導航:首頁 > 網路數據 > 商業銀行大數據應用

商業銀行大數據應用

發布時間:2024-02-01 17:45:26

大數據的應用領域有哪些

1.了解和定位客戶
這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。
利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。
滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。
除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。
2.了解和優化業務流程
大數據也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
人力資源業務流程也在使用大數據進行優化。Sociometric Solutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。
如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。
3.提供個性化服務
大數據不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。
4.改善醫療保健和公共衛生
大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!
蘋果公司的一款健康APP ResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。
大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。
更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。
5.提高體育運動技能
如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBM SlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。
還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。
6.提升科學研究
大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7.提升機械設備性能
大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。Xcel Energy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。
8.強化安全和執法能力
大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。
2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。
9.改善城市和國家建設
大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。
10.金融交易
大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。

㈡ 商業銀行應用大數據之策

商業銀行應用大數據之策

隨著以社交網路為代表的web2.0 的興起、智能手機的普及、各種監控系統及感測器的大量分布,人類正在進入一個數據大爆炸的時代,「大數據」的概念應運而生。大數據被譽為繼雲計算、物聯網之後IT產業又一次顛覆性的技術變革,已經引起各方面的高度關注。大數據的意義在於從海量數據中及時識別和獲取信息價值,金融業在IT基礎設施、數據掌控力和人才富集度方面較之其他產業更具優勢,具備了深度「掘金」的潛力。但是,大數據也給金融業帶來劇烈的挑戰與沖擊,我國商業銀行需要樹立「數據治行」理念,明確大數據戰略的頂層設計,加強大數據基礎設施建設,實施穩妥的大數據安全策略,方能從容迎接大數據時代。

大數據帶來的沖擊與挑戰

(一)傳統發展戰略面臨沖擊。傳統銀行發展戰略,是在預計未來金融政策、經濟環境的前提下,根據現有銀行人員、網點、客戶、資本、存貸款規模等資源佔有狀況,以及競爭對手、客戶需求狀況,來確定其戰略目標及發展路徑和方式的。步入大數據時代後, 對數據資源的佔有及其整合應用能力是決定一家銀行成功與否的關鍵因素,而傳統的網點、人員、資本等因素則趨於淡化,未來商業銀行的客戶營銷,將主要依靠對不同類型客戶需求數據的掌握,並開發設計出安全、便捷、個性化的金融產品。因此,這就要求各商業銀行在評判競爭對手實力與自身優勢時,要注重考量IT能力與大數據實力;在制定戰略目標時,必須兼顧財務承受能力來決定對大數據的投入,從而確保戰略規劃與大數據支撐相適應;在確定戰略目標的實施路徑時,必須將互聯網金融、電子渠道、數據的收集與挖掘作為向客戶提供服務的重要方式和手段。

(二)傳統經營方式面臨重大轉變。在大數據時代, 金融業務與互聯網深度融合, 商業銀行的經營方式將會發生徹底改變。在產品開發、營銷方面,通過對海量交易、行為數據的收集、分析和挖掘,科學構建數據模型, 分層客戶的不同金融需求可以得到充分展示,進而針對客戶需要、市場需求研發產品、開展營銷,真正做到以客戶為中心開發設計產品,並實現精準營銷,而不是以銀行為中心製造、推銷產品。在風險防控方面,許多商業銀行在風險分析和評估中,雖然已經引入了數量分析方式,但是因歷史數據的積累不足,經驗判斷依然在風險管理、決策中起主導作用。依託大數據,對客戶實施多維度評價,其風險模型將會更加貼近市場實際,對客戶違約率的取值變得更加精準,長期以來銀行憑經驗辦業務的經營範式將會得到根本改善。在績效管理方面,可以通過對大數據的有效利用,並藉助通訊、視頻、移動終端等技術手段,對商業銀行員工的工作方式、頻率、業績等做出更加准確的評價,有助於充分發揮績效考核的正向激勵作用。

(三)數據基礎設施建設面臨嚴峻考驗。進入大數據時代,數據來源的多元化主要體現在兩個層面:一是在金融業務鏈條之外。移動網路設備和網路社交媒體產生了極其豐富的實時化的客戶行為數據,在這種環境下,客戶行為偏好數據往往隱藏在社交網路之中。如果要實施「大數據工程」,商業銀行必須搜集開放的網路數據,但現有的銀行IT系統、技術手段還無力搜集、分析、利用大數據。二是在金融業務鏈條內部。隨著專業細分與金融外包的趨勢愈加明朗,由一家或少數幾家銀行掌控關鍵業務數據的時代已經走向終結,業務數據產生、流轉於金融業務鏈條的各個結點,業務數據、客戶行為數據不可能自動集成至某個機構,這對「大數據工程」的實施提出了嚴峻挑戰。

商業銀行的應對與謀變

(一)優先搞好大數據戰略的頂層設計。大數據戰略必須超越電子銀行部或IT部門的狹隘視角,面向全局、面向未來,以客戶需求、市場需求為導向,建立自身的大數據架構。完整的客戶數據必須是多維度的,至少包含以下幾個方面:一是客戶的基本信息,譬如信用信息、社交關系信息等;二是客戶的偏好信息,譬如金融產品偏好、金融服務偏好等;三是客戶的行為信息,譬如銀行范圍內的行為數據、外部行為數據等;四是客戶的分析數據,譬如客戶風險度、客戶價值度等。要想使這些不同維度的數據信息具有分析價值,首先必須具有合理的數據結構。但現實情況卻不盡如人意,各銀行的數據結構基本上是條塊分割的。為此,各銀行必須優先搞好頂層機制的設計與改革,逐步打破業務界限,重組業務流程,確保數據靈活性。

在總行層面上,需要抓緊制定大數據工作規劃,建立大數據工作推進機制。主管數據部門負責組織協調,對大數據工作進行統籌規劃、集中管理;業務部門負責大數據的搜集、整理、存儲、分析和應用,全面採集、多方式整合商業銀行內外部各類數據,形成數據管理、數據使用、數據推廣的有效工作機制。

(二)科學謀劃和打造大數據平台。一方面各銀行要積極與社交網路、電商、電信等大數據平台開展戰略合作,建立數據信息交流、共享機制,全面梳理、整合客戶各類信息,將金融服務與社交網路、電子商務、移動網路等深度融合。另一方面各銀行也可考慮自行打造大數據平台,以便牢牢掌握核心話語權。

(三)積極建設大數據倉庫。著眼於大數據挖掘和分析,對海量數據的持續實時處理,建設數據倉庫項目,為服務質量改善、經營效率提升、服務模式創新提供支撐,全面提升運營管理水平。在項目建設中,通過梳理整合經營管理關鍵數據,建立數據管控體系,搭建基礎數據平台。通過數據倉庫建設,運用數據挖掘和分析,全方位調整管理模式、產品結構、營銷模式、信息戰略,從根本上提高風險管理、成本績效管理、資產負債管理和客戶關系管理水平,實現多系統數據的業務邏輯整合,形成全行級客戶、產品等主題數據。

(四)以大數據思維推進金融互聯網化戰略。進入大數據時代,金融產業與信息技術將實現深度融合, 金融電子化的深度、廣度將日漸強化。各銀行必須順勢而為, 緊緊追隨迅猛發展的互聯網、移動互聯網浪潮, 積極實施金融互聯化戰略, 嘗試構建電子化金融商業模式, 著力發展直銷銀行、社區智能銀行、互聯網金融、電子商務等業務。這就要求各銀行應當從發展戰略的高度,將金融互聯網作為未來提供金融服務、提升核心競爭力的主渠道。

(五)依託大數據技術實現風險管理的精細化。大數據時代,商業銀行可以消除信息孤島,全面整合客戶的多渠道交易數據,通過經營者個人金融、消費、行為等信息進行授信,有效破解傳統信貸風險管理中的信息不對稱難題,降低信貸風險。為此,各銀行必須深化風險管理體制改革,運用大數據理念來構建以客戶為中心的全面風險管理體系,理順部門間的職責,淡化部門色彩,徹底打破以往小數據模式下形成的部門、機構、區域、產品間數據信息分隔管理以及由分支機構各自分散識別風險的做法,形成按客戶集中統一管理數據信息和高效協調機制。

要積極推行把現場調查與非現場數據信息挖掘分析相結合、模型篩查與經驗判斷相結合,以定性信息與定量財務、經營等多重數據信息的勾稽核驗等為重點內容的風險管理創新。總行要通過大量數據信息的挖掘分析,勾畫出客戶的全景視圖,更加全面地評估客戶風險狀況,有效提升貸前風險判斷和貸後風險預警能力。

要進一步完善基於大數據信息平台的集中式風險審查審批體制,採用大數據方式來驗證借款人的數據信息,校正申報機構或部門對借款人的風險判斷。運用合理的參數和模型,計量出可接受的最大風險敞口,精準識別和動態審查借款人的每一筆融資業務。再利用習慣性數據信息和常識性、邏輯性分析,作出更專業的判斷,使風險識別、防範、決策更加可靠、更加貼近實際。

以上是小編為大家分享的關於商業銀行應用大數據之策的相關內容,更多信息可以關注環球青藤分享更多干貨

㈢ 大數據在銀行業的應用與實踐

大數據在銀行業的應用

一、輿情分析

對於銀行來說,輿情分析包括:銀行的聲譽分析、品牌分析和客戶質量分析。它主要是通過分析網路社交媒體的評論,對於客戶的流失情況進行預警,還可以通過對新聞熱點的跟蹤以及政府報道的分析,為銀行提供個性化的分析場所。

二、客戶信用評級

銀行可以通過手機客戶申請信用卡的數據,分析客戶的信用程度,從而幫助業務人員做出相應的決策。

三、客戶與市場洞察

銀行可以通過跟蹤社交媒體的評論信息,利用各種非結構化數據,對客戶進行細分,改進客戶的流失情況。這是銀行對於市場的趨勢分析。

四、運營優化

銀行通過大數據平台對各種歷史數據進行保存和管理,同時可以對系統日誌進行維護、預測系統故障,從而提升系統的運營效率。

五、風險與欺詐分析

主要包括財務風險分析、貸款風險分析、各種反洗錢和欺詐調查和實時欺詐分析等內容。所謂財務風險分析是分析信用風險和市場風險產生的數據;貸款風險分析是從媒體或者社會公眾信息中提取企業客戶和潛在客戶的信息。提高對於風險的預測能力和預警能力;反洗錢與欺詐調查是提取犯罪記錄的信息;實時欺詐分析則是對大量的欺詐數據進行分析。

銀行數據架構規劃

隨著銀行業務的擴展,可以對數據進行架構規劃。大數據的數據架構規劃可以採用Hadoop技術,即通過與節後或數據進行關聯,進一步拓展對非結構化數據的處理。其數據源包括結構化數據、半結構化數據和非結構化數據。半結構化數據和非結構化數據通過網路爬蟲的方式來搜集,再經過內容管理處理,將數據進行結構化處理,然後可以將內容管理處理得出的數據信息存放到基礎數據存儲中。這是基於HDFS存放的非結構化數據。

大數據為銀行創造的價值

當銀行客戶與銀行產生交易,會產生大量的數據,這些數據具有大量的業務價值,為銀行進行有針對性的營銷創造了機會。

在大部分的應用中,隨著數據量指數級的增長,特別是一些非結構化數據的快速增長,大量的數據導致分析時間增長,傳統的商業智能已經無法滿足需求,阻礙了業務的發展,以FineBI為代表的新型BI的涌現,無論在數據處理量和速度上都相比傳統BI有突破性的進步。

在很長的一段時間內,銀行的大部分業務是建立在客戶和銀行的交易過程中的,但是為了能更好地為客戶服務,光靠依賴這些數據是不夠的。隨著技術的進步,銀行可以通過很多途徑來搜集客戶的資料。從而進行有針對性的營銷。

隨著互聯網技術的發展,客戶可以通過電子渠道對銀行業務發表看法或者購買銀行產品。這些操作都是為增強對於客戶的了解,降低信息的不對稱性。

目前來說,在利率市場化的趨勢下,存款的穩定性降低,存貸款的利差收窄,數據分析已經逐漸成為銀行實現核心業務價值的重要手段。金融脫媒會導致大量客戶的流失和客戶忠誠度的降低。銀行作為「支付中介」的地位開始動搖,客戶對於銀行服務的要求越來越高。

在這種情況下,銀行需要通過大數據深入全名了解客戶的基本信息,提升業務運行的效率,逐步提高客戶的體驗。通過對大數據的加工以及挖掘,可能為銀行帶來極大的效益,特別是商業銀行。

對於銀行來說,風險管控和用戶營銷是未來最重要的兩個方向。而對客戶的信用評分是實現這兩個方向的重要條件之一。信用評分是根據申請人的申請信息和證明材料,幫助業務員作出決策,降低壞賬率。

比如:我們可以根據大數據的分析和查詢,有針對性地為客戶提供理財產品建議和提醒,同時通過對大數據的分析和挖掘,來評估客戶的信用風險和資金償還能力,降低了銀行的各種風險。

閱讀全文

與商業銀行大數據應用相關的資料

熱點內容
如何破壞文件 瀏覽:15
從什麼網站上查找國家標准 瀏覽:254
iphone5s最省電的瀏覽器 瀏覽:225
用數據線如何接攝像頭 瀏覽:110
qq手機電腦互傳文件 瀏覽:613
linux內核升級方法 瀏覽:986
iphone5沒有熱點 瀏覽:189
哪裡有在線幼兒c語言編程 瀏覽:959
iframe跨域調用js對象 瀏覽:178
蘋果手機能分文件夾嗎 瀏覽:679
fdb文件怎麼刪除裡面內容 瀏覽:638
龍江網路配置什麼路由器 瀏覽:169
如何使用指標導入數據 瀏覽:866
平時用什麼app看nba 瀏覽:503
win10想以管理員身份運行bat文件 瀏覽:85
合並單元格中的其他數據如何排序 瀏覽:331
電腦窗口程序在哪 瀏覽:281
前女友把我微信刪了又加什麼意思 瀏覽:655
win10不識別無線xboxone手柄 瀏覽:403
汽車之家app怎麼看成交價 瀏覽:908

友情鏈接