1. 大數據精準營銷的策略
利用大數據實現精準營銷的策裂攔略有以下幾個方面:明確消費目標群體、重視產品售後服務、准確傳遞商品信息、做數據信息的收集、對收集來的數據做匯總分析。
1、明確消費目標群體
想要實現精準營銷,必須首先明確產品的目標群體。只有明確產品和服務所面向的消費群體,才能夠准確地分析消費者的行為習慣,確定消費者的購買傾向。
2. 互聯網時代的客戶數據分析與精準營銷
互聯網時代的客戶數據分析與精準營銷
隨著互聯網金融和大數據時代的到來,銀行在IT建設、數據採集方面都投入了大量的人力、物力和財力,CRM系統已普遍建立,基礎建設初步完成。然而從整體來說,中國銀行業由於在數據分析(analytics)領域經驗的缺乏,戰略上誤將此項工作狹義化為IT工作,數據與客戶仍然是隔離的,數據應用主要集中在後端,數據文化尚未形成,數據分析手段仍然比較原始,實際投入產出比不高。
單從客戶細分而言,幾乎所有銀行都在做客戶群分層工作,有的銀行只是粗略分層,有的銀行根據風險與客戶生命周期進行客戶分層,但幾乎很少有銀行能夠從數據挖掘與分析角度精細化地進行客戶細分與決策,而真正懂得如何科學運用數據與模型進行客戶行為分析預判,特別對流失客戶的分析與預判,實施精準營銷的更是寥寥無幾,這必然導致銀行在以客戶為中心的轉型發展過程中,會遇到一系列與客戶發展目標相關的瓶頸,諸如我們常常聽到的如下頭疼問題:
不知道哪些客群應該重視、哪些應該放棄;
客戶流失率很高卻不知其原因,不知道如何進行客戶流失分析與預判;
不知道如何進行客戶預見性營銷與精準營銷;
不知道如何通過數據分析與模型工具促發客戶;
……
那麼,如何解決以上問題呢?我們認為,銀行首先必須要在客戶數據分析這項重要工作里投入必要的資源、人力和物力,並願意採用專業科學的管理方法與指導,從而使數據分析能夠為銀行帶來實質性的效益。本文我們將通過兩個案例的分享助您領悟這項工作的實施要領。
[案例一]客戶數據清理分析與分類
首先,將客戶數據按照邏輯關系、層層深入劃分、清理與分析。先運用數據分析方法將無效客戶界定與排除,隨後開展有效客戶與潛在客戶分析、有效客戶精細化細分、潛在客戶中分離出休眠客戶分析等,通過層層分析與剝離,結合銀行實際情況,得出對銀行有終身價值的客戶群。客戶數據細分示例如下圖:
其次,為了能真正理解客戶,需要挖掘更多目標客戶的內心深處的需求和行為特徵。必須在超越客戶身份、年齡類別、資產數字、交易數據等表象洞察客戶的需求動因和價值觀念,許多洞察客戶對於產品的偏好、支付的偏好、渠道的偏好、交易時間的偏好等等。為此,要對分層後的客戶進行深入的人文洞察與分析,分析結果用於輔助客戶營銷策略制定。
那麼,什麼才是無效客戶呢?例如,某零售銀行帳戶多達350萬,暫無精確的客戶數,賬戶金額0-100元達250萬(占總賬戶的71%,可能為無效客戶),100-1000元達40多萬戶,擁有龐大的代發賬戶。在項目實施之前,該行並沒有認識到,中低端賬戶金額並不等於中低端客戶。銀行也不知代發客戶如何使用其賬戶資金,不知為什麼代發客戶資金流出銀行。
界定無效客戶,需要將數據分析方法與銀行實際情況相結合考慮。
在本項目中,由於考慮到零售業務團隊、IT團隊與財務部門對無效客戶定義不一致,首道資深顧問在數據清理之前,與銀行相關團隊共同協商與定義「什麼樣的客戶在該行算無效客戶」。根據第一輪協商,確定以行內資產(AUM)100元(包括100元)以下,並且過去12個月所有賬戶沒有任何動作(如:存儲提取和匯入)的客戶為無效客戶。後又採用統計分析方法與實戰經驗結合,得出銀行各部門均可接受之分類切點。按此方法切除無效客戶之後,便獲得有效客戶數據。
排除無效客戶之後,重點對有效客戶和潛在客戶進行深入挖掘與分析。
在潛在客戶中,一部分為有效客戶,一部分為休眠客戶。對休眠客戶,採用相關策略進行營銷,觀測效果,根據效果為改進銀行產品提供相關建議。對於有效客戶細分,則可按客戶的消費行為、按客戶在銀行資產額、按客戶與銀行關系長短、按銀行收入貢獻度等進行細分,尤其是對於在本行有低資產額的有效客戶,需估測客戶行外資產,協助進行交叉銷售,對本行客戶產品擁有情況做精細化分析,將零售客戶總客戶數,按照產品條線進行細分。通過數據分析,確定客戶價值。
[案例二]代發客戶流失率分析、客戶維護與精準營銷
客戶流失嚴重是某銀行非常頭痛的難題,如何對銀行的客戶做好維護是該行重點關心的話題。仍然回到之前的問題,該行擁有大量的代發客戶,但不知為何代發客戶資金流出銀行金額較大?針對這個問題,我們的解決方案是:首先對該行代發流失客戶進行相關數據細分與分析,確定流失客戶特徵和屬性,同時分析影響客戶流失的各因素及各因素之間的相互關系。在此基礎上,對流失客戶在流失過程中所處時間段,進行數據分析,確定流失客戶時空特徵,並對流失客戶資產特徵進行深入分析與判斷,進而幫助銀行對已經流失或者有流失預警的客戶,提供相關流失客戶挽留策略。
在項目中我們幫助該行建立了客戶維護率模型,以此做好客戶流失預判和保留,大幅降低了該行的客戶維護成本。通過開發和不斷調試,該模型能夠幫助該行確定客戶流失預期(如預計客戶將在3個月或者5個月流失)與營銷客戶群(如年齡在20-30歲的女性客戶群),並給該行提供與設計相關客戶維護與吸引策略。例如:若要維護這些客戶,避免在預計內流失到他行,則需要配備哪些產品進行營銷?需要採取哪些營銷活動?通過哪些渠道接觸客戶?在什麼時間段最為適合進行客戶挽留?決定哪些客戶值得該行團隊花費成本進行維護挽留?……為該行大幅降低了客戶維護成本,提升了維護效率。客戶維護率模型原理示意如下圖所示。
除了做好客戶流失預判和保留,為了提升該行客戶精準營銷之預見性,並將精準營銷與該行產品(如信用卡)相掛鉤,我們在項目中對該行營銷數據進行收集與分析,並建立客戶反應率模型。首先對該行現有全員營銷數據進行收集,按照不同產品條線細分營銷數據。與此同時,收集營銷客戶屬性數據,將產品營銷數據與客戶屬性數據相匹配,開發與調試反應率模型。反應率模型用以為營銷目標客戶群進行系統評分,並根據實際情況設定界定臨界分值,剔除分值低於該臨界分值的目標客戶群,對符合分值之目標客戶群提供相關營銷策略與產品建議,由此致該行銷售成本大幅下降,客戶對產品反映率明顯提高。客戶反應率模型原理示意如下圖所示。
總之,大數據時代,「一切從數據出發」應該演變為零售銀行日常工作的思維和工作文化。銀行需要努力將大數據推向前台,要以客戶為中心,深刻洞察客戶需求,從而打造個性化的客戶體驗。因此,應該採用傳統數據分析,結合客戶需求深入洞察,找出客戶行為背後的規律。同時運用大數據技術,得出細分群體的行為特徵,從而有目的、有計劃地開展精準營銷和服務。
3. 如何利用大數據做到對客戶的精準營銷
大數據營銷等同於精準營銷,或是精準營銷是大數據營銷的一個核心方向和價值體現。然而,數據本身不會產生價值。為此,我們要把數據組織成數據資源體系,再對數據進行層次、類別等方面的劃分。在此基礎上,通過分析數據資源和相關部門的業務對接程度,以此發揮數據資源體系在管理、決策、監測及評價等方面的作用,從而產生大數據的大價值,真正實現了從數據到知識的轉變,為領導決策提供服務依據本例根據工作實踐。
本例以三個工作實例,展示如何通過對數據分析進行對客戶的精準營銷。
工具/原料
大數據營銷
大數據營銷三個案例分析
案例一:筆者在銀行工作,通過對儲戶身份證信息進行海量剖析,發現一個有趣的現象,即購買理財產品的客戶以40-50歲的女性居多。
根據這一信息,有經驗的理財經理通過身份證信息即能准確的分析出支行有哪些符合條件的客戶,迅速的對新推出的理財產品進行電話營銷,做到不出門即可實現銷售,較快的完成了銷售任務。
而另一些更具創新性的理財經理,通過身份證信息,在情人節期間組織了網點沙龍客戶邀約活動,對符合18-30歲、30-45歲這兩個年齡段的男性客戶進行了電話營銷,通過贈送愛人鮮花、化妝品以及高價值的禮品進行金融產品營銷,較好的引起男性客戶的興趣,有力的拉升了業績增長。
這些數據分析手段就能夠做到個性化營銷和定位,加強對客戶的認知,為客戶找到價值,從而帶動銷量。
案例二:在與供電部門合作期間,供電部門提供了一條信息,市裡每一天上網高峰期主要集中在中午12點之後和晚上的12點之前。供電部門認為,出現這種「怪現象」的原因是因為現在的人們普遍睡覺前都會有上網的習慣。
這條信息當時很多人沒有注意,似乎與銀行搭不上關系,但我們市場經營部門的一個年輕的大學生針對人們這種「強迫症」,通過手機銀行與商家合作,在晚上12點進行促銷秒殺活動,即推動了手機銀行業務量的提升,同時也帶動商家銷量的倍增,實現了雙贏。
案例三:在為企業代發工資數據中,我們曾發現一個現象,即一般企業員工代發帳戶每月都會沉澱一定的余額,金額不大,1000元也有,幾千的也有,長期不動的也有,活期利率很低,但是這些客戶的帳戶金額又達不到理財產品的起售金額,這些客戶工資用了也就用了,成了「月光族」,沒有理財理念。
如何通過分析這些數據信息直接進行客源組織,為這些具有相同需求的人群量身定做金融服務,並享受」一客(群)一策「的定製服務,我們進行專題研究。
最終,我們在零存整取、基金定投和適時到帳理財產品上進行了產品打包宣傳,同步利用信用卡宣傳,幾場現場專題沙龍下來,引起了不少企業員工的注意和興趣,著實為這些收入不高的人群提供了一條實實在在的理財渠道。
這三個小故事就是對歷史數據進行挖掘的結果,反映的是數據層面的規律,它通過對大量的數據系統中提取、整合有價值的數據,從而實現從數據到知識、從信息到知識、從知識到利潤的轉化。
簡單來說就是:5個合適,在合適的時間、合適的地點、將合適的產品以合適的方式提供給合適的人。
5
具體來講,當我們通過對完成數據分析之後,找出相同的規律,當然還有一些個性化數據體現,為此具體的應用場景需要根據企業、業務的具體情況進行精準營銷策劃、設計。
概括來講,我們需要以下三個步驟:
第一步:數據採集,了解用戶,通過收集用戶所有的數據,主要包括靜態信息數據、動態信息數據兩大類,靜態數據就是用戶相對穩定的信息,如性別、地域、職業、消費等級等,動態數據就是用戶不停變化的行為信息,如消費習慣、購買行為等;
第二步:分析這些數據,給客戶畫像,畫像代表客戶對營銷內容有興趣、偏好、需求等,分析推算客戶的興趣程度、需求程度、購買概率等;
第三步,也就是最後一步,將這些畫面綜合起來,拼成一張較為完整的圖,這樣我們對客戶就有了一個大概的了解。