1. 企業如何基於信息化發展大數據
若想基於信息化發展或構建大數據分析平台,首先要具備良好的信息化基礎去支撐,之後根據企業業務發展,按照IT建設的階段一步步進行,具體內容如下:
1.具備可以支撐數據分析的應用系統。我們都知道企業在發展過程中會產生一定的數據量,而這些數據的來源則是企業內部的信息化系統,首先需要具備可以支撐衫殲分析的應用;
2.實現企業內部數據治理。首先梳理企業的數據標准、服務標准,並完成數據清洗。通過制定企業的數據規范、服務規范,讓各個業務系統擁有統一的標准。之後制定企業統一的數據管理標准,包括數據源的錄入規范,數據審批的管理模式,與各個業務系統間數據傳輸屬性等,讓數據有據可循、有法可依,為決策支持和數據倉庫提供准確的數據源,以供決策分析;
3.構建數據分析平台,搭建數據倉庫。實現相關有效業務數據的採集、存儲、計算分析、配置展現等,這個時候可以以內部數據為主,少量外部數據輔助,使耐旦企業將實體的多項重要屬性定義為多個維度進行深入分析,並進行不同維度的比較分析,為企業當前狀況與未來發展做出或畝沖較為完整、合理、准確的分析和預測。
4.全面構建大數據分析平台。在數據治理與內部為主的數據分析平台建設基礎上,擴大數據分析范圍,數據包括各種外部系統、機器設備、資料庫的數據,如:政府、銀行、國計民生、行業產業、社交網站等數據,通過對內外部海量數據的採集、存儲、計算、配置、展現等一系列手段,內部實現財務資金、客戶行為、設備運行、竟企情報等分析或監控等,外部提供產業/行業、政府、銀行、國計民生、社交等數據支撐,為企業戰略、規劃、政策、目標等大政方針制定、監督和執行提供支持。
企業基於信息化發展大數據,一定是一個長期的過程,不可急於求成。需要隨著企業的業務發展,當下信息化的進程做為支撐,每一次建設的過程中都要對企業的業務、數據不斷梳理、不斷完善,為大數據平台奠定堅實的基礎,這樣才能讓企業的大數據建設有效落地,並與外界接軌。
2. 促進大數據發的主要因素
信息技術與經濟社會的交匯融合引發了數據迅猛增長,數據已成為國家基礎性戰略資源,大數據正日益對全球生產、流通、分配、消費活動以及經濟運行機制、社會生活方式和國家治理能力產生重要影響。
我國在大數據發展和應用方面已具備一定基礎,擁有市場優勢和發展潛力,但也存在政府數據開放共享不足、產業基礎薄弱、缺乏頂層設計和統籌規劃、法律法規建設滯後、創新應用領域不廣等問題,亟待解決。
(2)怎麼發展大數據擴展閱讀
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
3. 大數據發展的三個必要條件
大數據發展的三個必要條件_數據分析師考試
近年來,關於大數據的討論在技術、應用和模式等多個層面展開,已被認為代表著產業發展的方向。但與互聯網公司的諸多實踐相比,被認為具有數據資源先天優勢的電信運營商卻走在了後面,即便放眼全球,電信運營商的大數據應用案例也是屈指可數。移動寬頻和固網寬頻快速發展、OTT的強勢崛起決定了電信運營商必須充分利用自身掌握的數據資源,另闢蹊徑,從而實現網路價值的最大化。因此,電信運營商應用大數據是必然的,而且市場前景十分廣闊。
為了加快大數據的「落地」步伐,幫助業界各方特別是電信運營企業更好地了解大數據,認清大數據戰略發展的重要性,分析發展道路上面臨的難題和障礙,促進大數據產業鏈的成熟,推動大數據的應用推廣。從今天開始,《人民郵電》報特邀來自中興通訊、電信研究院以及三大運營商等單位的專家,推出「掘金大數據」系列報道,以饗讀者。
大數據概念的橫空出世,有賴於短短幾年出現的海量數據。據統計,互聯網上的數據每兩年翻一番,而目前世界上90%以上的數據都是最近幾年才產生的。當然,海量數據僅僅是「大數據」概念的一部分,只有具備4個「V」的特徵,也就是Volume(海量)、Velocity(高速)、Variety(多樣)、Value(價值),大數據的定義才算完整,而最後一個Value(價值),恰恰是決定大數據未來走向的關鍵。
大數據發展的三個必要條件
大數據的發展需要三方面的必要條件:數據源、數據交易、數據產生價值的過程。近年來,社交網路的興起、物聯網的發展和移動互聯網的普及,微信、微博、智能手機、電商大行其道,誕生了大量有價值的數據源,比如位置、生活信息等數據,數據源的出現奠定了大數據發展的基礎。大數據時代到來的重要標志,則是大批專業級「數據買賣商」的出現,以及圍繞數據交易形成的貫穿於收集、整理、分析、應用整個流程的產業鏈條。大數據發展的核心,則是使用戶從海量的非結構化數據和半結構化數據中獲得新的價值,數據價值是帶動數據交易的原動力。
IBM、甲骨文、SAP近年紛紛斥巨資收購數據管理和分析公司,在這些互聯網巨頭的帶動下,數據分析技術日漸成熟。2013年6月,愛德華·斯諾登將「棱鏡」計劃公之於眾,「棱鏡門」事件一方面說明大數據技術已經成熟,另一方面也佐證了現在阻礙大數據發展的不是技術,而是數據交易和數據價值。
大數據技術的發展促進了雲計算的落地,雲計算的部署完成又反過來加大了市場對數據創造價值的期待。大數據概念提出之後,市場終於看到了雲計算的獲利方向,雲計算市場彷彿在一夜之間爆發,在過去一兩年間幾乎已經被國內大方案商、大集成商瓜分殆盡——各地的一級系統集成商與當地政府合作,建雲數據中心,建智慧城市;各大行業的巨頭們在搭建各自行業的混合雲標准,搭建行業雲平台;公有雲也來了,各大IT巨頭想盡辦法申請中國的公有雲牌照。雲計算從概念到落地用了5年時間,最終促成這一切的就是大數據,或者說是市場對數據價值的期待。藉助於國內智慧城市概念的大規模普及,雲計算基礎設施已基本准備就緒,一方面具備了大數據應用的硬體基礎,另一方面迫於回收雲計算投資的壓力,市場急需應用部署,大數據恰如雪中送炭,被市場寄予厚望。
現在,一切的矛頭都指向了「數據如何創造價值?」
56數據創造價值的基石6是數據整合和開放
大數據服務創業公司Connotate對800多名商業和IT主管進行了調查。結果顯示,60%受調查者稱「目前就說這些大數據投資項目肯定能夠帶來良好回報尚為時過早」。之所以如此,是由於當前大數據缺乏必需的開放性:數據掌握在不同的部門和企業手中,而這些部門和企業並不願意分享數據。大數據通過研究數據的相關性來發現客觀規律,這依賴於數據的真實性和廣泛性,數據如何做到共享和開放,這是當前大數據發展的軟肋和需要解決的大問題。
2012年美國大選奧巴馬因數據整合而受益。在奧巴馬的競選團隊中有一個神秘的數據挖掘團隊,他們通過對海量數據進行挖掘幫助奧巴馬籌集到10億美元資金;他們通過數據挖掘使競選廣告投放效率提升了14%;他們通過製作搖擺州選民的詳細模型,每晚實施6.6萬次模擬選舉,推算奧巴馬在搖擺州的勝率,並以此來指導資源分配。這個數據挖掘團隊,對奧巴馬成功連任功不可沒。奧巴馬競選團隊相比羅姆尼競選團隊最有優勢的地方就是對大數據的整合。奧巴馬的數據挖掘團隊也意識到這個全世界共同的問題:數據分散在過多的資料庫中。因此,在前18個月,奧巴馬競選團隊就創建了一個單一的龐大數據系統,可以將來自民意調查者、捐資者、現場工作人員、消費者資料庫、社交媒體,以及「搖擺州」主要的民主黨投票人的信息整合在一起。這個整合後的巨大資料庫不僅能告訴競選團隊如何發現選民並獲得他們的注意,還幫助數據處理團隊預測哪些類型的人有可能被某種特定的事情所說服。正如競選總指揮吉姆·梅西納所說,在整個競選活中,沒有數據做支撐的假設很少存在。
2012年3月,美國奧巴馬政府宣布投資2億美元啟動「大數據研究和發展計劃」,將大數據研究上升為國家意志,對大數據的整合帶來深遠影響。一個國家擁有數據的規模和運用數據的能力將成為綜合國力的重要組成部分。國內智慧城市的建設目標之一就是實現數據的集中共享。
數據創造價值需要合作共贏的商業模式
隨著雲計算、大數據技術和相關商業環境的不斷成熟,越來越多的「軟體開發者」正在利用跨行業的大數據平台,打造創新價值的大數據應用,而且這一門檻正在不斷降低。因為首先,數據擁有者樂於做這樣的事情,他們能夠以微乎其微的成本獲取額外的收入,提高利潤水平;其次,大數據設備廠商樂於做這樣的事情,因為廠商需要應用來吸引消費者購買設備,發展合作共贏的夥伴關系勢必比單純銷售設備要有利可圖,一些具有遠見的廠商已經開始通過提供資金、技術支持、入股等方式來扶持這些「軟體開發者」;第三,行業細分市場的數據分析應用需求在不斷加大,對於整個大數據產業鏈來說,創新型的行業數據應用開發者必將是未來整個大數據產業鏈中最為活躍的部分。
在必然到來的大數據時代,有三種企業將在「大數據產業鏈」中處於重要地位:掌握海量有效數據的企業,有著強大數據分析能力的企業,以及創新的「軟體開發者」。社交網路、移動互聯網、信息化企業、電信運營商都是海量數據的製造者,Facebook公司手中掌握著8.5億用戶,淘寶注冊用戶超過3.7億,騰訊的微信用戶突破3億,這些龐大用戶群所提供的數據,正在等待時機釋放出巨大的商業能量。可以預測,在不久的將來,Facebook、騰訊、電信運營商等海量數據持有者要麼自我發展成為數據分析提供商,要麼與IBM、ZTE等企業密切對接成為上下游合作企業,大數據產業鏈將在某個爆發點到來之際,以令人驚訝的速度成長壯大。
警惕大數據的危害
大數據時代,傳統的隨機抽樣被「所有數據的匯攏」所取代,人們的思維決斷模式,已可直接根據「是什麼」來下結論,由於這樣的結論剔除了個人情緒、心理動機、抽樣精確性等因素的干擾,因此將更精確、更有預見性。不過,由於大數據過於依靠數據的匯集,一旦數據本身有問題,就很可能出現「災難性大數據」,即因為數據本身的問題,而導致錯誤的預測和決策。
大數據的理論是「在稻草堆里找一根針」,而如果「所有稻草看上去都挺像那根針」呢?過多但無法辨析真偽和價值的信息和過少的信息一樣,對於需要作出瞬間判斷、一旦判斷出錯就很可能造成嚴重後果的情況而言,同樣是一種危害。大數據理論是建立在「海量數據都是事實」的基礎上,而如果數據提供者造假呢?這在大數據時代變得更有害,因為,人們無法控制數據提供者和搜集者本人的偏見與過濾。擁有最完善資料庫、最先接受「大數據」理念的華爾街投行和歐美大評級機構,卻每每在重大問題上判斷出錯,這本身就揭示了「大數據」的局限性。
不僅如此,大數據時代造就了一個資料庫無所不在的世界,數據監管部門面臨前所未有的壓力和責任:如何避免數據泄露對國家利益、公眾利益、個人隱私造成傷害?如何避免信息不對等,對弱勢群體的利益構成傷害?在有效控制風險之前,也許還是讓大數據繼續待在「籠子」里更好一些。
大數據的經濟價值已經被人們所認可,大數據的技術也已經逐漸成熟,一旦完成數據的整合和監管,大數據爆發的時代即將到來。我們現在要做的,就是選好自己的方向,為迎接大數據的到來,提前做好准備。
以上是小編為大家分享的關於大數據發展的三個必要條件的相關內容,更多信息可以關注環球青藤分享更多干貨
4. 大數據的發展方向都有什麼
說到大數據我們不能不提到人工智慧,這個近幾年非常火的一個新技術方向,從幾年前大家科普什麼是人工智慧到現在產業普遍探討如何落地問題,人工智慧幾乎霸屏各行各業。
大數據時代勢不可擋。 一方面,為了實現降本增效,企業紛紛在尋求數字化、智能化轉型。以期利用新技術帶來結構性增長;;另一方面國家釋放推動「新基建」加速經濟建設信號,對於信息數字化 科技 產業的重視程度空前高漲。企業內部發展剛需和國家政策紅利,人工智慧化必然是新經濟環境下的大勢所趨。
人工智慧的三大核心要素:演算法、算力、數據缺一不可。 其中大數據更像是水電煤般的基礎設施的存在。數據沉澱將變成未來企業搭建壁壘的核心競爭力。而具體來看大數據的發展方向也是涵蓋多個方面,舉例來說:
>> 新零售
新零售的新就在於將「零售數據化」,通過大數據重新定義「人貨場」概念。傳統零售下,通常是「人找貨」,賣場提供什麼樣的商品用戶就只能買到什麼。而在大數據加持下的新零售時代,則是相反的「貨找人」,零售平台將用戶的「數據」和貨的「數據」進行匹配。用戶「數據」例如:用戶的性別、年齡、興趣品類、性格標簽、消費能力、購物頻次、瀏覽時長……等等;貨的「數據」包含了:商品價格、促銷優惠、品類細分、品質、產地、庫存……等等。通過數據賦能、精準匹配,商家能比用戶自己更了解用戶。
>>在線教育
教育的線上化在這次疫情的驅動下變得十分必要,傳統教育一個老師面對多個學生或者一對一的私教,老師的精力無法顧及所有學生,而通過技術手段可以沉澱學生、老師及課程的數據,從而更好地服務好雙邊體驗。例如:AI識別學生上課狀態,是否打瞌睡是否專註上課;智能批改作業,實時反饋學習成績和遺漏知識點;知識點查漏補缺,根據學生個人情況定製測試作業……大數據智能協助提高效率的同時,也減輕人工成本,解放老師「管理」的時間,花更多時間精力備課。
>>直播
直播行業的大數據更是其生存之本,用戶側的「數據」有:內容喜好、觀看時段、瀏覽時長等等,內容側的「數據」有:什麼樣的主播在什麼時段播什麼類型的什麼內容、轉贊評數據等等。有了這樣的雙邊數據後,平台自然可以實現「千人千面」的演算法推薦內容,從而增強用戶對平台的粘度。而直播的最直接的變現手段帶貨,大數據的則能進行智能跳轉,快速結算。
大數據賦能下的行業有著不同的新業態,未來大數據必然會成為產業、生活必不可少的工具,涵蓋我們生活的各個方面,幫我們更便捷高效的生活。
大數據是未來人工智慧領域一項非常重要的基礎。而隨意人工智慧的發展,需要的大數據將會在廣度和深度兩個方向同步擴展。從廣度來看,大數據最終會擴展到 社會 的所有環節;從深度來看,大數據最終會深入到每個人從生到死全過程。
大數據的未來:萬物皆可互聯,世界鮮有隱私!
第一:大數據自身能夠創造出更多的價值。大數據相關技術緊緊圍繞數據價值化展開,數據價值化將開辟出廣大的市場空間,重點在於數據本身將為整個信息化 社會 賦能。隨著大數據的落地應用,大數據的價值將逐漸得到體現。目前在互聯網領域,大數據技術已經得到了較為廣泛的應用。
第二:大數據推動 科技 領域的發展。大數據的發展正在推動 科技 領域的發展進程,大數據的影響不僅僅體現在互聯網領域,也體現在金融、教育、醫療等諸多領域。在人工智慧研發領域,大數據也起到了重要的作用,尤其在機器學習、計算機視覺和自然語言處理等方面,大數據正在成為智能化 社會 的基礎。
第三:大數據產業鏈逐漸形成。經過近些年的發展,大數據已經初步形成了一個較為完整的產業鏈,包括數據採集、整理、傳輸、存儲、分析、呈現和應用,眾多企業開始參與到大數據產業鏈中,並形成了一定的產業規模,相信隨著大數據的不斷發展,相關產業規模會進一步擴大。
第四:產業互聯網將推動大數據落地。當前互聯網正在經歷從消費互聯網向產業互聯網過渡,產業互聯網將利用大數據、物聯網、人工智慧等技術來賦能廣大的傳統產業,可以說產業互聯網的發展空間非常大,而大數據則是產業互聯網發展的一個重點,大數據能否落地到傳統行業,關乎產業互聯網的發展進程,所以在產業互聯網階段,大數據將逐漸落地,也必然落地。
通過以上分析可以得出,未來大數據領域的發展空間還是比較大的,而且目前大數據領域的人才缺口比較大。
大數據的發展趨勢總的來說應該體現在以下幾個方面:
第一:互聯網逐漸大數據化。隨著大數據技術的逐漸成熟,互聯網將成為大數據首先落地的領域,大數據將在電子商務等互聯網應用平台得到廣泛的應用。互聯網 科技 公司也是推動大數據技術發展的中堅力量,在大數據發展的過程中會起到重要的作用,通過大數據技術在互聯網領域的應用也能積累大量的應用經驗。
第二:傳統產業逐漸大數據化。隨著互聯網發展到產業互聯網階段,未來產業互聯網將深入到整個傳統行業中,而大數據技術作為產業互聯網的核心技術之一必然會深入到傳統行業中,所以未來傳統行業大數據化將是一個重要的趨勢。通過大數據相關技術不僅能夠促進傳統行業的信息化建設,包括物聯網、雲計算建設等,更是能夠通過大數據來為傳統行業創新帶來幫助。
第三:人才大數據化。大數據的發展必然需要大量的大數據人才,不僅需要專業的大數據開發人才(大數據平台開發、大數據應用開發、大數據分析、大數據運維等),也需要大量的大數據應用型人才(基於大數據工具開展大數據分析等工作),所以人才大數據化也是未來一個重要的趨勢。對於職場人來說,掌握一定的大數據知識會提升自身的崗位競爭力。
大數據的發展方向我認為…每個人的生活軌跡習慣喜好,每個企業的需求和全方位信息,每個行業的發展方向布局,每個國家的綜合狀態,通過大數據統計分析,做出你所想要的結論!
大數據未來發展趨勢將從以下幾個方面體現:
按需提供的大數據基礎設施一切皆有彈性。基於雲的資料庫和存儲可以根據使用情況雙向伸縮,用戶只需購買和使用其需要的東西。
大數據邊緣計算當數據傳輸變得更快數據量更大時,邊緣計算的智能化可以避免消耗更大的雲存儲空間和遠端基礎設施。
大數據硬體更加商品化
大數據硬體更加廉價,同時越來越多的智能化軟體替代硬體功能。雲時代,硬體越來越廉價。
大數據帶來新的數據結構平面文件和表結構將繼續存在,同時會出現更多的空間數據、圖形和網路數據。
大數據帶來「大分析」
數據的價值決定於數據如何處理。引用舍恩伯格《大數據時代》中的一句話, 大數據帶來的「不是隨機樣本,而是全體數據;不是精確性,而是混雜性;不是因果關系,而是相互關系。」你能獲得的數據量越大,你能挖掘到的價值就越多。
法律檢索大數據是目前發展方向之一。法律 科技 新秀律寶AI大腦,導入最新最全的司法大數據,把人工智慧技術運用在法律檢索、案件信息提取與分析上,律師只需輸入文字或語音識別錄入事情經過或案件事實,系統將會自動進行信息提取和數據匹配,輸出精準的法律檢索結果和詳細的案件分析報告,節省了律師辦案時間。
【大數據檢索】又新又全的司法大數據,輸入關鍵詞即可一鍵檢索獲取法規、案例、工商信息、司法觀點等,方便律師進行檢索。
【類案大數據】律寶能根據律師錄入的案件詳情,通過大數據智能檢索匹配同類型案件和適用法條,給律師提供辦案思路。
1、智慧城市
智慧城市(英語:Smart City)是指利用各種信息技術或創新意念,集成城市的組成系統和服務,以提升資源運用的效率,優化城市管理和服務,以及改善市民生活質量。
用途范圍
用途分為十大智慧體系,分別為:智慧物流體系、智慧製造體系、智慧貿易體系、智慧能源應用體系、智慧公共服務、智慧 社會 管理體系、智慧交通體系、智慧 健康 保障體系、智慧安居服務體系、智慧文化服務體系。
2、增強現實(AR)與虛擬現實(VR)
增強現實技術(Augmented Reality,簡稱 AR),是一種實時地計算攝影機影像的位置及角度並加上相應圖像、視頻、3D模型的技術,這種技術的目標是在屏幕上把虛擬世界套在現實世界並進行互動。這種技術1990年提出。VR是Virtual Reality的縮寫,中文為虛擬現實。虛擬現實技術是一種能夠創建和體驗虛擬世界的計算機模擬技術, 它利用計算機生成一種互動式的三維動態視景,其實體行為的模擬系統能夠使用戶沉浸到該環境中。
3、人工智慧(Artificial Intelligence)
英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。
用途范圍
機器翻譯,智能控制,專家系統,機器人學,語言和圖像理解,遺傳編程機器人工廠,自動程序設計,航天應用,龐大的信息處理,儲存與管理,執行化合生命體無法執行的或復雜或規模龐大的任務等等。
國內外大數據標准化現狀及發展方向
https://www.toutiao.com/i6605430386438701572/
數據工程師、數據分析師、架構設計師 ----------河南新華
5. 中國大數據要發展必備三個條件
中國大數據要發展必備三個條件
大數據的經濟價值已經被人們認可,大數據的技術也已經逐漸成熟,一旦完成數據的整合和監管,大數據爆發的時代即將到來。我們現在要做的,就是選好自己的方向,為迎接大數據的到來,提前做好准備。大數據概念的橫空出世,有賴於短短幾年出現的海量數據。據統計,互聯網上的數據每兩年翻一番,而目前世界上90%以上的數據都是最近幾年才產生的。當然,海量數據僅僅是「大數據」概念的一部分,只有具備4個「V」的特徵,大數據的定義才算完整,而價值恰恰是決定大數據未來走向的關鍵。
大數據發展必備三個條件大數據的發展需要三個必要條件:數據源、數據交易、數據產生價值的過程。近年來,社交網路的興起、物聯網的發展和移動互聯網的普及,誕生了大量有價值的數據源,奠定了大數據發展的基礎。大數據時代到來的重要標志,則是大批專業級「數據買賣商」的出現,以及圍繞數據交易形成的,貫穿於收集、整理、分析、應用整個流程的產業鏈條。大數據發展的核心,則是使用戶從海量的非結構化數據和半結構化數據中獲得了新的價值,數據價值是帶動數據交易的原動力。
IBM、甲骨文、SAP近年紛紛斥巨資收購數據管理和分析公司,在這些互聯網巨頭的帶動下,數據分析技術日漸成熟。2013年6月,愛德華·斯諾登將「棱鏡計劃」公之於眾,「棱鏡門」事件一方面說明大數據技術已經成熟;另一方面也佐證了現在阻礙大數據發展的不是技術,而是數據交易和數據價值。
大數據技術的發展促進了雲計算的落地,雲計算的部署完成又反過來加大了市場對數據創造價值的期待。大數據概念提出之後,市場終於看到了雲計算的獲利方向:各地的一級系統集成商與當地政府合作,建雲數據中心;各大行業巨頭在搭建各自行業的雲平台;IT巨頭想盡辦法申請中國的公有雲牌照。大數據促成了雲計算從概念到落地。藉助於智慧城市概念的普及,雲計算基礎設施已基本准備就緒,一方面完成了大數據應用的硬體基礎;另一方面迫於回收雲計算投資的壓力,市場急需應用部署,大數據恰如雪中送炭,被市場寄予厚望。
現在,問題的核心指向了「數據如何創造價值?」
整合與開放是基石大數據服務創業公司Connotate對800多名商業和IT主管進行了調查。結果顯示,60%受調查者稱:「目前就說這些大數據投資項目肯定能夠帶來良好回報尚為時過早。」之所以如此,是由於當前大數據缺乏必需的開放性:數據掌握在不同的部門和企業手中,而這些部門和企業並不願意分享數據。大數據是通過研究數據的相關性來發現客觀規律,這依賴於數據的真實性和廣泛性,數據如何做到共享和開放,這是當前大數據發展的軟肋和需要解決的大問題。
2012年美國大選,奧巴馬因數據整合而受益。在奧巴馬的競選團隊中有一個神秘的數據挖掘團隊,他們通過對海量數據進行挖掘幫助奧巴馬籌集到10億美元資金;他們通過數據挖掘使競選廣告投放效率提升了14%;他們通過製作「搖擺州」選民的詳細模型,每晚實施6.6萬次模擬選舉,推算奧巴馬在「搖擺州」的勝率,並以此來指導資源分配。奧巴馬競選團隊相比羅姆尼競選團隊最有優勢的地方:對大數據的整合。奧巴馬的數據挖掘團隊也意識到這個全世界共同的問題:數據分散在過多的資料庫中。因此,在前18個月,奧巴馬競選團隊就創建了一個單一的龐大數據系統,可以將來自民意調查者、捐資者、現場工作人員、消費者資料庫、社交媒體,以及「搖擺州」主要的民主黨投票人的信息整合在一起,不僅能告訴競選團隊如何發現選民並獲得他們的注意,還幫助數據處理團隊預測哪些類型的人有可能被某種特定的事情所說服。正如競選總指揮吉姆·梅西納所說,在整個競選活中,沒有數據做支撐的假設很少存在。
2012年3月,美國奧巴馬政府宣布投資2億美元啟動「大數據研究和發展計劃」,將「大數據研究」上升為國家意志。一個國家擁有數據的規模和運用數據的能力將成為綜合國力的重要組成部分。國內智慧城市建設目標之一就是實現數據的集中共享。
合作共贏的商業模式隨著雲計算、大數據技術和相關商業環境的不斷成熟,越來越多的「軟體開發者」正在利用跨行業的大數據平台,打造創新價值的大數據應用,而且這一門檻正在不斷降低。因為首先,數據擁有者能夠以微乎其微的成本獲取額外的收入,提高利潤水平;其次,大數據設備廠商需要應用來吸引消費者購買設備,發展合作共贏的夥伴關系勢必比單純銷售設備要有利可圖,一些具有遠見的廠商已經開始通過提供資金、技術支持、入股等方式來扶持這些「軟體開發者」;第三,行業細分市場的數據分析應用需求在不斷加大,對於整個大數據產業鏈來說,創新型的行業數據應用開發者必將是未來整個大數據產業鏈中最為活躍的部分。
未來,有三種企業將在」大數據產業鏈「中處於重要地位:掌握海量有效數據的企業,有著強大數據分析能力的企業,以及創新的「軟體開發者」。社交網路、移動互聯網、信息化企業、電信運營商都是海量數據的製造者,Facebook公司手中掌握著8.5億用戶,淘寶注冊用戶超過3.7億,騰訊的微信用戶突破3億,這些龐大用戶群所提供的數據,正在等待時機釋放出巨大商業能量。可以預測,在不久的將來,Facebook、騰訊、電信運營商等海量數據持有者或者自我延伸成為數據分析提供商,或者與IBM、ZTE等企業密切對接成為上下游合作企業,大數據產業鏈將在某個爆發時點到來之際,以令人驚訝的速度成長壯大。
警惕大數據的危害大數據時代,傳統的隨機抽樣被「所有數據的匯攏」所取代,人們的思維決斷模式,已可直接根據「是什麼」來下結論,由於這樣的結論剔除了個人情緒、心理動機、抽樣精確性等因素的干擾,因此將更精確、更有預見性。不過,由於大數據過於依靠數據的匯集,一旦數據本身有問題,就很可能出現「災難性大數據」,即因為數據本身的問題,而導致錯誤的預測和決策。
大數據的理論是「在稻草堆里找一根針」,而如果「所有稻草看上去都挺像那根針」呢?過多但無法辨析真偽和價值的信息和過少的信息一樣,對於需要作出瞬間判斷、一旦判斷出錯就很可能造成嚴重後果的情況而言,同樣是一種危害。「大數據」理論是建立在「海量數據都是事實」的基礎上,而如果數據提供者造假呢?這在大數據時代變得更有害,因為人們無法控制數據提供者和搜集者本人的偏見。擁有最完善資料庫、最先接受「大數據」理念的華爾街投行和歐美大評級機構,卻每每在重大問題上判斷出錯,這本身就揭示了「大數據」的局限性。
不僅如此,大數據時代造就了一個資料庫無所不在的世界,數據監管部門面臨前所未有的壓力和責任:如何避免數據泄露對國家利益、公眾利益、個人隱私造成傷害?如何避免信息不對等,對困難群體的利益構成傷害?在有效控制風險之前,也許還是讓「大數據」繼續待在籠子里更好一些。
大數據的經濟價值已經被人們認可,大數據的技術也已經逐漸成熟,一旦完成數據的整合和監管,大數據爆發的時代即將到來。我們現在要做的,就是選好自己的方向,為迎接大數據的到來,提前做好准備。
以上是小編為大家分享的關於中國大數據要發展必備三個條件的相關內容,更多信息可以關注環球青藤分享更多干貨
6. 大數據在未來有什麼樣的發展趨勢_大數據的未來發展前景
大數據的未來發展趨勢主要有以下幾點:趨勢一:數據資源化
何為資源化,是指大數據成為企業和社會關注的重要戰略資源,並已成為大家爭相搶奪的新焦點。因而,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。
趨勢二:與雲計算的深度結合大數據離不開雲處理,雲處理為大數據提供了彈性可拓亂櫻寬的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一起助力大數據革命,讓大數據營銷發揮出更大的影響力。
趨勢三:科學理論的突破隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。隨之興起的數據挖掘、機器學習和人工智慧等相關技術,可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。
趨勢四:數據科學和數據聯盟的成立未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。與此同時,基於數據這個基礎平台,也將建立起跨領域的數據共享平台,之後,數據共享將擴展到企業層面,並且成為未來產業的核心一環。
趨勢五:數據泄露泛濫未來幾年數據泄露事件的增長率也許會達到100%,除非數據在其源頭就能夠得到安全保障。可以說,在未來,每個財富500強企業都會嘩陸叢面臨悉孫數據攻擊,無論他們是否已經做好安全防範。而所有企業,無論規模大小,都需要重新審視今天的安全定義。在財富500強企業中,超過50%將會設置首席信息安全官這一職位。企業需要從新的角度來確保自身以及客戶數據,所有數據在創建之初便需要獲得安全保障,而並非在數據保存的最後一個環節,僅僅加強後者的安全措施已被證明於事無補。
趨勢六:數據管理成為核心競爭力數據管理成為核心競爭力,直接影響財務表現。當「數據資產是企業核心資產」的概念深入人心之後,企業對於數據管理便有了更清晰的界定,將數據管理作為企業核心競爭力,持續發展,戰略性規劃與運用數據資產,成為企業數據管理的核心。數據資產管理效率與主營業務收入增長率、銷售收入增長率顯著正相關;此外,對於具有互聯網思維的企業而言,數據資產競爭力所佔比重為36.8%,數據資產的管理效果將直接影響企業的財務表現。
趨勢七:數據質量是BI(商業智能)成功的關鍵採用自助式商業智能工具進行大數據處理的企業將會脫穎而出。其中要面臨的一個挑戰是,很多數據源會帶來大量低質量數據。想要成功,企業需要理解原始數據與數據分析之間的差距,從而消除低質量數據並通過BI獲得更佳決策。
趨勢八:數據生態系統復合化程度加強大數據的世界不只是一個單一的、巨大的計算機網路,而是一個由大量活動構件與多元參與者元素所構成的生態系統,終端設備提供商、基礎設施提供商、網路服務提供商、網路接入服務提供商、數據服務使能者、數據服務提供商、觸點服務、數據服務零售商等等一系列的參與者共同構建的生態系統。而今,這樣一套數據生態系統的基本雛形已然形成,接下來的發展將趨向於系統內部角色的細分,也就是市場的細分;系統機制的調整,也就是商業模式的創新;系統結構的調整,也就是競爭環境的調整等等,從而使得數據生態系統復合化程度逐漸增強。