國外學術資料庫

EBSCO:較全的一個資料庫,內包含較多的商業數據,好用

Elsevier:學術文章全,更新速度快。

以上大致介紹了國內的商業及學術資料庫,但這些資料庫都是通過收費或學校賬號才能使用,對於平時臨時研究用的一些人,沒有必要去購買,下面介紹一些免費可用的資料庫。

3)免費可用的資料庫

數據匯:http://www.shujuhui.com/database/ 國內的宏觀數據,國外的也有一部分,可以導出來,免費好用。

數據圈:http://www.shujuquan.com.cn/ 免費共享平台,行業研究報告,統計年鑒等

閱讀全文

與大數據filetypeppt相關的資料

熱點內容
手游一般是哪個編程工具開發的 瀏覽:365
安卓openvpn導入配置 瀏覽:858
k線組合app哪個好用 瀏覽:403
javaweb字典選擇框 瀏覽:362
剛裝的寬頻怎麼連接網路連接 瀏覽:909
鋼鐵雄心4陝西代碼 瀏覽:419
高效記住代碼的方法 瀏覽:390
envi5064位破解文件 瀏覽:808
fc超級馬里奧安卓版 瀏覽:134
內蒙古數控大賽用什麼軟體編程 瀏覽:148
2010word修改作者信息 瀏覽:386
linuxtomcat打不開 瀏覽:497
網路營銷與傳統營銷相比有哪些特點和優勢 瀏覽:404
圖片形式的文件怎麼弄 瀏覽:779
網頁文件的後綴 瀏覽:681
ipad錄屏視頻文件是什麼格式 瀏覽:30
atm網路是什麼 瀏覽:673
微博可以直接上傳pdf文件嗎 瀏覽:206
賣農資產品的app有哪些 瀏覽:181
盜版win10激活後 瀏覽:251

友情鏈接