導航:首頁 > 網路數據 > 大數據時代的小數據閱讀答案

大數據時代的小數據閱讀答案

發布時間:2024-03-03 05:01:30

A. 《大數據》閱讀答案

所謂‘大數據’,是指數據規模巨大,大到難以用我們傳統信息處理技術合理擷取、管理、處理、整理」「在‘大數據’時代,我們的知識生產若再固守印刷時代的知識生產理念,沿襲此前的知識生產方式,就會被遠遠地甩在時代後面。我在這里整理了《大數據》閱讀答案,希望能幫助到那您。

大數據

近年來,「大數據」這個概念突然火爆起來,成為業界人士舌尖上滾燙的話題。所謂「大數據」,是指數據規模巨大,大到難以用我們傳統信息處理技術合理擷取、管理、處理、整理。「大數據」概念是「信息」概念的3.0版,主要是對新媒體語境下信息爆炸情境的生動描述。

我們一直有這樣的成見:信息是個好東西。對於人類社會而言,信息應該多多益善。這種想法是信息稀缺時代的產物。由於我們曾吃盡信息貧困和蒙昧的苦頭,於是就拚命追逐信息、佔有信息。我們甚至還固執地認為,佔有的信息越多,就越好,越有力量。但是,在「大數據’時代,信息不再稀缺,這種成見就會受到沖擊。信息的失速繁衍造成信息的嚴重過剩。當超載的信息逼近人們所能承受的極限值時,就會成為一種負擔,我們會不堪重負。

信息的超速繁殖源自於信息技術的升級換代。以互聯網為代表的新媒體技術打開了信息所羅門的瓶子,數字化的信息失速狂奔,使人類主宰信息的能力遠遠落在後面。美國互聯網數據中心指出,互聯網上的數據每兩年翻一番,目前世界上的90%以上數據是近幾年才產生的。2000年,數字存儲信息佔全球數據量的四分之一,另外四分之三的信息都存儲在報紙、膠片、黑膠唱片和盒式磁帶這類媒介上。2007年,只有7%是存儲在報紙、書籍、圖片等媒介上的模擬數據,其餘都是數字數據。到2013年,世界上存儲的數據中,數字數據超過98%。面對數字數據的大量擴容,我們只能望洋興嘆。

「大數據」時代對人類社會的影響是全方位的。這種影響究竟有多大,我們現在還無法預料。哈佛大學定量社會學研究所主任蓋瑞·金則以「一場革命」來形容大數據技術給學術、商業和政府管理等帶來的變化,認為「大數據」時代會引爆一場「哥白尼式革命」:它改變的不僅僅是信息生產力,更是信息生產關系;不僅是知識生產和傳播的內容,更是其生產與傳播方式。

我們此前的知識生產是印刷時代的產物。它是15世紀古登堡時代的延續。印刷革命引爆了人類社會知識生產與傳播的「哥白尼式革命」,它使得知識的生產和傳播突破了精英、貴族的壟斷,開啟了知識傳播的大眾時代,同時,也確立了「機械復制時代」的知識生產與傳播方式。與印刷時代相比,互聯網新媒體開啟的「大數據」時代,則是一場更為深廣的革命。在「大數據」時代,信息的生產與傳播往往是呈幾何級數式增長、病毒式傳播。以互聯網為代表的媒介技術顛覆了印刷時代的知識生產與傳播方式。新媒體遍地開花,打破了傳統知識主體對知識生產與傳播的壟斷。新媒體技術改寫了靜態、單向、線性的知識生產格局,改變了自上而下的知識傳播模式,將知識的生產與傳播拋入空前的不確定之中。在「大數據」時代,我們的知識生產若再固守印刷時代的知識生產理念,沿襲此前的知識生產方式,就會被遠遠地甩在時代後面。

(節選自2013.2.22《文匯讀書周報》,有刪改)

《大數據》閱讀題目:

9.下列對「大數據時代」的特點解說正確的一項是

A.數據規模巨大,信息嚴重過剩,總量已超過了人們的承受極限值而成為社會的負擔。B.信息生產呈幾何級數式增長、病毒式傳播,信息傳播方式不再是自上而下,而是相反。

C.精英與貴族的知識壟斷被沖破,傳統知識主體不再是唯一的知識生產者和傳播者。 D.「機械復制時代」知識生產和傳播方式被顛覆,呈動態、多向和空前的不確定性。 10.下列理解,不符合原文意思的一項是

A.人們在信息稀缺時代形成的佔有信息越多越好、越有力量的認識,將隨著「大數據」時代的到來而改變。

B.人類主宰信息的能力遠遠落後於信息的產生,是因為信息技術的升級換代帶來的數字化信息的失速狂奔。

C.從2000年數字存儲信息佔全球數據量的四分之一,到2013年超過98%,說明了傳統媒體被新媒體取代。

D.印刷革命開啟了知識傳播的大眾時代, 與印刷時代相比,互聯網新媒體開啟的「大數據」時代,則是一場更為深廣的革命。

《大數據》參考答案:

9.D【試題分析:論述類文體閱讀的命題主要從概念、判斷、推理三個角度命題,概念注意「答非所問」「內涵、外延不準」「誤劃類別」「張冠李戴」;判斷類注意「范圍不當」「偷換概念」「曲解文意」;推理注意「強加因果」「強行推理」等錯誤。答題的關鍵是審清題干、找准區位、對讀原文、尋找細微的差別。選項A原文「信息的失速繁衍造成信息的嚴重過剩。當超載的信息逼近人們所能承受的極限值時,就會成為一種負擔,我們會不堪重負」現在是「大數據」時代,但還沒有到「當超載的信息逼近人們所能承受的極限值時」,時間范圍混淆;選項B 原文「新媒體技術改寫了靜態、單向、線性的知識生產格局,改變了自上而下的知識傳播模式,將知識的生產與傳播拋入空前的不確定之中」選項「信息傳播方式不再是自上而下,而是相反」,偷換了文中的概念「拋入空前的不確定之中」為「自下而上」;選項C對應的原文「印刷革命引爆了人類社會知識生產與傳播的‘哥白尼式革命’,它使得知識的生產和傳播突破了精英、貴族的壟斷」讓「知識的生產和傳播突破了精英、貴族的壟斷」是「印刷革命」,選項是「大數據時代」,犯了張冠李戴的錯誤。】

10.C【試題分析:選項「說明了傳統媒體正被新媒體取代」,文中沒有依據,屬於無中生有。】

B. 《大數據時代》的讀後感

認真品味一部名著後,你有什麼領悟呢?現在就讓我們寫一篇走心的讀後感吧。那麼如何寫讀後感才能更有感染力呢?以下是我幫大家整理的《大數據時代》優秀讀後感範文,希望能夠幫助到大家。

《大數據時代》優秀讀後感範文1

這書讀起來不費勁,沒有太多晦澀的理論,所以也比較快速的用了幾天的中午休息時間讀完了。

網上到處都是推薦此書的文章,贊為大數據的經典之作。可是,我讀了一遍下來,卻沒有這種經典之感,只是必須嘆服作者思維嚴密、涉獵廣泛,書中有關大數據的例子真是不少,會給我們的閱讀帶來一定的舒適感和現實感。

已經看過太多網上的關於大數據的文章、案例分析,但是我認為大數據僅僅是一種手段,是我們分析認識世界的諸多手段中的一種。我們既不要拒絕排斥大數據的應用,但也沒必要神話大數據。

在讀此書過程中,稍帶也看了幾部關乎大數據分析的影片,有本書中提到的《少數派報告》,還有《永無止境》、《源代碼》。少數派報告中,人類藉助先知的超能力獲取對犯罪的預測和提前打擊,但是書中和影片中都提到的有一個悖論的問題:如果你預測某犯罪要發生,所以去提前抓捕,阻止了案件的發生,但案件沒有發生,又以什麼為依據來抓捕嫌疑人呢?!所以,我認為大數據的應用在預測方面的作用,不應該涉及任何行政司法等嚴肅方向。因為,人是善變的,也許在預測之後的時間里,由於其它因素影響,t她的決定就突然改變,預測就徹底無效了。大數據,更應該在提供思路、途徑方向,在我們還沒有發現其原理之前,先依照大數據的分析去做些突破常規、有創造性的事情。

從古至今,對數據的統計應用一直沒有中斷過,我們人類在發揮聰明才智的過程中,創造了文字記錄歷史,通過積累和總結為人類的文明發展做出了極大的貢獻。只不過,現在我們利用計算機系統對日益暴漲的數據信息能夠處理的數據量更大、想法更多了。在這個角度上,大數據其實不過是人類信息化發展歷史中的一個必然過程。

大數據爆發的背景,是計算機普及應用、工作和生活信息化、網路尤其是互聯網的發達等因素,為之提供了能夠使用的超大規模數據化信息。就如計算機與人下棋的程序一樣,掌握了足夠的棋局數據、能夠推算每一步之後的可能,快速的運算能力是實現這些的基礎。

大數據本身是無意識的,或者叫無目的,是因為使用的人的發現或主觀意識,才從中抓取到符合所想或支持所想的一些數據和比例。人才是核心。別以為有個所謂的大數據中心就能夠揮斥方遒、指點江山了。這也是我說要對大數據去神化的一點。書中所舉例子,成功的案例其實都基本是一個打破常規、奇思異想的人或一個具備創新思維的團隊,而這個人或團隊一旦陷入對現有模式的僵化應用或崇拜,失敗的結果也是必然。我想說的是,無論是大數據還是快數據什麼的玩意,都僅僅是我們了解世界了解社會的一個角度一種手段,都始終無法擺脫依賴於人的思考這個根本。別一葉障目不見泰山的意味有了大數據就擁有了整個世界,你的心有多大,舞台才有多大。只有當你的思考抵達,那些個曾經沒有價值的數據垃圾,才會煥發出價值!不要荒廢了你的思考這個核心!

作者說大數據只講結果不講原因。這個狀態我認為僅僅是一個過渡時期的表現,如果要實現對大數據分析應用的更加精準、甚至可以作為某種依據,必然要獲得對大數據分析的果的可靠解釋,也從而能對我們現有的行為、制度等獲得新的認識,來進行可行的改變、升級或者重造,大數據的指導意義才發揮更深。

人們都說,中外著述的差距有時是很大的,中國的作家習慣鋪墊和描繪,將簡單的事情復雜化;國外的就相反,喜歡直搗要害,將復雜的事情抽象簡單化。不知道是不是我不很適應國外這類書籍的緣故,對大數據時代一書,我沒有感受到很多的震撼和腦洞大開感,也許和現在各類大數據的文章太多有關,已經把此書的觀點各自領用發揮了一番,也許是我還沒有領會到精華所在。既然人們都奉為經典,那我想或許我應該隔一段時間、換個姿勢,再重讀此書,看看是不是會有新的感受吧。

《大數據時代》優秀讀後感範文2

對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。

首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。

作者認為大數據時代具有三個顯著特點。

一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。

二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。

三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。

作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。

三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。

《大數據時代》優秀讀後感範文3

如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。

舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:

一、更多:不是隨機樣本,而是全體數據。

二、更雜:不是精確性,而是混雜性。

三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?

我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。

我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。

世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。

大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。

在風險社會中信息安全問題日趨凸顯。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考的答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考的答案。此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。

《大數據時代》優秀讀後感範文4

讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。

這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。

其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。

大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的.數據資源,可見大數據時代對公共衛生也產生了重大的影響!在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。

在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。

大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!

《大數據時代》優秀讀後感範文5

現在已經進入到了二十一世紀了,當今社會已經擺脫了上個世紀的那種消息滯後的時代了,我們最應該感謝的就是科學的進步為我們帶來了這么多便利。與此同時,科學的進步還為我們帶來了「大數據」這個讓人類減少了很多工作量的東西。

在這個學期的名著導讀課上我們就被要求讀:《大數據時代》這本書。《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托·邁爾·舍恩伯格被譽為「大數據時代的預言家」,他是一個特別厲害的人,他作為一個教師,他曾經在哈佛大學、牛津大學、耶魯大學和新加坡國立大學等多所世界前列名校任教的經歷。他作為一個科學家,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。他是十餘年潛心研究數據科學的技術權威。他是最早洞見大數據時代發展趨勢的數據科學家之一,也是最受人尊敬的權威發言人之一。現任牛津大學網路學院互聯網治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人,哈佛國家電子商務研究中網路監管項目負責人;曾任新加坡國立大學李光耀學院信息與創新策略研究中心主任。並擔任耶魯大學、芝加哥大學、弗吉尼亞大學、聖地亞哥大學、維也納大學的客座教授。

他作為一個研究學者,他的學術成果斐然,有一百多篇論文公開發表在《科學》《自然》等著名學術期刊上,他同時也是哈佛大學出版社、麻省理工出版社、通信政策期刊、美國社會學期刊等多家出版機構的特約評論員。他是備受眾多世界知名企業信賴的信息權威與顧問。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業;"大數據"在網路上搜索到的解釋是:稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。

大數據不僅改變了公共衛生領域,整個商業領域都因為大數據而重新洗牌。購買飛機票就是一個很好的例子。就像書中寫到2003年,奧倫·埃齊奧尼准備乘坐從西雅圖到洛杉磯的飛機去參加弟弟的婚禮。他知道飛機票越早預訂越便宜,於是他在這個大喜日子來臨之前的幾個月,就在網上預訂了一張去洛杉磯的機票。在飛機上,埃齊奧尼好奇地問鄰座的乘客花了多少錢購買機票。當得知雖然那個人的機票比他買得更晚,但是票價卻比他便宜得多時,他感到非常氣憤。於是,他又詢問了另外幾個乘客,結果發現大家買的票居然都比他的便宜。

飛機著陸之後,埃齊奧尼下定決心要幫助人們開發一個系統,用來推測當前網頁上的機票價格是否合理。作為一種商品,同一架飛機上每個座位的價格本來不應該有差別。但實際上,價格卻千差萬別,其中緣由只有航空公司自己清楚。

埃齊奧尼表示,他不需要去解開機票價格差異的奧秘。他要做的僅僅是預測當前的機票價格在未來一段時間內會上漲還是下降。這個想法是可行的,但操作起來並不是那麼簡單。這個系統需要分析所有特定航線機票的銷售價格並確定票價與提前購買天數的關系。

在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。在這樣的大環境下,常引起我更多的思考和擔憂。

大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。

C. 大數據具有哪些特徵.答案

大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。

(3)大數據時代的小數據閱讀答案擴展閱讀:

一、具體特徵

容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息。

種類(Variety):數據類型的多樣性。

速度(Velocity):指獲得數據的速度。

可變性(Variability):妨礙了處理和有效地管理數據的過程。

真實性(Veracity):數據的質量。

復雜性(Complexity):數據量巨大,來源多渠道。

價值(value):合理運用大數據,以低成本創造高價值。

二、運用

洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。

google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。

統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。

麻省理工學院利用手機定位數據和交通數據建立城市規劃。

梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。

D. 讀書筆記:大數據時代

隨著網路的普及、計算機運算和存儲能力的提高,我們獲取信息越來越容易,越來越多。絕大多數信息對我們來說可能都是噪音,或者用過一次後就被丟棄;而對有大數據思維的公司或個人來說,這些則是零散的金粉,他們可以從中挖掘出許多小數據無法得到的意想不到的結果。比如人們所用的搜索詞在搜索完成之時就失去用處,Google偏偏將它們重新利用,用以改善結果的排序,用來預測流感感染情況。word語法檢查,小數據下表現最好的演算法在大數據下准確率卻最差。誰曾想坐姿可以轉化成數據,並開發成汽車防盜系統?進而擴展到盜賊識別?

大數據時代真的只有想不到,沒有做不到。它深刻的變革著我們的工作、生活、甚至思維方式。

1.不是樣本而是全部:得到全部數據並不那麼難,而且結果更全面可靠,我們不再依賴小數據時代的隨機取樣、假設-實驗-結論模式,取而代之的是直接對全部數據進行分析挖掘;

2.不是精確性而是混雜性:大數據時代我們不再執著於精確,而是允許一點瑕疵。我們要做的不是以高昂的代價消除所有的不確定性,而是接受這些紛繁的數據並從中獲益。以谷歌翻譯為例,它搜羅了所有可以利用的數據,雖然搜集的有錯誤翻譯,但巨大的語料庫優勢完全壓倒了缺點,使其好於布朗、微軟的班科和布里爾、IBM的Candide。又如word語法檢查,小數據下表現最好的演算法在大數據下准確率卻最差。混雜的大數據能創造比精確的小數據更好的結果!
小數據模式下,小的錯誤會導致極大的偏差,因此要求精確。值得注意的是,大數據的混雜性只是現實,而不是其固有特性,隨著技術的發展將會被改善。

3.不是因果關系而是相互關系:千百年來,我們一直在尋找事件背後的原因。事實上,如果凡事皆有因果的話,我們就沒有決定任何事的自由了。
基於大數據分析事物間的相互關系,使我們從因果串聯思維變為相互並聯思維。相互關系能提醒我們某些事正在發生,這些提醒非常有用。基於相關關系的預測是大數據的核心。通過找出一個關聯物並監控它,我們就能預測未來。如塔吉特懷孕預測,美國折扣零售商塔吉特通過對女性消費記錄分析,可以發現她是否懷孕,從而在相應階段寄送相應的折扣券。

戲中主角分別是大數據擁有者、大數據技術公司、大數據思維的公司或個人。第一個吃螃蟹的人早已斬獲良多,更多的人也開始去嘗試;隨著技術的發展,擁有大數據技術的公司的領先優勢也越來越弱;而數據本身的價值則與日俱增。試想,一個擁有思維和技術的新公司,如何去跟一個擁有海量數據且知道什麼更好的公司去競爭?
隨著行業發展,數據中間商也將粉墨登場。因為有些數據的價值只能通過中間人來挖掘。航空公司不到最後一刻不會發布航班晚點,也不會告訴你何時買票最便宜,但只要有數據,你就能知道這些。還有一些公司願意把數據給非營利機構。

大數據確實給我們帶來諸多便利,使我們的生活更便利、更美好。但我們也變得越來越透明,通過你的檢索詞、購物、評論等就能輕易定位到精確的個人!想想就讓人不寒而慄!
亞馬遜監視著我們的購物習慣
谷歌監視著我們的網頁瀏覽習慣
微博竊聽到了我們心中的TA
而facebook似乎什麼都知道,包括我們的社交關系網
我們時刻暴露在第三隻眼下(政府除外)。

鑒於此,維克托也建議完善相關司法,制定更完整的隱私保護政策、反壟斷。

值得注意的是,大數據給我們提供的不是最終答案,而是參考答案,我們不要過分信任、依賴數據給出的結果。假如一切都可以被預測,而且很精確,而我們想當然的去相信,放棄選擇的權利,也會不為結果承擔責任,那我們離變成機器人就不遠了,人工智慧控制人類也並非臆想!

而樂觀的人們則會認為一個更美好的未來在像我們招手:

以下為收集內容 。

http://www.ximalaya.com/1000577/sound/412418?from_platform=weixin
【構建一個機器的你】模擬你的知識體系、行為習慣:通過擬合你在社交網路的發言、及其它信息。模擬聲音:整合微信里的語音。模擬外貌:通過你發的照片等。將這些東西「導入」到一個機器,你在另一個地方被重生。它知道你所有的所有,宛如鏡像孿生。
可以看電影黑鏡2。

汽車若能交流 車禍或可避免
http://v.youku.com/v_show/id_XNTcyODU4NjQw.html
實現汽車對話以避免車禍,實際也是大數據的利用:通過數據化位置速度(通過攝像頭感測器電腦系統)等信息,然後分析並做出預測。信息與機器結合會使人分為自然人、半自然人、機器人吧。現在的美瞳等改變人的外形,以及研究火熱的腦機介面以實現通過意念控制機械,人正在與機器越來越多的整合在一起。

谷歌無人駕駛汽車
http://mp.weixin.qq.com/s?__biz=MjM5NzM5ODU2MA==&mid=200295774&idx=4&sn=&scene=1#rd
什麼時候無人駕駛汽車成片的出現在杭州就好了[偷笑][偷笑]或者不用成片,就是有些地方會放著(比如某個山洞某個工廠),嗯,某些方式(某個app,某個電話或者直接與微信集合,或者快的打車,打的車都變成無人駕駛車)可以把他叫過來,然後用完之後他自己回到原來的地方。[傲慢][傲慢]這樣社會多美好呀!還可以叫個車,讓他把東西/人送到某個地方,就不是為自己叫車而是為他人叫……

如果視野更開闊點, 數據或許是實現人與機器交流的語言 ,,數據能挖掘我們不知道的一面,但也不要全迷信數據,將活生生的、復雜的人等同於毫無生命的一堆數據或機器就不好玩了。。

量化自我,一場二十年前無法想像的運動
http://www.36kr.com/p/204479.html#wechat_redirect

E. 《大數據時代》:別把參考答案當做最終答案

因為周邊總是充斥著「大數據」、「雲計算」的字眼,望著說著術語的人們眼裡野心勃勃的光芒,我不禁有些急躁的想弄明白什麼是大數據,到底我們可以從大數據里挖掘到什麼樣的財富。不得不說,我選了一本好書,全篇脈絡分明,邏輯縝密,穿插著數量繁復的案例,讓人在興致盎然之際就能通俗理解。

第一部分 大數據時代的思維變革

大數據時代的來臨,最先要顛覆的是我們的思維模式:1、不是隨機樣本,而是全體數據;2、不是精確性,而是混雜性;3、不是因果關系,而是相關關系。

坦率的說,這個部分給我的感悟很深,相信很多工作涉及到做數據報告的人,都會從中獲益不少。淺顯的說,大數據時代是讓我們把思維聚焦引向發散的變革。傳統意義上,甚至人們日常生活的慣性里,都本能的需求一種因果關系。例如發生了一件事情,人們會立刻尋找一個簡單的原因去說服自己。也就是「因為……所以……」這種邏輯思維是根深蒂固的。

在大數據時代,在擁有幾乎完整的數據時,我們不再刻意追求數據中彼此之間的目的性,從相關性出發,我們無法說清楚為什麼,但我們總知道就是這樣。相關性的概念將會引申更多的創意思維,相信未來的工種也會因此更加細分,甚至會出現更多的新興行業。

第二部分 大數據時代的商業變革

這是每個人都深有體會的:1、一切皆可量化;2、取之不盡,用之不竭的數據創新;3、數據、技術與思維的三足鼎立。

全書最核心或者說我本人最想了解的答案就在這里了。搜索引擎,導航工具,微博,微信記錄著我們一切的行為記錄,我們的情緒起伏都能被量化。這對商界是筆巨大的財富,他們可以根據這些數據定製獨一無二的消費計劃,也可以從中的相關關系中避免許多不必要的損失。

於是數據時代的價值鏈誕生:

1、基於數據本身的公司。 這類公司擁有大量的數據或者可以收集到大量數據。他們以出售數據盈利。當然大數據時代的後期,他們也開始逐漸轉型,收購分析團隊,將數據更大限度的價值化,以獲取更高的盈利。

2、基於技能的公司。 咨詢公司就是此類公司的典型代表,天睿,尼爾森這些都是數據分析的佼佼者,甚至四大現在也在積極開拓咨詢業務。

3、基於思維的公司。 創新思維應該屬於大數據時代最寶貴的財富。FlightCaster、Facebook、滴滴等等這些都是創新思維的典範。

我們要想從大數據時代挖掘金礦也可以順著這條價值鏈下手。本人更傾向於第三種思維的風暴。有趣的是,這類公司的發起人甚至這些被我們趨之若鶩的應用都是創始人無聊逗樂的作品。顯然,熱愛生活,為生活提供更多便利和快樂,彷彿都是創新思維創造需求所必須的。

第三部分 大數據時代的管理變革

風險: 除開我們平常喜歡網購,消費習慣被搜索引擎記錄在外,導航系統記錄著我們的行動軌跡,甚至是我們的心情,通過微信朋友圈和微博,也都一一被監控中。我們彷彿生活在一雙看不見的眼睛裡,想想都覺得不寒而慄。

更可怕的是,當人們過於依賴大數據去做決策的時候,我們的社會終將有一天會演變為預測行為更替事實行為的悲劇。最簡單的例子:警察可能從大數據監控的一系列行為中分析得到結論某人會謀殺他的妻子,而這個人也許什麼都沒做,而警察卻名正言順的將此人逮捕。因為大數據預測分析他一定會做,而警察的行為只是阻止了的悲劇的發生。完全磨滅了他可能真的不會犯罪的可能性。

掌控: 讓數據的使用者承擔責任,是相對保護個人隱私的有效方式。避免了個人信息數據被過度曝光,又給與了數據分析者極大的開發使用空間。另外大數據時代更要避免數據獨裁時代。谷歌曾要求員工測試41種藍色的陰影效果中,哪種被人們使用最頻繁,從而決定網頁工具欄的顏色。這種數據獨裁曾在谷歌一度到達頂峰,同時也激起了強烈反抗。

數據的盲目崇拜總讓人會遺忘數據總有固有的局限性,數據導向的答案是參考答案不是最終答案。不為數據而數據,才是大數據時代最好的態度,才能將大數據的功能最大化。

F. 大數據時代讀後感

《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托·邁爾·舍恩伯格被譽為“大數據商業應用第一人”,擁有在哈佛大學、牛津大學、耶魯大學和新加坡國立大學等多個互聯網研究重鎮任教的經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。以下是這本書的讀後感範文,歡迎閱讀!

大數據時代讀後感(一)

我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。這個命題是我讀這本書最大的感觸。個人認為也是這本書最核心的思想。從頭說起吧,首先,書提出一個顛覆我以前認知的命題--”並非原子而是信息才是一切的本源“,將世界看做信息,看做可以理解的數據的海洋,為我們提供了一個從未有過的審視下是的視角。它是一種可以滲透到所有生活領域的世界觀。這個命題是在書的最後一部分中的某一段中描寫的。我之所以把它放在最前面來講,因為我覺得,這是談數據化世界的前提,自然也是談論大數據的前提啦。書的中間部分有一節講到數據化和數字化的區別。經過我自己腦子的整理,把數據化世界這個命題列為大數據思維的第二步。寫到這里,我不由得反省下,我是不是有領悟到書的精髓所在(我認為的精髓),就是第一句話。因為回顧我整個思路,還是按照舊模式的因果關系思考模式思考問題。書中另一個吸引我的地方就是,有很多觀點的論述,會從哲學的高度論述。雖然,自己肚子沒多少墨水,但是讀這些描述的時候,就會發現自己會更好的理解作者提出的命題。比如書中有一段文字

當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。

在附上一些事例的時候,用作者提供的”本質“去看待時,很容易理解,確實是這么回事。好了,那麼大數據到底改變了我們什麼呢,作者給出3點,

大數據的精髓在於我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。

第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(樣本=總體)

第二個轉變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度

第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們”是什麼“而不是”為什麼“。在大數據時代,我們不必知道現象背後的原因,我們只要讓數據自己發聲。

正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與”過去的經驗或積累的部分知識“相對照,然後進行調整並接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在於使自己保持冷靜。

所以作者稱之為revolution。

講了這么多,那麼大數據到底給我們帶來什麼。在這里,我只想談我感觸最深的,其他的有興趣的可以自己去了解。當然,書中提了很多,最多的就是,XXX公司或者個人利用大數據創造了多大的財富了,拋開這些表面的不說,最讓我動心亦或者是害怕的是---預測。這是大數據帶來最核心的東西,動心的理由無須贅述,計算機會告訴你什麼時候買什麼雙色球可以中頭獎,想想心裡是不是有一點小激動咧。當然這只是我打的一個比較誇張的比喻。至於害怕呢,書中有段話我很喜歡

公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系於個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全准確,那麼我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那麼我們也就不需要承擔責任。這不是很諷刺嗎。

扯到這里,順便扯一下,書中另一段關於自由意志的描述

在哲學界,關於因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那麼我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那麼就不存在人的自由意志這一說了。——所有的生命軌跡都只是受因果關系的控制了。因此,對於因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。

書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,”哎喲,我居然看過這部電影,想想心裡還是有點小激動“,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什麼舉動都可以被預測,相當於你完全暴露在太陽光下,換成你,你害怕不。

最後,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。

大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。

大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。

大數據時代讀後感(二)

去年的“雲計算”炒得熱火朝天的,今年的“大數據”又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起“大數據”來了。於是乎,各企業的CIO也將熱度紛紛轉向關注“大數據”來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀。

不過話又還得說回來,《大數據時代》是本好書。

當然,很多IT知名人士也大力推薦,寫了好多讀後感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書後,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼於數據關聯性,而非數據精確性,或許才是大數據與現時BI最大的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向於數據的精確性。看完此書,我心中的一些問題:

1.什麼是大數據?

查了查網路,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的'的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity--這個好像是IBM的定義吧。

以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。

2.大數據適合什麼樣的企業?

誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過

專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,5,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?

3.大數據帶來的影響

當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好准備,你都要開始迎接它所給你帶來的影響了。經過物聯網,雲計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什麼呢?

1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。

2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響最大的,當然是IT公司

3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。

大數據時代讀後感(三)

如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾——舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家“的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,如果能做足功課又具備相應的理論功底,就能與之進行一場思想上的對話。

舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分”大數據時代的思維變革“中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。

我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。”大數據的簡單演算法比小數據的復雜演算法更有效。“更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。”不是因果關系,而是相關關系。“不需要知道”為什麼“,只需要知道”是什麼“。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。

世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出”不是因果關系,而是相關關系。“這一論斷時,他在書中還說道:”在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道‘是什麼’時,我們就會繼續向更深層次研究的因果關系,找出背後的‘為什麼’。“[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。

大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可”量化“,大數據的定量分析有力地回答”是什麼“這一問題,但仍然無法完全回答”為什麼“。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節”掌控“中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:”大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。“謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。

此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。

G. 在大數據中精準生活閱讀答案

在大數據中精準生活閱讀答案

①萬物皆互聯,無處不計算。因為互聯網、手機、無線感測器的普及,實時監測、遠程協作、SOHO工作、數據管理已成為平常之事,信息像水電一樣通過網路供應汩汩傳輸,計算機上有形數據轉化為無形的財富,深入並造福於現實生活。

②這標志著雲計算與大數據時代的開啟。智能管理、社交網站、物聯網、IPv6,當新技術風馳電掣般地駛入生活,我們如同搭上高鐵列車,還來不及看清楚窗外的風景,就已呼嘯著越過下一個站台。大數據應用於健康管理,幾乎表徵了新媒體技術層面的全部特徵:電子檔案高度個性化;人工智慧幫助我們細分信息;遠程協同記錄用戶的行為模式;數據挖掘預測人們的未來需要。而智能終端與「可穿戴」計算設備的出現,更使得行為、位置、生理數據等細微變化成為可供記錄和分析的精準對象。

③盡管大數據這個名詞並不新鮮,但社會對於大數據價值的認識尚在深化。20世紀80年代,美國人首先提出了這個概念。雅虎的科學家發現,得益於計算機技術和海量資料庫的發展,個人在真實世界的活動能夠得到前所未有的記錄。隨著新媒體技術的更新,如今,大數據的概念逐漸拓展,涵蓋了從數字圖像、新聞跟帖、文本記錄、視頻文檔、社交平台互動所提供的所有信息。不僅如此,它還被視作一種能力,引發了社會和國家戰略層面的深刻關注。

④大數據之「大」,不僅在於容量,更在於社會對其價值的洞悉:在大數據所重塑的後信息環境中,一個大規模生產、分享和應用數據的世界撲面而來。正如學者維克托·邁爾—舍恩伯格所說,它的真實價值就像漂浮在海洋中的冰山,第一眼只能看到一角,絕大部分隱藏於表面之下。

⑤但即便如此,我們依然可以清楚察覺到大數據給社會帶來的一些改變。從谷歌的流行病分析系統到沈陽渾南居民的數據查詢終端,基於信息的創新成為服務的先導,連接民生,可以救助更廣泛的普通大眾;以雲計算為基礎的信息存儲、分享和挖掘手段,推動著數據的交換、整合和分析,可以幫助人們發現新知,創造新的價值;作為新發明和新服務的源泉,大數據也影響到傳統學科研究的分化,改變了人們的價值取向、知識結構和生活方式。有學者將大數據比作觀察人類自身社會行為的顯微鏡和儀表盤。而我們看到,這個新的測量工具,再一次引領新的繁榮,提供給人們更多的選擇。

⑥作為發掘價值、征服數據的強大引擎,大數據所帶來的更多改變蓄勢待發。站在創新、競爭和生產率提高的前沿,思索大數據對於生活的'意義,如何將數據、信息轉化為知識,擴大人類的理性,實現技術與智能服務的跨越?如何規避風險、應對它對管理世界所提出的挑戰?如何藉助於大數據的力量將人類的觀察和理解推向「精準」,並衍生出有效的解決方案?答案還存在於人類智慧的彼此交融之中。

(選自《人民日報》2016年5月,有刪改。)

1.簡要概括第五段中大數據給社會帶來了哪些改變?(2分)

2.第四段畫橫線的句子運用了哪種說明方法?有什麼作用?(3分)

3.第二段中加點的「幾乎」一詞能否刪去?為什麼?(3分)

4.下面的說法或推斷符合原文意思的一項是()(2分)

A、大數據這個名詞早已出現,社會對於大數據價值的認識也早已深化。

B、我們已經進入大數據時代,可以「精準」規避風險,成功應對所有挑戰。

C、大數據作為一種新的測量工具,將再次引領新的繁榮,提供給人們更多的選擇。

D、大數據之「大」,僅僅是因為它的容量大,數據大。

參考答案:

1.可以救助更廣泛的普通大眾;可以幫助人們發現新知,創造新的價值;改變了人們的價值取向、知識結構和生活方式。

2.打比方。(1分)把大數據的真實價值比作「漂浮在海洋中的冰山」,具體形象地說明了它巨大的價值還未被發現,有待於進一步開發。(2分)。

3.不能刪去。因為「幾乎」是十分接近,差不多的意思,說明了「大數據應用於健康管理」差不多「表徵了新媒體技術層面的全部特徵」,刪除後說法就太絕對了,不符合事實,體現了說明文語言准確、嚴密的特點。

4.C


H. 《大數據時代》的讀後感

當認真看完一本名著後,大家心中一定有很多感想,為此需要認真地寫一寫讀後感了。你想知道讀後感怎麼寫嗎?下面是我收集整理的《大數據時代》的讀後感範文(通用5篇),僅供參考,大家一起來看看吧。

《大數據時代》的讀後感1

對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。

首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。

作者認為大數據時代具有三個顯著特點。

一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。

二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。

三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。

作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。

面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。

《大數據時代》的讀後感2

如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的.預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。

舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。

在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:

一、更多:不是隨機樣本,而是全體數據。

二、更雜:不是精確性,而是混雜性。

三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。

一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?

我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。

我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。

世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。

大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。

在風險社會中信息安全問題日趨凸顯。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考的答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考的.答案。

此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。

《大數據時代》的讀後感3

讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。

這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。

其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。

大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!

在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。

在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!

大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。

大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。

大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!

《大數據時代》的讀後感4

首先,想談一談何為大數據,何為大數據時代。大數據是一種資源,也是一種工具。它提供一種新的思維方式去理解當今這個信息化世界。為何說是一種新的思維方式:在信息缺乏的時代或模擬時代,我們更傾向於精確性的思維方式,就像是」釘是釘,鉚是鉚」,而在這種傳統的思維方式下,我們得到問題的答案只有一個。

而在大數據時代下,我們打破了這種思維方式,換句話說,我們接受結果的不確定性。簡言概括之,我認為大數據是一種預測模型。在大數據時代下,我們關注的不是因果,即為什麼是這樣,而更關心」是什麼」這種相關關系。換句話說,在這種新思維的思考方式下,我們探究問題背後的原因也是不可行的。我們所做的是利用大數據這種工具,讓數據自己說話!

其次,我想談下如何利用大數據提升我軍戰鬥力。當然,大數據分析並不是精準的預測,精準的預測也是不存在的。大數據只能有利於我們理解現在和預測未來的可能性。

作為軍人,我所關注的是如何利用好大數據的工具提升我軍戰鬥力,打贏這場信息化戰爭。毫無疑問,現在我們打的不是刀對刀,槍對槍的戰爭,更不是模擬時代,當代乃是數字時代,打的是信息化戰爭!

四次戰爭的大勝,美軍的戰爭形態從機械化轉向信息化,而且相應的在戰場取勝的時間也越來越短,這正是大數據時代下的必然結果。而我軍正在轉向信息化的過程中。在此戰爭形態的過程中,我們需要更多的計算分析師,大數據分析師,數學家等高等技術性人才來打贏這場信息化戰爭。這正是大數據時代下我們不得不有的基礎。我軍戰鬥力的提升迫在眉睫!

當然大數據是一把雙刃劍,利用好了取勝也是得心應手,相反,利用不好會導致不可估量的損失。

畢竟,這只是一種預測模型,得不到精準的預測結果。我們更要讓數據為我們所用,不要被龐大的資料庫框住我們的思維。為適應時代的發展,在這個適者生存,弱肉強食的世界,大數據時代下的殘酷競爭已經給我們敲響警鍾,一場悄無聲息的信息化戰爭已經打響!

《大數據時代》的讀後感5

去年的「雲計算」炒得熱火朝天的,今年的「大數據」又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起「大數據」來了。於是乎,各企業的CIO也將熱度紛紛轉向關注「大數據」來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀。

不過話又還得說回來,《大數據時代》是本好書。

當然,很多IT知名人士也大力推薦,寫了好多讀後感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書後,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼於數據關聯性,而非數據精確性,或許才是大數據與現時BI的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向於數據的精確性。

看完此書,我心中的一些問題:

1、什麼是大數據?

查了查網路,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity這個好像是IBM的定義吧。

以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。

2、大數據適合什麼樣的企業?

誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。

同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?

3、大數據帶來的影響

當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好准備,你都要開始迎接它所給你帶來的影響了。經過物聯網,雲計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什麼呢?

1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。

2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響的,當然是IT公司

3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。

I. 【《大數據時代》讀書筆記3】數據是可再生的可再生資源

本科畢業論文寫的是風力發電,作為一種安全清潔的可再生能源,雖然並網會給電網帶來較大壓力,但隨著智能電網的普及,風力發電前景喜人。與風力資源類似,數據也是可再生的,而且與對風力資源的利用暫時只局限在發電領域不同,數據可以被稱作是可再生的可再生資源。兩個可再生並非筆誤,而是源自其價值的多樣化,對數據利用方式的創新,帶來的,是源源不斷的數據價值。

數據冰山,更需要仔細勘探,太遠,會看不清,太近,會迷失方向,如果不小心撞上,那恐怕只能在數據之海里沉沒了。所幸,在大數據思維的指引下,在數據的首要價值被挖掘後,潛在價值也持續不斷被釋放。

三種創新讓我們得以初探冰山全貌。

數據創新1:數據的再利用

數據再利用的前提是收集或控制數據集尤其是大型數據集。有些機構如谷歌、如亞馬遜,早早地開啟了他們的數據再利用之旅,谷歌基於關鍵詞搜索整理了一個版本的搜索詞分析,並公開供人們查詢,如實時經濟指標以及旅遊部門的業務預報服務;而亞馬遜則一直致力於讓數據的價值再大一點,通過早期為AOL電子商務網站提供後台技術服務的合作,讓亞馬遜掌握了用戶的數據,包括他們在看什麼、買什麼,進一步幫助亞馬遜提高推薦引擎性能。

與這些線上企業對數據利用的敏感度不同,一些線下運作的傳統企業,也許還在信息噴泉上安睡。有些數據被收集、被保存,但也把數據帶入了墳墓,暫不能見天日。但當他們嗅到了數據所帶來的機會後,如一家知名的物流企業,針對其掌握的全球出貨信息,成立專門部門,以商業和經濟預測的形式出售匯總數據,創造了谷歌搜索查詢業務的一個線下版本。

數據創新2:重組數據

還記得那個將某個地區的交通事故發生情況與犯罪發生情況映射到一張地圖上的例子么,這就是數據重組,很多時候,1+1>2的效果一次又一次地在證明其強大魔力。其實,兩個或者更多個大數據的相加,是更大的大數據,關鍵在於怎麼相加。丹麥癌症協會曾就手機是否增加致癌率這個命題進行研究,通過將1990年至2007年間擁有手機用戶的信息和該國所有癌症患者的信息這兩個數據集結合後,得出了沒有發現使用行動電話和癌症風險增加之間存在任何關系的結論。這就是一個數據與數據相加的實例,雖然未能形成轟動的效果,但至少也能讓人們更加放心的使用行動電話了,也為我們提示了大數據運用的更多可能性。

數據創新3:可擴展數據

一個數據集並不會只有一種用途,就如美的發現需要一雙發現美的眼睛一樣,數據的用途也需要一雙發現數據用途的眼睛。零售商店內的監控攝像頭,不僅可以用來認出商店扒手,還能跟蹤在商店裡購物的客戶流和他們停留的位置,利用這些信息,零售商可以設計店面的最佳布局並判斷營銷活動的有效性,正如那句話所說,無心插柳柳成蔭。

數據利用的其他可能,還有數據的折舊值、數據廢氣、開放數據等。其中,開放數據最吸引人眼球,這也是各國政府現在正在努力推進的,其主旨是通過多元主體的參與,喚醒沉睡的數據,雖然真正實施起來,並不是那麼容易,但這,必然是大勢所趨,方向已經確定,路途的曲折蜿蜒,不過是為了更好地前進。

閱讀全文

與大數據時代的小數據閱讀答案相關的資料

熱點內容
電腦窗口程序在哪 瀏覽:281
前女友把我微信刪了又加什麼意思 瀏覽:655
win10不識別無線xboxone手柄 瀏覽:403
汽車之家app怎麼看成交價 瀏覽:908
abc文件破解密碼 瀏覽:516
怎麼登錄米家app賬號 瀏覽:165
兆歐表多少轉讀數據 瀏覽:414
多媒體網路通訊 瀏覽:747
文件上的表填不了內容該怎麼辦 瀏覽:899
弟弟迷上網路小說怎麼辦 瀏覽:766
網路上有人想訪問我的地址怎麼辦 瀏覽:730
linux解壓zip亂碼 瀏覽:839
看直播數據用哪個平台最好 瀏覽:730
win10晶元驅動程序版本 瀏覽:763
如何給word添加公式編輯器 瀏覽:666
iphone桌面文件夾怎樣合並 瀏覽:919
要我蘋果賬號密碼忘記了怎麼辦 瀏覽:578
快快卡在配置游戲文件 瀏覽:393
數據包重發時間怎麼調整 瀏覽:882
youtubeapp怎麼下載 瀏覽:366

友情鏈接