導航:首頁 > 網路數據 > 大數據的陷阱出鏡率谷歌流感趨勢

大數據的陷阱出鏡率谷歌流感趨勢

發布時間:2024-02-08 19:25:29

Ⅰ 為什麼Google流感趨勢失敗了

Google流感趨勢是Google於2008年推出的一款預測流感的產品。Google認為,某些搜索字詞有助於了解流感疫情。Google流感趨勢會根據匯總的Google搜索數據,近乎實時地對全球當前的流感疫情進行估測。
Google在網站中解釋稱,搜索流感相關主題的人數與實際患有流感症狀的人數之間存在著密切的關系。Google會將自己統計的查詢數量與傳統流感監測系統的數據進行了對比,通過對這些搜索查詢的出現次數進行統計,准確估測出世界上不同國家和地區的流感傳播情況。但事實上,他們的估算並不總是那麼准確。
在Google流感趨勢發布後沒過幾個月,甲型H1N1流感就開始在全球范圍內大流行。諷刺的是,Google流感趨勢並沒有預測到這場持續了一年多的疫情。一篇發表在Science上的研究稱,自從2011年8月以來,Google流感趨勢在108周的時間里有100周出了錯。
Google從來沒有披露過他們是採用哪些搜索關鍵詞來追蹤流感信息的。而事實上,以「流感」為關鍵詞進行搜索的用戶,實際上並一定代表他們得了流感。去醫院看流感的人中,高達80%~90%比例的人實際上並沒有得流感,他們在Google上的搜索行為並不能作為可靠的信息來源。
Google必須每年都對流感趨勢所使用的模型進行調整,因為基於搜索的大數據模型存在太多影響精準度的噪音。盡管自Google流感趨勢推出已經長達六年,但是他們仍然沒有辦法替代傳統的流感監測模式。

Ⅱ 「揭秘」大數據的10個神話

「揭秘」大數據的10個神話
也許對大數據更好的一個類比是它就像一匹意氣風發的冠軍賽馬: 通過適當的訓練和天賦的騎師,良種賽馬可以創造馬場記錄–但沒有訓練和騎手,這個強大的動物根本連起跑門都進不了。
為了確保你組織的大數據計劃保持正軌,你需要消除以下10種常見的誤解。
1. 大數據就是『很多數據』
大數據從其核心來講,它描述了結構化或非結構化數據如何結合社交媒體分析,物聯網的數據和其他外部來源,來講述一個」更大的故事」。該故事可能是一個組織運營的宏觀描述,或者是無法用傳統的分析方法捕獲的大局觀。從情報收集的角度來看,其所涉及的數據的大小是微不足道的。
2.大數據必須非常干凈
在商業分析的世界裡,沒有「太快」之類的東西。相反,在IT世界裡,沒有「進垃圾,出金子」這樣的東西,你的數據有多干凈?一種方法是運行你的分析應用程序,它可以識別數據集中的弱點。一旦這些弱點得到解決,再次運行分析以突出 「清理過的」 區域。
3.所有人類分析人員會被機器演算法取代
數據科學家的建議並不總是被前線的業務經理們執行。行業高管Arijit Sengupta在 TechRepublic 的一篇文章中指出,這些建議往往比科學項目更難實施。然而,過分依賴機器學習演算法也同樣具有挑戰性。Sengupta說,機器演算法告訴你該怎麼做,但它們沒有解釋你為什麼要這么做。這使得很難將數據分析與公司戰略規劃的其餘部分結合起來。
預測演算法的范圍從相對簡單的線性演算法到更復雜的基於樹的演算法,最後是極其復雜的神經網路
4.數據湖是必須的
據豐田研究所數據科學家JimAdler說,巨量存儲庫,一些IT經理們設想用它來存儲大量結構化和非結構化數據,根本就不存在。企業機構不會不加區分地將所有數據存放到一個共享池中。Adler說,這些數據是 「精心規劃」的,存儲於獨立的部門資料庫中,鼓勵」專注的專業知識」。這是實現合規和其他治理要求所需的透明度和問責制的唯一途徑。
5.演算法是萬無一失的預言家
不久前, 谷歌流感趨勢項目 被大肆炒作,聲稱比美國疾病控制中心和其他健康信息服務機構更快、更准確地預測流感疫情的發生地。正如《紐約客》的Michele Nijhuis 在 2017年6月3日的文章 中所寫的那樣, 人們認為與流感有關詞語的搜索會准確地預測疫情即將爆發的地區。事實上,簡單地繪制本地溫度是一個更准確的預測方法。
谷歌的流感預測演算法陷入了一個常見的大數據陷阱——它產生了無意義的相關性,比如將高中籃球比賽和流感爆發聯系起來,因為兩者都發生在冬季。當數據挖掘在一組海量數據上運行時,它更可能發現具有統計意義而非實際意義的信息之間的關系。一個例子是將緬因州的離婚率與美國人均人造黃油的消費量掛鉤:盡管沒有任何現實意義,但這兩個數字之間確實存在「統計上顯著」的關系。
6.你不能在虛擬化基礎架構上運行大數據應用
大約10年前,當」大數據」首次出現在人們眼前時,它就是Apache hadoop的代名詞。就像VMware的Justin Murray在 2017年5月12日的文章 中所寫的,大數據這一術語現在包括一系列技術,從NoSQL(MongoDB,Apache Cassandra)到Apache Spark。
此前,批評者們質疑Hadoop在虛擬機上的性能,但Murray指出,Hadoop在虛擬機上的性能與物理機相當,而且它能更有效地利用集群資源。Murray還炮轟了一種誤解,即認為虛擬機的基本特性需要存儲區域網路(SAN)。實際上,供應商們經常推薦直接連接存儲,這提供了更好的性能和更低的成本。
7.機器學習是人工智慧的同義詞
一個識別大量數據中模式的演算法和一個能夠根據數據模式得出邏輯結論的方法之間的差距更像是一個鴻溝。ITProPortal 的Vineet Jain在 2017年5月26日的文章 中寫道,機器學習使用統計解釋來生成預測模型。這是演算法背後的技術,它可以根據一個人過去的購買記錄來預測他可能購買什麼,或者根據他們的聽歌歷史來預測他們喜歡的音樂。
雖然這些演算法很聰明,但它們遠遠不能達到人工智慧的目的,即復制人類的決策過程。基於統計的預測缺乏人類的推理、判斷和想像力。從這個意義上說,機器學習可能被認為是真正AI的必要先導。即使是迄今為止最復雜的AI 系統,比如 IBM沃森 ,也無法提供人類數據科學家所提供的大數據的洞察力。
8.大多數大數據項目至少實現了一半的目標
IT經理們知道沒有數據分析項目是100%成功的。當這些項目涉及大數據時,成功率就會直線下降,NewVantagePartners最近的調查結果顯示了這一點。在過去的五年中,95%的企業領導人表示,他們的公司參與了一個大數據項目,但只有48.4%的項目取得了」可衡量的結果」。
NewVantage Partners的大數據執行調查顯示, 只有不到一半的大數據項目實現了目標,而 「文化」變化是最難實現的。
事實上,根據2016年10月發布的 Gartner的研究結果 ,大數據項目很少能跨過試驗階段。Gartner的調查發現,只有15%的大數據實現被部署到生產中,與去年調查報告的14%的成功率相對持平。
9.大數據的增長將減少對數據工程師的需求
如果你公司大數據計劃的目標是盡量減少對數據科學家的需求,你可能會得到令人不快的驚喜。 2017 Robert Half 技術薪資指南 指出, 數據工程師的年薪平均躍升到13萬美元和19.6萬美元之間, 而數據科學家的薪資目前平均在11.6萬美元和16.3萬美元之間, 而商業情報分析員的薪資目前平均在11.8萬美元到13.875萬美元之間。
10.員工和一線經理將張開雙臂擁抱大數據
NewVantagePartners的調查發現,85.5%的公司都致力於創造一個「數據驅動的文化」。然而,新的數據計劃的整體成功率僅為37.1%。這些公司最常提到的三個障礙是缺乏組織一致性(42.6%),缺乏中層管理人員的採納和理解(41%),以及業務阻力或缺乏理解(41%)。
未來可能屬於大數據,但獲得這一技術的好處需要大量的針對多樣人性的辛勤工作。

Ⅲ 從谷歌流感趨勢談大數據分析的光榮與陷阱

從谷歌流感趨勢談大數據分析的光榮與陷阱

本文從谷歌流感趨勢2009年前後表現差異談起,討論了大數據分析容易面臨的大數據自大、演算法演化、看不見的動機導致數據生成機制變化等陷阱,以及對我國大數據產業發展的借鑒。本文認為,為健康發展大數據產業,我國需要防範大數據自大風險、推動大數據產業和小數據產業齊頭並進,並強化提高大數據透明度、審慎評估大數據質量等方面的努力。?

一、谷歌流感趨勢:未卜先知?

「谷歌流感趨勢」(Google Flu Trends,GFT)未卜先知的故事,常被看做大數據分析優勢的明證。2008年11月谷歌公司啟動的GFT項目,目標是預測美國疾控中心(CDC)報告的流感發病率。甫一登場,GFT就亮出十分驚艷的成績單。2009年,GFT團隊在《自然》發文報告,只需分析數十億搜索中45個與流感相關的關鍵詞,GFT就能比CDC提前兩周預報2007-2008季流感的發病率。

也就是說,人們不需要等CDC公布根據就診人數計算出的發病率,就可以提前兩周知道未來醫院因流感就診的人數了。有了這兩周,人們就可以有充足的時間提前預備,避免中招。多少人可以因為大數據避免不必要的痛苦、麻煩和經濟損失啊。

此一時,彼一時。2014年, Lazer等學者在《科學》發文報告了GFT近年的表現。2009年,GFT沒有能預測到非季節性流感A-H1N1;從2011年8月到2013年8月的108周里,GFT有100周高估了CDC報告的流感發病率。高估有多高呢?在2011-2012季,GFT預測的發病率是CDC報告值的1.5倍多;而到了2012-2013季,GFT流感發病率已經是CDC報告值的雙倍多了。這樣看來,GFT不就成了那個喊「狼來了」的熊孩子了么。那麼不用大數據會如何?作者報告,只用兩周前CDC的歷史數據來預測發病率,其表現也要比GFT好很多。

2013年,谷歌調整了GFT的演算法,並回應稱出現偏差的罪魁禍首是媒體對GFT的大幅報道導致人們的搜索行為發生了變化。Lazer等學者窮追不舍。他們的估算表明,GFT預測的2013-2014季的流感發病率,仍然高達CDC報告值的1.3倍。並且,前面發現的系統性誤差仍然存在,也就是過去犯的錯誤如今仍然在犯。因為遺漏了某些重要因素,GFT還是病得不輕。

為什麼傳說中充滿榮光的大數據分析會出現如此大的系統性誤差呢?從大數據的收集特徵和估計方法的核心,我們可以探究一二。

二、新瓶裝舊酒:過度擬合

大數據時代的來臨,為數據收集帶來了深刻變革。海量數據、實時數據、豐富多樣的非結構數據,以前所未有的廣度進入了人們的生活。但是不變的是,在統計分析方法上,數據挖掘(Data mining)仍然是統計分析的主要技術。而數據挖掘中最引人注目的過度擬合(overfitting)問題,由於下文提到的各類陷阱的存在,遠遠沒有解決。

我們先用一個故事來解釋何為過度擬合。假設有一所叫做象牙塔的警官學校致力於培養抓小偷的警察。該校宣稱,在他們學校可以見到所有類型的普通人、也能見到所有類型的小偷;到他們學校來學習就能成為世界上最厲害的警察。但是這所學校有個古怪,就是從不教授犯罪心理學。

象牙塔的教學方式是這樣的:將人群隨機分為十組,每組都是既有普通人又有小偷。學員可以觀察到前九組所有人,也知道誰是普通人誰是小偷。學員要做的是,根據自己從前九組中了解到的小偷特徵,從第十組中找出小偷。比如學員從前九組觀察到小偷更喜歡在給孩子買尿布的時候也買啤酒,那麼在第十組觀察到有人在買尿布時也買啤酒,就作為一個嫌疑條件。完成這個過程之後,學校再將人群打散重新分成十組,如此循環往復,之後學校進行測試。測試方式就是再次將人群隨機分為十組,看誰能最快最准根據前九組的信息找出第十組的小偷。冠軍即象牙塔最棒警察,可以派到社會上抓小偷了。

一段時間後,問題來了:象牙塔最棒警察在象牙塔校內總能迅速找到小偷,可一旦出了象牙塔, 該警察就老犯錯抓、該抓不抓的錯誤。他抓小偷的表現,甚至比從來沒有來象牙塔學習的人還要差。

在這個故事裡,象牙塔最棒警察就相當於根據大數據的數據挖掘方法、機器學習之後挑選出來的最優模型。小偷相當於特定問題需要甄選出的對象,比如得流感的人、不幹預就會自殺的人、賴賬的人。前九組的人就相當於用於訓練模型的訓練數據;第十組人則相當於檢驗訓練結果的檢驗數據。不教授犯罪心理學就意味著抓小偷並不需要理解小偷為什麼會成為小偷,類似於在數據分析中只關心相關關系而不關注因果關系。訓練最佳警察的過程,就類似於運用機器學習技術, 採用訓練數據來訓練模型,然後採用檢驗數據來選擇模型,並將預測最好的模型作為最佳模型,用於未來的各類應用中 。

最後,警察在象牙塔內能快速抓小偷而校外不能,就是過度擬合問題。由於在學校通過多次重復練習,學員小偷的特徵已經爛熟於心,因此無論怎麼隨機分,都能快速找到小偷並且不出錯;這就相當於訓練模型時,由於已經知道要甄選人群的特徵,模型能夠對樣本內觀測值作出很好的擬合。由於象牙塔學校判斷小偷的標准主要看外部特徵而不去理解內在原因,比如小偷常戴鴨舌帽,那麼當社會人群里的小偷特徵與象牙塔人群有很大差別時,比如社會上的小偷更常戴禮帽,在象牙塔內一抓一個準的鴨舌帽標准,到社會就變成一抓一個錯了。也就是說,在樣本內預測很好的模型,到樣本外預測很差。 這,就是過度擬合的問題。

從過度擬合角度,可以幫助我們理解為什麼GFT在2009年表現好而之後表現差。在2009年,GFT已經可以觀察到2007-2008年間的全部CDC數據,也就是說GFT可以清楚知道CDC報告的哪裡發病率高而哪裡發病率低。這樣,採用上述訓練數據和檢驗數據尋找最佳模型的方法時標准就很清晰,就是不惜代價高度擬合已經觀察到的發病率。 Lazer 等人發現,GFT在預測2007-2008年流感流行率時,存在丟掉一些看似古怪的搜索詞,而用另外的5000萬搜索詞去擬合1152個數據點的情況。

2009年之後,該模型面對的數據就真正是未知的,這時如果後來的數據特徵與2007-2008年的數據高度相似,那麼GFT也該可以高度擬合CDC估計值。但現實是無情的,系統性誤差的存在,表明GFT在一些環節出了較大偏差而不得不面對過度擬合問題。

從上面的故事可以看到,產生過度擬合有三個關鍵環節。第一,象牙塔學校認定本校知道所有普通人與所有小偷的特徵,也就等於知道了社會人群特徵。第二,象牙塔學校訓練警察,不關心小偷的形成原因,而關注細致掌握已知小偷的特徵。第三,象牙塔學校認為,不論時間如何變化,本校永遠能保證掌握的普通人和小偷的行為特徵不會發生大規模變動、特別是不會因為本校的訓練而發生改變。

在大數據這個新瓶里,如果不避開下面的三個陷阱,就仍然可能裝著數據挖掘帶來的過度擬合舊酒:大數據自大、演算法演化、看不見的動機導致的數據生成機制變化。

三、大數據分析的挑戰

(一)陷阱一:「大數據自大」

Lazer等學者提醒大家關注 「大數據自大(big data hubris)」的傾向,即認為自己擁有的數據是總體,因此在分析定位上,大數據將代替科學抽樣基礎上形成的傳統數據(後文稱為「小數據」)、而不是作為小數據的補充。

如今,大數據確實使企業或者機構獲取每一個客戶的信息、構成客戶群的總體數據成為可能,那麼說企業有這樣的數據就不需要關心抽樣會有問題嗎?

這里的關鍵是,企業或者機構擁有的這個稱為總體的數據,和研究問題關心的總體是否相同。《數據之巔》一書記載了下面這個例子:上世紀三十年代,美國的《文學文摘》有約240萬讀者。如果《文學文摘》要了解這個讀者群的性別結構與年齡結構,那麼只要財力人力允許,不抽樣、直接分析所有這240萬左右的數據是可行的。但是,如果要預測何人當選1936年總統,那麼認定「自己的讀者群」這個總體和「美國選民」這個總體根本特徵完全相同,就會差之毫釐謬以千里了。事實上,《文學雜志》的訂戶數量雖多,卻集中在中上層,並不能代表全體選民。與此相應,蓋洛普根據選民的人口特點來確定各類人群在樣本中的份額,建立一個5000人的樣本。在預測下屆總統這個問題上,採用這個小數據比採用《文學文摘》的大數據,更准確地把握了民意。

在GFT案例中,「GFT採集的搜索信息」這個總體,和「某流感疫情涉及的人群」這個總體,恐怕不是一個總體。除非這兩個總體的生成機制相同,否則用此總體去估計彼總體難免出現偏差。

進一步說,由於某個大數據是否是總體跟研究問題密不可分,在實證分析中,往往需要人們對科學抽樣下能夠代表總體的小數據有充分認識,才能判斷認定單獨使用大數據進行研究會不會犯「大數據自大」的錯誤。

(二)陷阱二:演算法演化

相比於「大數據自大」問題,演算法演化問題(algorithm dynamics)就更為復雜、對大數據在實證運用中產生的影響也更為深遠。我們還是借一個假想的故事來理解這一點。假定一個研究團隊希望通過和尚在朋友圈發布的信息來判斷他們對風險的態度,其中和尚遇到老虎的次數是甄別他們是否喜歡冒險的重要指標。觀察一段時間後該團隊發現,小和尚智空原來遇到老虎的頻率大概是一個月一次,但是從半年前開始,智空在朋友圈提及自己遇到老虎的次數大幅增加、甚至每天都會遇到很多隻。由於大數據分析不關心因果,研究團隊也就不花心思去追究智空為什麼忽然遇到那麼多老虎,而根據歷史數據認定小智空比過去更願意冒險了。但是研究團隊不知道的情況是:過去智空與老和尚同住,半年前智空奉命下山化齋;臨行前老和尚交代智空,山下的女人是老虎、遇到了快躲開。在這個故事裡,由於老和尚的叮囑,智空眼裡老虎的標准變了。換句話說,同樣是老虎數據,半年前老虎觀測數量的生成機制,和半年後該數據的生成機制是不同的。要命的是,研究團隊對此並不知情。

現實中大數據的採集也會遇到類似問題,因為大數據往往是公司或者企業進行主要經營活動之後被動出現的產物。以谷歌公司為例,其商業模式的主要目標是更快速地為使用者提供准確信息。為了實現這一目標,數據科學家與工程師不斷更新谷歌搜索的演算法、讓使用者可以通過後續谷歌推薦的相關詞快捷地獲得有用信息。這一模式在商業上非常必要,但是在數據生成機制方面,卻會出現使用者搜索的關鍵詞並非出於使用者本意的現象。

這就產生了兩個問題:第一,由於演算法規則在不斷變化而研究人員對此不知情,今天的數據和明天的數據容易不具備可比性,就像上例中半年前的老虎數據和半年後的老虎數據不可比一樣。第二,數據收集過程的性質發生了變化。大數據不再只是被動記錄使用者的決策,而是通過演算法演化,積極參與到使用者的行為決策中。

在GFT案例中,2009年以後,演算法演化導致搜索數據前後不可比,特別是「搜索者鍵入的關鍵詞完全都是自發決定」這一假定在後期不再成立。這樣,用2009年建立的模型去預測未來,就無法避免因過度擬合問題而表現較差了。

(三)、陷阱三:看不見的動機

演算法演化問題中,數據生成者的行為變化是無意識的,他們只是被頁面引導,點出一個個鏈接。如果在數據分析中不關心因果關系,那麼也就無法處理人們有意識的行為變化影響數據根本特徵的問題。這一點,對於數據使用者和對數據收集機構,都一樣不可忽略。

除掉人們的行為自發產生系統不知道的變化之外,大數據的評估標准對人們行為的影響尤為值得關注。再以智空為例。假定上文中的小和尚智空發現自己的西瓜信用分遠遠低於自己好友智能的西瓜信用分。智空很不服氣,經過仔細觀察,他認為朋友圈言論可能是形成差異的主因。於是他細細研究了智能的朋友圈。他發現,智能從不在朋友圈提及遇到老虎的事,而是常常宣傳不殺生、保護環境、貼心靈雞湯,並定期分享自己化齋時遇到慷慨施主的事。雖然在現實中,他知道智能喜好酒肉穿腸過、也從未見老和尚稱贊智能的化齋成果。智空茅塞頓開,從此朋友圈言論風格大變,而不久後他也滿意地看到自己的西瓜信用分大幅提高了。

如今,大數據常常倚重的一個優勢,是社交媒體的數據大大豐富了各界對於個體的認知。這一看法常常建立在一個隱含假定之上,就是人們在社交媒體分享的信息都是真實的、自發的、不受評級機構和各類評估機構標准影響的。但是,在互聯網時代,人們通過互聯網學習的能力大大提高。如果人們通過學習評級機構的標准而相應改變社交媒體的信息,就意味著大數據分析的評估標准已經內生於人們生產的數據中,這時,不通過仔細為人們的行為建模,是難以准確抓住的數據生成機制這類的質變的。

從數據生成機構來看,他們對待數據的態度也可能發生微妙的變化。例如,過去社交媒體企業記錄保存客戶信息的動機僅僅是本公司發展業務需要,演算法演化也是單純為了更好地服務消費者。但隨著大數據時代的推進,「數據為王」的特徵越來越明顯,公司逐漸意識到,自己擁有的數據逐漸成為重要的資產。除了可以在一定程度上給使用者植入廣告增加收入之外,還可以在社會上產生更為重要的影響力。這時就不能排除數據生成機構存在為了自身的利益,在一定程度上操縱數據的生成與報告的可能性。比如,在Facebook等社交媒體上的民意調查,就有可能對一個國家的政治走向產生影響。而民意調查語言的表述、調查的方式可以影響調查結果,企業在一定程度上就可以根據自身利益來操縱民意了。

簡而言之,天真地認為數據使用者和數據生成機構都是無意識生產大數據、忽略了人們行為背後趨利避害的動機的大數據統計分析,可能對於數據特徵的快速變化迷惑不解,即便看到模型預測表現差,也難以找到行之有效的克服方法。

四、前車之鑒

目前,我國高度重視大數據發展。2015年8月31日,國務院印發《促進大數據發展行動綱要》,系統部署大數據發展工作。《綱要》認為,大數據成為推動經濟轉型發展的新動力(310328,基金吧)、重塑國家競爭優勢的新機遇,和提升政府治理能力的新途徑。《綱要》指出,2018年底前,要建成國家政府數據統一開放平台,率先在信用、交通、醫療等重要領域實現公共數據資源合理適度向社會開放。與此相應,近年來多地成立了大數據管理局、業界學界對於大數據的分析利用也予以熱烈回應。因此,了解大數據分析的優勢與陷阱,對我國的經濟發展和實證研究具有極其重要的意義;而GFT項目折射出的大數據使用中可能存在的機會與問題,都值得關注。

(一) 防範「大數據自大」帶來的風險

GFT案例表明,如果認為大數據可以代替小數據,那麼過度擬合問題可以帶來巨大的估計誤差。這一點在「大眾創業、萬眾創新」的今天尤其需要關注。這是因為大數據作為目前「創新」最閃亮的新元素被高度推崇的,而我國經濟處於轉型時期的特徵,使企業或者機構面對的微觀數據不斷發生動態變化。如果在數據挖掘中忽略這些變化,往往要面臨過度擬合帶來的損失。

例如,我國P2P網貸行業採用的數據體量雖然大多達不到大數據要求的海量數據,但是不少企業熱衷採用爬蟲等技術從社交媒體挖掘信息用於甄別客戶。這些平台健康狀況,就可能與過度擬合的嚴重程度密不可分。 根據中國P2P網貸行業2014年度運營簡報和2015年上半年的運營簡報,在圖一我們可以推算2006年到2004年間和2015年1-5月間月均新增問題平台數,並與2015年6月新增問題平台數作比較。[1]

新增問題平台的大幅增加原因雖然有多方面,但是從數據分析的角度看,由於還沒有合法的數據共享機制,P2P平台在甄別客戶質量時,往往只依靠自身渠道和從社交媒體等挖掘的數據,並採用數據挖掘方法建立相應建立模型。在數據分析中,不少P2P平台往往疏於查考自身樣本的代表性、也忽略宏觀經濟數據和其他微觀數據所包含的信息。由於互聯網金融公司出現時間短、又主要成長於經濟繁榮期,如果單單依賴有限的數據渠道,數據挖掘與機器學習過程對新常態下個體行為沒有足夠的認識,在經濟下行時仍然根據歷史數據而低估逾期率,導致高估平台健康狀況,最終不得不面對問題平台不斷增加的局面。

(二) 大數據和小數據齊頭並進大勢所趨

大數據和小數據各有優劣。簡而言之,小數據通常不會假定該數據就是總體,因此收集數據前往往需要確定收集數據的目標、根據該目標設計的問卷或者收集方法、確定抽樣框。在數據採集後,不同學者往往可以通過將新收集數據與不同數據的交叉驗證,來評估數據的可信度。小數據在收集上有變數定義清晰、數據生成機制基本可控、檢驗評估成本相對較低等優點,但是缺點是數據收集成本高,時間間隔長、顆粒度較粗。

大數據的優勢就包括數據體量大、收集時間短、數據類型豐富,顆粒度很細。但是,由於大數據往往是一些企業和機構經營活動的附帶產品,因此並不是通過精心論證的測度工具生成。另外,由於大數據的體量很大,交叉驗證數據的可信度、不同學者採用相同數據獨立研究以檢驗數據的前後一致性等工作難度較大。這些特點意味著大數據本身未必有科學研究要求的那樣准確、可靠,在數據分析中就需要對大數據適合研究的問題有較清晰的認識。

在與小數據互為補充推動研究與認知方面,大數據大有可為。將大數據與小數據相結合,可以大大提高數據的顆粒度和預測精度。比如對CDC流感發病率的預測研究發現,將GFT採用的大數據和CDC的歷史數據相結合的模型,其預測能力比單獨運用大數據或者小數據要好很多。

大數據往往可以實時生成,對於觀察特定社區的動態具有小數據無可替代的優勢。比如,美國在「九一一」之後,出於快速准確估計在某個特定小社區活動的人口的需要而啟動了「工作單位和家庭住址縱向動態(LEHD)」項目,該項目將人口普查數據、全國公司數據、個人申請失業保險、補貼、納稅等記錄聯通,可以對社區在短時間內的「新陳代謝」作出較為全面的刻畫。

這類的數據結合研究,對於了解我國社會經濟狀況的動態變化會十分重要。一個可能的應用是,將城市人口、工作狀態、性別、年齡、收入等小數據採集的信息,和實時產生的交通狀況相結合,來預測人們的出行特徵,來解決城市交通擁堵、治理霧霾等問題。另一個可能的應用是,推動人民銀行徵信中心個人徵信系統數據和民間徵信系統大數據的結合,建立高質量的中國個人徵信體系。

另外,我國經濟處於轉型時期,有不少政策亟需快速評估政策果效。以小數據為基礎,利用大數據數據量豐富的優勢,可以通過互聯網做一些隨機實驗,來評估一些政策的效果,也是可能的發展方向。

在過去的十多年中,我國在通過非官方渠道採集小數據、特別是微觀實證數據方面取得了長足進展。在多方努力下,更多經過嚴格科學論證而產生的數據可被公眾免費獲得並用於研究。例如,北京大學的「中國健康與養老追蹤調查」、「中國家庭追蹤調查」,都由經濟、教育、健康、社會學等多領域的專家協同參與問卷的設計和數據採集的質控。在這些努力下,小數據的生成機制更為透明,交叉驗證調查數據的可信度等實證研究的必要步驟也更為可行。

但是,目前在小數據的收集和使用、政府和有關機構的小數據開放運用方面,我國還有很大推進空間。只有在對涉及我國基本國情的小數據進行充分學習研究之後,我國學界和業界才能對經濟政治社會文化等領域的基本狀況有較清晰的把握。而這類的把握,是評估大數據質量、大數據可研究問題的關鍵,對推進大數據產業健康發展有舉足輕重的作用。

因此在政策導向上,為要實現大數據、小數據相得益彰推動經濟發展的目標,在促進發展大數據的同時也要大力發展小數據相關產業,推動小數據相關研究與合作,使大數據與小數據齊頭並進、互為補充。

(三)提高大數據使用的透明度,加強對大數據質量的評估

大數據面臨的透明度問題遠比小數據嚴重。在GFT案例中,Lazer等人指出,谷歌公司從未明確用於搜索的45個關鍵詞是哪些;雖然谷歌工程師在2013年調整了數據演算法,但是谷歌並沒有公開相應數據、也沒有解釋這類數據是如何搜集的。我國大數據相關企業的數據,也鮮有學者可以獲得並用於做研究的例子。

與透明度相關的就是大數據分析結果的可復制性問題。由於谷歌以外的研究人員難以獲得GFT使用的數據,因此就難以復制、評估採用該數據分析結果的可靠性。因此利用大數據的研究難以形成合力,只能處於案例、個例的狀態。

另外還要注意到,如果數據生成機制不清晰,研究結論難以復制,而演算法演化也表明,最終數據往往成為使用者和設計者共同作用的結果。這種數據生成的「黑箱」特徵,容易成為企業或者機構操縱數據生成過程和研究報告結果的溫床。唯有通過推動大數據的透明化、公開化,我們才能在大數據產業發展之初,建立健康的數據文化。

因此,在大數據時代,為了更好利用大數據,需要採取相關措施,增加在大數據生成過程的透明度方面的努力。例如,採取措施推進數據生成企業在妥善處理隱私信息後,定期公布大數據隨機抽樣數據、要求數據生成企業及時公布數據演算法的變更,鼓勵採用大數據的研究實現可復制性、便於交叉驗證等。

五、結語

目前有些流行觀點認為,在大數據時代,技術容許人們擁有了總體因此抽樣不再重要、另外由於數據挖掘術的進展,只需關心相關關系而不必再關心因果關系。而GFT的實例表明,即便谷歌公司用於GFT計算的是數十億的觀測值,也不能認為谷歌公司擁有了流感人群的總體。誤認為數據體量大就擁有了總體,就無法謙卑結合其他渠道的小數據,得到更為穩健的分析結論。而GFT估計的偏誤原因,從來都離不開人們的主動的行為-- 無論是谷歌公司自己認為的GFT的流行導致更多人使用該搜索、還是Lazer等人認為的演算法變化、丟棄異常值。因此,不明白數據生成機理變化的原因而只看相關關系的後果,於谷歌是GFT的計算偏誤丟了臉,而對熱情地投身於採用大數據到創新、創業中的中國民眾和相關機構來說,則可能是不得不面對事先沒有預備的重大經濟損失。

以上是小編為大家分享的關於從谷歌流感趨勢談大數據分析的光榮與陷阱的相關內容,更多信息可以關注環球青藤分享更多干貨

Ⅳ 上傳的大數據會失誤嗎

大數據往往也會造成大錯誤么
大數據往往也會造成大錯誤么
大數據是對於大規模現象的一種模糊的表達。這一術語如今已經
被企業家、科學家、政府和媒體炒得過熱
五年前,谷歌的一個研究小組在全球頂級的科學雜志《自然》上
宣布了一個令人矚目的成果。該小組可以追蹤美國境內流感的傳播趨
勢,而這一結果不依賴於任何醫療檢查。他們的追蹤速度甚至比疾控
中心(CDC)要快的多。谷歌的追蹤結果只有一天的延時,而CDC則需
要匯總大量醫師的診斷結果才能得到一張傳播趨勢圖,延時超過一周
谷歌能算的這么快,是因為他們發現當人們出現流感症狀的時候,往
往會跑到網路上搜索一些相關的內容。

要拿出來自己網站上5000萬個最熱門的搜索字,然後讓演算法來做選
擇就行了。
谷歌流感趨勢的成功,很快就成為了商業、技術和科學領域中最
新趨勢的象徵。興奮的媒體記者們不停的在問,谷歌給我們帶來了什
么新的科技?
在這諸多流行語中,「大數據」是一個含糊的詞彙,常常出現於
各種營銷人員的口中。一些人用這個詞來強調現有數據量的驚人規模
--大型粒子對撞機每年會產生15PB的數據,相當於你最喜歡的一
首歌曲重復演奏15000年的文件大小
然而在「大數據」里,大多數公司感興趣的是所謂的「現實數
據」,諸如網頁搜索記錄、信用卡消費記錄和行動電話與附近基站的
通信記錄等等。谷歌流感趨勢就是基於這樣的現實數據,這也就是本
文所討論的一類數據。這類數據集甚至比對撞機的數據規模還要大
(例如facebook),更重要的是雖然這類數據的規模很大,但卻相
對容易採集。它們往往是由於不同的用途被搜集起來並雜亂的堆積在
一起,而且可以實時的更新。我們的通信、娛樂以及商務活動都已經
轉移到互聯網上,互聯網也已經進入我們的手機、汽車甚至是眼鏡。
因此我們的整個生活都可以被記錄和數字化,這些在十年前都是無法
想像的。
大數據的鼓吹者們提出了四個令人興奮的論斷,每一個都能從谷
歌流感趨勢的成功中印證:
數據分析可以生成驚人准確的結果;
。因為每一個數據點都可以被捕捉到,所以可以徹底淘汰過去那和
樣統計的方法:
文庫會員免費領
。不用再尋找現象背後的原因,我們只需要知道兩者之間有統計
就行了;
。不再需要科學的或者統計的模型,」理論被終結了」。《連線》雜志
2008年的一篇文章里豪情萬丈的寫到:「數據已經大到可以自己說不幸的是,說的好聽一些,上述信條都是極端樂觀和過於簡化了。
如果說的難聽一點,就像劍橋大學公共風險認知課的Winton教授(類
似於國內的長江學者--譯者注)David Spiegelhalter 評論的那樣
這四條都是「徹頭徹尾的胡說八道」。
在谷歌、facebook和亞馬遜這些公司不斷通過我們所產生的數
據來理解我們生活的過程中,現實數據支撐起了新互聯網經濟。愛德
華斯諾登揭露了美國政府數據監聽的規模和范圍,很顯然安全部門
同樣痴迷從我們的日常數據中挖掘點什麼東西出來。
咨詢師敦促數據小白們趕緊理解大數據的潛力。麥肯錫全球機構
在一份最近的報告中做了一個計算,從臨床試驗到醫療保險報銷到智
能跑鞋,如果能把所有的這些健康相關的數據加以更好的整合分析,
那麼美國的醫療保險系統每年可以節省3000億美金的開支,平均每
一個美國人可以省下1000美元。
雖然大數據在科學家、企業家和政府眼裡看起來充滿希望,但如
果忽略了一些我們以前所熟知的統計學中的教訓,大數據可能註定會
讓我們失望。
Spiegelhalter 教授曾說到:「大數據中有大量的小數據問題
這些問題不會隨著數據量的增大而消失,它們只會更加突出。"
在那篇關於谷歌流感趨勢預測的文章發表4年以後,新的一
《自然雜志消息》報道了一則壞消息:在最近的一次流感爆發中
流感趨勢不起作用了。這個工具曾經可靠的運作了十幾個冬天
量數據分析和不需要理論模型的條件下提供了快速和准確的流 文庫會員免費領
發趨勢。然而這一次它迷路了,谷歌的模型顯示這一次的流感爆發非
常嚴重,然而疾控中心在慢慢匯總各地數據以後,發現谷歌的預測結
果比實際情況要誇大了幾乎一倍。

閱讀全文

與大數據的陷阱出鏡率谷歌流感趨勢相關的資料

熱點內容
linux刪除一行的快捷鍵 瀏覽:269
win10改hosts文件 瀏覽:354
數據博世怎麼樣 瀏覽:411
用tar解包沒有那個文件或目錄 瀏覽:307
錄歌教程 瀏覽:604
java小數進制轉換 瀏覽:270
80後qq頭像女生 瀏覽:388
word2013頁面顏色 瀏覽:661
linux系統安裝顯卡驅動 瀏覽:243
手機安卓培訓機構 瀏覽:819
英語版本的哈面寶寶 瀏覽:567
手機動態壁紙教學視頻教程 瀏覽:543
網路攝像機sip 瀏覽:757
湘潭編程學校哪裡好 瀏覽:389
win10設置桌面小圖標怎麼去掉嗎 瀏覽:122
網路安全創業 瀏覽:787
修改linux 瀏覽:464
如何編程計算機cpu高佔用程序 瀏覽:808
程序員活動策劃方案 瀏覽:130
數據漫遊什麼意思需不需要開啟 瀏覽:804

友情鏈接