Ⅰ 應用大數據的目的有哪些 這才是大數據工程師要掌握的
大數據應用的目的可以分為跟蹤、監控、洞察、預測和驗證
對於企業運營而言,數據應用最重要的目的是預測未來趨勢,優化資源配置
1、應用大數據的目的有哪些——預測未來的趨勢:
利用數據來監測現實和預測未來是大數據的一個很酷的應用。
下面是一些栗子:
例如,根據GIS地理信息系統的數據,當地居民的特點(收入和消費水平、人口結構、生活喜好,等等)不同的區域可以被理解,從而預測不同地區的消費能力和偏好的城市,它有很好的指導作用來存儲位置選擇或差異化的廣告。
再比如,通過對天氣數據和超市銷售數據的深入挖掘和分析,可以發現特定天氣和特定商品銷售之間的關系,從而有效地指導零售商調整庫存和貨架布局。一位零售商發現,在台風季節,在一個沿海城市,烈性酒的銷量增加了,就像他們多年來所做的那樣,因為人們不需要在刮風的日子出去工作,所以他們可以喝烈性酒。
數據本身的價值沒有現在那麼高。如何將海量數據轉化為可接受的信息和知識,從而最大限度地展示數據內容,實現數據價值最大化,一直困擾著數據的發展。
剛剛提到的天氣和板栗零售商品。台風天氣預報是數據,葡萄酒銷售是數據,兩者結合得到台風天氣銷售增長,是一條信息。此外,人們更有可能在天氣不好的時候購買烈性酒,這是一個銷售指南。
這是一種基於數據預測未來趨勢的簡單方法。
2、應用大數據的目的有哪些——優化資源配置
利用數據優化資源分配正變得越來越重要,主要是因為今天的數據真的“快”了。
將啤酒放在尿布旁邊可以促進啤酒銷售的一個經典例子就是優化資源配置。
前段時間,滴滴打車通過對不同時間段用戶打車服務數據的分析,總結出不同時間段的車輛使用高峰期,可以用來分配和調動司機,使資源以最優模式運行。
我個人認為,它更像是幫助企業的“大”數據。數據處理速度的大幅提高,給了市場足夠的時間來優化資源配置,實現真正的效率。
從工廠根據庫存和市場監測優化工人分配或生產,到餐館根據季節和訂單條件優化采購配料和廚房配菜。
應用大數據的目的有哪些?大數據工程師表示這才是必須的,我們有充分的理由去尋找更多的數據,因為數據分析推動了數字創新。然而,將這些大數據集轉化為可操作的見解仍然是一個挑戰,你能處理好嗎?如果您還擔心自己入門不順利,可以點擊本科目的其他文章進行學習。
Ⅱ 大數據在網路優化中大有可為
大數據在網路優化中大有可為
網路優化是確保網路質量,提升網路資源利用率的有效手段。近年來,隨著網路容量的不斷提升、網路用戶數的不斷增加、網路設備的多樣化,用新技術和新方法替代傳統網路優化手段成為一種趨勢,尤其是在大數據分析技術的興起下,其在網路優化中的作用日漸突出。
網路優化的傳統手段
網路優化是通過對現已投入運營的網路進行話務數據分析、現場測試數據採集、參數分析、硬體檢查等,找出影響網路質量的原因,並且通過參數的修改、網路結構的調整、設備配置的調整和採取某些技術手段,確保系統高質量的運行,使現有網路資源獲得最佳效益,以最經濟的投入獲得最大的收益。一般而言,傳統的網路優化有以下幾種方法:
一、話務統計分析法:通過話務統計報告中的各項指標,可以了解和分析基站的話務分布及變化情況,分析出網路邏輯或物理參數設置的不合理、網路結構的不合理、話務量不均、頻率干擾及硬體故障等問題。
二、DT&CQT測試法:從用戶的角度,藉助測試儀表對網路進行驅車和定點測試。可分析空中介面的信令、覆蓋服務、基站分布、呼叫失敗、干擾、掉話等現象,定位異常事件的原因,為制定網路優化方案和實施網路優化提供依據。
三、用戶投訴:通過用戶投訴了解網路質量。即通過無處不在的用戶通話發現的問題,進一步了解網路服務狀況。
四、信令分析法:主要針對A介面、Abis等介面的數據進行跟蹤分析。發現和定位切換局數據不全、信令負荷、硬體故障及話務量不均以及上、下行鏈路路徑損耗過大的問題,還可以發現小區覆蓋、一些無線干擾及隱性硬體故障等問題。
五、資料庫核查與參數分析:對網路規劃數據和現網配置參數、網路結構數據進行核查,找出網路數據中明顯的數據錯誤,對參數設置策略進行合理性分析和總結。
六、網路設備告警的排查處理:硬體故障告警一般具有突發性,為了減小對用戶的影響,需要快速的響應和處理。通過告警檢查處理設備問題,保障設備的可用性,避免因設備告警導致網路性能問題。
在實際工作中,這幾種方法都是相輔相成、互為印證的關系。網路優化就是利用上述幾種方法,圍繞接通率、掉話率、擁塞率和切換成功率等指標,通過性能統計測試數據分析制定實施優化方案系統調整重新制定優化目標性能統計測試的螺旋式循環上升,達到網路質量明顯改善的目的。
網路優化亟待創新
當前,隨著用戶數的不斷增長,隨著網路容量的不斷增加,隨著網路復雜度的不斷提升,以及網路設備的多樣化,網路優化工作的難度正在不斷提升,網路優化的方法和手段亟待創新。
首先,網路優化是一項技術難度大、涉及范圍廣、人員素質要求較高的工作,涉及的技術領域有交換技術、無線技術、頻率配置、切換和和信令、話務統計分析等。傳統網路優化工作多依賴於技術人員的經驗,依賴人工進行統計分析。網路優化的自動化程度較低,優化過程需耗費大量的時間、人力、物力,造成了大量的資源浪費,影響網路問題解決的時效性。另外,優化工程師藉助於個人經驗對網路數據進行分析和對比,而非根據網路相關的數據綜合得出優化方案,存在一定的局限性。
其次,隨著我國移動通信事業迅速發展,我國移動互聯網發展已正式進入全民時代,截至2014年1月,我國手機網民規模已達5億。網路結構日益復雜,數據業務已經成為移動通信網路主要承載的業務,用戶通過智能終端的即時互聯通信行為,使移動網路成為大數據儲存和流動的載體。高速變化的數據業務速率和巨大的網路吞吐量以及覆蓋范圍的動態實時變化,在很大程度上改變了現有網路規劃和優化的模型,在網路優化工作中引入大數據是非常迫切和必要的。
最後,全球數據信息成為企業戰略資產,市場競爭和政策管制要求越來越多的數據被長期保存。對於運營商的網路優化來說,也需要保存各類數據,以便進行用戶行為分析和市場研究,通過大數據實踐應用提升網路優化質量並助力市場決策,實現精細化營銷策略,提升企業的核心競爭力。
面對上述挑戰,運營商正嘗試進行網路優化工作的創新,嘗試在網路優化中引入新技術和新方法。而正在全球興起的大數據分析技術,開始在網路優化中大顯身手。
網路優化擁抱大數據
大數據(Big Data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、整理成為幫助企業經營決策目的的資訊。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。大數據具有數據量巨大、數據種類繁多、價值密度低及處理速度快的特點,同時具備規模性、高速性、多樣性、價值性四大特徵。
一般而言,利用大數據技術進行網路優化的過程可分為三個階段:數據來源和獲取、數據存儲、數據分析。
數據來源和獲取—對於運營商而言,通過現有網路可以收集大量的網路優化相關信令資源(含電路域、分組域)、DT測試&CQT測試數據,這些數據大都以用戶的角度記錄了終端與網路的信令交互,內含大量有價值的信息。如終端類型、小區位置、LAC、imsi、tmsi、用戶業務使用行為、用戶位置信息、通話相關信息、業務或信令、信令中包含的各種參數值。
設備層包含基站、BSC、核心網、傳輸網等配置參數和網路性能統計指標(呼叫成功率、掉話率、切換成功率、擁塞率、交換系統接通率等)、客戶投訴數據等。
採集到的數據一般而言,經過IP骨幹網傳輸到數據中心,進行存儲。隨著雲計算技術的發展,未來數據中心將具備小型化、高性能、可靠性、可擴展性及綠色節能等特點。
數據存儲—網路優化中涉及巨大的數據存儲,包括信令層面的數據信息和設備存在的數據信息,這些數據只有妥善存儲和長期運營,才能進一步挖掘其價值。傳統數據倉庫難以滿足非結構化數據的處理需求。Google提出了GFS、BigTable、MapRece三項關鍵技術,推動了雲計算的發展和運用。
源於雲計算的虛擬資源池和並發計算能力,受到重視。2011年以來,中國移動、中國電信、中國聯通相繼推出「大雲計劃」、「天翼雲」和「互聯雲」,大大緩解了數據中心IT資源的存儲壓力。
數據分析—數據的核心是發現價值,而駕馭數據的核心是分析,分析是大數據實踐研究的最關鍵環節,尤其對於傳統難以應對的非結構化數據。運營商利用自身在運營網路平台的優勢,發展大數據在網路優化中的應用,可提高運營商在企業和個人用戶中的影響力。
電信級的大數據分析可實現如下功能:第一,了解網路現狀,包括網路的資源配置和使用情況,用戶行為分析,用戶分布等;第二,優化網路資源配置和使用,有針對性地進行網路維護優化和調整,提升網路運行質量,改善用戶感知;第三,實施網路建設規劃、網路優化性能預測,確保網路覆蓋和資源利用最大化。對用戶行為進行預測,提升用戶體驗,實現精細化網路運營。
網路優化相關的工具種類很多,針對不同的優化領域,常用的工具包括:路測數據分析軟體、頻率規劃與優化軟體、信令分析軟體、話統數據分析平台、話單分析處理軟體等。這些軟體給網路優化工作帶來了很大的便利,但往往只是針對網路優化過程中特定的領域,而網路優化是一個涉及全局的綜合過程,因此需要引入大數據分析平台對這些優化工具所反映出來的問題進行集合並綜合分析和判斷,輸出相關優化建議。
目前,大數據技術已經在網路優化工作中得到應用。中國電信就已經建設了引入大數據技術的網優平台,該平台可實現數據採集和獲取、數據存儲、數據分析,幫助中國電信利用分析結果優化網路質量並助力市場決策,實現精細化營銷策略。利用信令數據支撐終端、網路、業務平台關聯性分析,優化網路,實現網路價值的最大化。
總工點評
綜合全球來看,對大數據認識、研究和應用還都處於初期階段。中國三大電信運營商都在結合自身業務情況,積極推進大數據應用工作,目前還處於探索階段,在數據採集、處理、應用方面仍處於初級階段。電信運營商在國內擁有龐大的用戶群和市場,利用自身海量的數據資源優勢,探索以大數據為基礎的網路優化解決方案,是推動產業升級、實現效率提升、提升企業核心競爭力、應對激烈市場競爭的重要手段。利用大數據將無線網、數據網、核心網、業務網優化進行整合,可以完整地優化整個業務生命期的所有網元,改善用戶感知,是未來網路優化的趨勢。
以上是小編為大家分享的關於大數據在網路優化中大有可為的相關內容,更多信息可以關注環球青藤分享更多干貨