導航:首頁 > 網路數據 > 初學大數據分析軟體

初學大數據分析軟體

發布時間:2024-02-08 00:03:03

Ⅰ 數據分析用什麼軟體

做數據分析,比較好用的軟體有哪些?
數據分析軟體有很多種,每一種都適合不同類型的人員。

簡單說:

Excel:普遍適用,既有基礎,又有中高級。中級一般用Excel透視表,高級的用Excel VBA。

hihidata:比較小眾的數據分析工具。三分鍾就可以學會直接上手。無需下載安裝,直接在線就可以使用。

SPSS:專業統計軟體,沒有統計功底很難用的。同時包含了數據挖掘等高大功能。

SAS:專業統計軟體,專業人士用的,不懂編程還是不要碰了。

MARLAB:建立統計與數學模型,但是比較難學,很難上手。

Eview:比較小眾,建立一些經濟類的模型還是很有用的。計量經濟學中經常用到。

各種BI與報表工具:FineBI,FineReport,tableau,QlikView等。
比較好的數據分析軟體有哪些?
SPSS是軟體里比較簡單的 ,學校里使用的比較多一些,可以採用菜單的模式 帶少量的命令編輯MATLAB常常在建立統計和數學模型的時候比較好用 但是很難學 反正我學了一個學期楞是就知道個皮毛Finereport 兼顧了基本的數據錄入與展現功能,一般的數據源都支持,學習成本比較低,比較適合企業級用戶使用,SAS我沒用過
網站數據分析工具哪個好用些阿?
推薦吆喝科技的ab測試,軟體分析的數據比較全面和精準
學數據分析需要熟悉哪些軟體基礎
軟體只是一個工具 看你要從事的數據分析的方向很深度而定

一般的用excel也可以進行常規簡單的數據分析

再深入一點的用spss、stata、sas

如果要搞數據挖掘的話,用spss modeler / sas

不過一般的常規數據分析用excel和spss基本上能夠應付
常用的數據分析工具有哪些
數據分析的概念太寬泛了,做需要的是側重於數據展示、數據挖掘、還是數據存儲的?是個人用還是企業、部門用呢?應用的場景是製作簡單的個人圖表,還是要做銷售、財務還是供應鏈的分析?

那就說說應用最廣的BI吧,企業級應用,其實功能上已經涵蓋了我上面所述的部分,主要用於數據整合,構建分析,展示數據供決策分析的,譬如FineBI,是能夠」智能」分析數據的工具了。
android數據分析工具用什麼軟體
1. 開源大數據生態圈

Hadoop HDFS、Hadoop MapRece, HBase、Hive 漸次誕生,早期Hadoop生態圈逐步形成。

開源生態圈活躍,並免費,但Hadoop對技術要求高,實時性稍差。

2. 商用大數據分析工具

一體機資料庫/數據倉庫(費用很高)

IBM PureData(Netezza), Oracle Exadata, SAP Hana等等。

數據倉庫(費用較高)

Teradata AsterData, EMC GreenPlum, HP Vertica 等等。

數據集市(費用一般)

QlikView、 Tableau 、國內永洪科技Yonghong Data Mart 等等。

前端展現

用於展現分析的前端開源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。

用於展現分析商用分析工具有Cognos,BO, Microsoft, Oracle,Microstrategy,QlikView、 Tableau 、國內永洪科技Yonghong Z-Suite等等。
數據分析軟體有哪些,他們分別的特點是什麼
除了EXCEL 數據分析用的多的有以下幾個軟體,你看看你們公司符合哪個

SPSS(StatisticalProct and Service Solutions),「統計產品與服務解決方案」軟體,是數據定量分析的工具,適用於社會科學(如經濟分析,市場調研分析)和自然科學等林林總總的統計分析,國內使用的最多,領域也多。

SPSS就如一個傻瓜相機,界面友好,使用簡單,但是功能強大,可以編程,能解決絕大部分統計學問題,適合初學者。它有一個可以點擊的交互界面,能夠使用下拉菜單來選擇所需要執行的命令。它也有一個通過拷貝和粘貼的方法來學習其「句法」語言,但是這些句法通常非常復雜而且不是很直觀。

SPSS致力於簡便易行(其口號是「真正統計,確實簡單」),並且取得了成功。但是如果你是高級用戶,隨著時間推移你會對它喪失興趣。SPSS是制圖方面的強手,由於缺少穩健和調查的方法,處理前沿的統計過程是其弱項。

SAS是全球最大的軟體公司之一,是全球商業智能和分析軟體與服務領袖。SAS由於其功能強大而且可以編程,很受高級用戶的歡迎,也正是基於此,它是最難掌握的軟體之一,多用於企業工作之中。

SAS就如一台單反相機,你需要編寫SAS程序來處理數據,進行分析。如果在一個程序中出現一個錯誤,找到並改正這個錯誤將是困難的。在所有的統計軟體中,SAS有最強大的繪圖工具,由SAS/Graph模塊提供。然而,SAS/Graph模塊的學習也是非常專業而復雜,圖形的製作主要使用程序語言。SAS適合高級用戶使用。它的學習過程是艱苦的,正所謂「五年入門,十年精通」,最初的階段會使人灰心喪氣。然而它還是以強大的數據管理和同時處理大批數據文件的功能,得到高級用戶的青睞。

R 是用於統計分析、繪圖的語言和操作環境,屬於GUN系統的一個自由、免費、源代碼開放的軟體,它是一個用於統計計算和統計制圖的優秀工具,多用於論文,科研領域。

R的思想是:它可以提供一些集成的統計工具,但更大量的是它提供各種數學計算、統計計算的函數,從而使使用者能靈活機動的進行數據分析,甚至創造出符合需要的新的統計計算方法。因此R有很多最新的模型和檢驗方法,但是非常難自學,對英語的要求很高。R與SAS的區別在於,R是開放免費的,處理更靈活,同時對編程要求較高。
大數據是什麼意思?哪些軟體適合大數據分析?
大數據定義什麼的網路很多。個人理解:現有的互聯網數據量越來越大,面對這么大的數據量,如何利用好這些數據是極具挑戰性的。一方面數據量提升,數據處理的方法必須改變,才能提高數據處理速度,比如大規模,高並發的網站訪問,12306,淘寶天貓什麼的;另一方面從這些海量數據中挖掘出有用的信息,比如根據淘寶根據用戶點擊訪問,反饋出用戶的喜好,給用戶推薦相關商品。

推薦Hadoop,適合大數據處理的。

網上學習資料很多,自己搜去!

當然你也可以自己使用資料庫MYSQL等去做大數據處理,這樣很多Hadoop做好的東西都需要你自己去做。要是熟悉某個資料庫,並且應用明確就用資料庫自己去做吧!

加油!
數據分析軟體哪個好
最常用的是spss,屬於非專業統計學的! sas是專業的統計分析軟體,需要編程用,都是專業人士用的 數據分析中的數據挖掘,可以使用spss公司的clementine
大數據分析一般用什麼工具分析
在大數據處理分析過程中常用的六大工具:

Hadoop

Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。

HPCC

HPCC,High Performance puting and munications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了「重大挑戰項目:高性能計算與 通信」的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國 實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。

Storm

Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。

Apache Drill

為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。Apache Drill 實現了 Google's Dremel.

據Hadoop廠商MapR Technologies公司產品經理Tomer Shiran介紹,「Drill」已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。

RapidMiner

RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。

Pentaho BI

Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。

Ⅱ 大數據分析工具都有哪些

大數據分析工具好用的有以下幾個,分別是Excel、BI工具、Python、Smartbi、Bokeh、Storm、Plotly等。

1、Excel

Excel可以稱得上是最全能的數據分析工具之一,包括表格製作、數據透視表、VBA等等功能,保證人們能夠按照需求進行分析。

2、BI工具

BI也就是商業智能,BI工具的產品設計,幾乎是按照數據分析的流程來設計的。先是數據處理、整理清洗,再到數據建模,最後數據可視化,全程圍繞數據指導運營決策的思想。由於功能聚焦,產品操作起來也非常簡潔,依靠拖拉拽就能完成大部分的需求,沒有編程基礎的業務人員也能很快上手。

3、Python

python在數據分析領域,確實稱得上是一個強大的語言工具。盡管入門的學習難度要高於Excel和BI,但是作為數據科學家的必備工具,從職業高度上講,它肯定是高於Excel、BI工具的。尤其是在統計分析和預測分析等方面,Python等編程語言更有著其他工具無可比擬的優勢。

4、思邁特軟體Smartbi

融合傳統BI、自助BI、智能BI,滿足BI定義所有階段的需求;提供數據連接、數據准備、數據分析、數據應用等全流程功能;提供復雜報表、數據可視化、自助探索分析、機器學習建模、預測分析、自然語言分析等全場景需求;滿足數據角色、分析角色、管理角色等所有用戶的需求。

5、Bokeh

這套可視化框架的主要目標在於提供精緻且簡潔的圖形處理結果,用以強化大規模數據流的交互能力。其專門供Python語言使用。

6、Storm

Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來,其它知名的應用企業包括Groupon、淘寶、支付寶、阿里巴巴、樂元素、Admaster等等。

7、 Plotly

這是一款數據可視化工具,可兼容JavaScript、MATLAB、Python以及R等語言。Plotly甚至能夠幫助不具備代碼編寫技能或者時間的用戶完成動態可視化處理。這款工具常由新一代數據科學家使用,因為其屬於一款業務開發平台且能夠快速完成大規模數據的理解與分析。

Ⅲ 常見的數據分析軟體有哪些

好的數據分析工具可以讓數據分析事半功倍,更容易處理數據。分析一下市面上流行的四款大數據分析軟體:
一、Excel
Excel使用人群眾多是新手入門級數據分析工具,也是最基本的數據分析工具之一。Excel主要學習使用常用函數、快捷鍵操作、基本圖表製作、數據透視表等。Excel具有多種強大的功能,可以滿足大多數數據分析工作的需要。而且Excel提供了相當友好的操作界面,對於有基本統計理論的用戶來說更容易上手。
二、SQL軟體
SQL是一種資料庫語言,它具有數據操作和數據定義功能,交互性強,能給用戶帶來很大方便。SQL專注於Select、聚合函數和條件查詢。關聯庫是目前應用較廣的資料庫管理系統,技術較為成熟。這類資料庫包括mysql.SQLServer.Oracle.Sybase.DB2等等。
SQL作為一種操作命令集,以其豐富的功能受到業界的廣泛歡迎,成為提高資料庫運行效率的保證。SQLServer資料庫的應用可以有效提高數據請求和返回速度,有效處理復雜任務,是提高工作效率的關鍵。
三、Python軟體
Python提供了能夠簡單有效地對對象進行編程的高級數據結構。Python語法和動態類型,以及解釋性語言的本質,使它成為大多數平台上寫腳本和快速開發應用的編程語言,並可用於可定製軟體中的擴展程序語言。豐富的Python標准庫提供了源代碼或機器代碼,適用於各種主要系統平台。Python有極其簡單的解釋文檔,所以更容易上手。
四、BI工具
BI工具是商業智能(Busines Inteligence)分析工具的英文縮寫。它是一個完整的大數據分析解決方案,可以有效地整合企業中現有的數據,快速准確地提供報表和幫助領導作出決策的數據依據,幫助企業做出明智的業務決策。BI工具是根據數據分析過程設計的。首先是數據處理,數據清理,然後是數據建模,最後是數據可視化,用圖表識別問題,影響決策。
在思邁特軟體Smartbi的例子中,Smartbi以工作流的形式為庫表提取數據模型的語義,通過可視化工具來處理數據,使其成為具有語義一致性和完整性的數據模型;它也增強了自助式數據集建立數據模型的能力。該系統支持的數據預處理方法有:采樣、分解、過濾與映射、列選擇、空值處理、合並列、合並行、元數據編輯、線選擇、重復值清除、排序等等。
它能通過表格填寫實現數據採集和補錄,並能對數據源進行預先整合和處理,通過簡單的拖放產生各種可視圖。同時,提供了豐富的圖標組件,可實時顯示相關信息,便於利益相關者對整個企業進行評估。
目前市場上的大數據分析軟體很多,如何選擇取決於企業自身的需求。因此,企業在購買數據分析軟體之前,首先要了解企業數據分析的目的是什麼。假如你是數據分析的新手,對需求了解不多,不妨多試試BI工具,BI工具在新手數據分析方面還是比較有優勢的。

Ⅳ 大數據分析工具有哪些

1、Hadoop


Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。


2、HPCC


HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了“重大挑戰項目:高性能計算與 通信”的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國 實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。


3、Storm


Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。


4、Apache Drill


為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為“Drill”的開源項目。Apache Drill 實現了 Google's Dremel.


據Hadoop廠商MapR Technologies公司產品經理Tomer Shiran介紹,“Drill”已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。


5、RapidMiner


RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。


6、Pentaho BI


Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。

閱讀全文

與初學大數據分析軟體相關的資料

熱點內容
微軟平板開機密碼設置 瀏覽:978
linux刪除一行的快捷鍵 瀏覽:269
win10改hosts文件 瀏覽:354
數據博世怎麼樣 瀏覽:411
用tar解包沒有那個文件或目錄 瀏覽:307
錄歌教程 瀏覽:604
java小數進制轉換 瀏覽:270
80後qq頭像女生 瀏覽:388
word2013頁面顏色 瀏覽:661
linux系統安裝顯卡驅動 瀏覽:243
手機安卓培訓機構 瀏覽:819
英語版本的哈面寶寶 瀏覽:567
手機動態壁紙教學視頻教程 瀏覽:543
網路攝像機sip 瀏覽:757
湘潭編程學校哪裡好 瀏覽:389
win10設置桌面小圖標怎麼去掉嗎 瀏覽:122
網路安全創業 瀏覽:787
修改linux 瀏覽:464
如何編程計算機cpu高佔用程序 瀏覽:808
程序員活動策劃方案 瀏覽:130

友情鏈接