㈠ 為什麼當下眾多企業都在著力搭建自己的大數據平台
大數據時代是未來的趨勢,為了適應社會發展,必須建立,這樣才能夠生存下去。
何為大數據
過去,大數據指的是那些數量龐大而復雜的數據集,其大小超出了常用軟體工具在可容忍的時間內捕獲、管理和處理數據的能力。一個更能達成共識的定義就是:大數據代表的信息資產的特點是具有非常龐大的數量,產生的速度非常快以及數據的多樣性,這些特點決定了需要特定的技術和分析方法來實現其價值的轉化。因此,其實近期「大數據」已經很少用來指數據集的大小了,現在更傾向於指人們使用預測分析、用戶行為分析或某些其他高級的數據分析方法,從數據中提取信息創造價值。因為數據本身的價值是無法直接可見的,但是通過各種數據計算和分析,可以將人們無法注意到的信息從數據中提取出來,創造價值。
這也是為什麼企業們紛紛想搭建大數據分析平台的原因。每天企業的內部運營支撐系統和外部與客戶的交互系統都能產生大量的數據,如何利用這些數據向企業內部和外部企業客戶提供具有極大商業價值的信息支撐和智能解決方案已經成為企業的重要的無形資產。根據企業量身定做的大數據分析平台,可為企業提供報表工具、分析工具、結合企業的實際需求進行的解決方案實施服務;企業的管理人員、業務分析人員等也可以通過web、手機或者其他移動設備訪問,以便隨時了解企業的關鍵指標和進行深度業務分析。
那麼,想而知,對於這個集團目前建設基礎數據平台和BI應用是未來一段時間的重點。通過數據平台和BI應用建設,他們可以搭建統一的大數據共享和分析平台,對各類業務進行前瞻性預測分析,並為集團各層次用戶提供統一的決策分析支持,提升數據共享與流轉能力。下圖為該集團的大數據分析平台的效果圖,可視為最終的建設目標。
㈡ 為什麼當下眾多企業都在著力搭建自己的大數據平台
(1)操作系統的選擇操作系統一般使用開源版的RedHat、Centos或者Debian作為底層的構建平台,要根據大數據平台所要搭建的數據分析工具可以支持的系統,正確的選擇操作系統的版本。
(4)數據存儲除了Hadoop中已廣泛應用於數據存儲的HDFS,常用的還有分布式、面向列的開源資料庫Hbase,HBase是一種key/value系統,部署在HDFS上,與Hadoop一樣,HBase的目標主要是依賴橫向擴展,通過不斷的增加廉價的商用伺服器,增加計算和存儲能力。
(5)選擇數據挖掘工具Hive可以將結構化的數據映射為一張資料庫表,並提供HQL的查詢功能,它是建立在Hadoop之上的數據倉庫基礎架構,是為了減少MapRece編寫工作的批處理系統,它的出現可以讓那些精通SQL技能、但是不熟悉MapRece、編程能力較弱和不擅長java的用戶能夠在HDFS大規模數據集上很好的利用SQL語言查詢、匯總、分析數據。
㈢ 大數據平台是什麼什麼時候需要大數據平台如何建立大數據平台
首先我們要了解Java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。
Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據基礎。
Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
㈣ 你覺得貴州成為大數據中心的原因是什麼
1、自然條件優越:數據中心承載著海量的數據,需要給伺服器更好的散熱。而貴州水資源豐富,且平均溫度在15度左右。既能為伺服器散熱和發電提供充足的水資源,又擁有足夠低溫的客觀環境來保障散熱。
2、環保指標有保證:貴州省內有9個規模不一的水力發電站,可充分保證能源的清潔與環保。
3、安全因素:數據中心屬於中資金投資項目,數據中心等級不同,建築結構、安全性、電氣、製冷、防火系統都會不同,數據中心造價昂貴,因此數據中心的安全性就顯得非常重要。貴州地處我國雲貴高原,遠離環太平洋地震地帶,地質災害很少,因此地質上的安全是選擇貴州的一大因素
㈤ 大數據服務平台是什麼有什麼用
現今社會每來時每刻都在源產生數據,企業內部的經營交易信息、物聯網世界中的商品物流信息,互聯網世界中的人與人交互信息、位置信息等,我們身邊處處都有大數據。而大數據服務平台則是一個集數據接入、數據處理、數據存儲、查詢檢索、分析挖掘等、應用介面等為一體的平台,然後通過在線的方式來提供數據資源、數據能力等來驅動業務發展的服務,國外如Amazon ,Oracle,IBM,Microsoft...國內如華為,商理事等公司都是該服務的踐行者。