⑴ 「大數據」要這樣用才賺錢!
「大數據」要這樣用才賺錢!
大數據的生意經其實很簡單,就是收入增加,花費減少;就是增加客戶,提高客戶體驗,提高資金回報的杠桿率;大數據應用成熟之後,大數據可以預測商業未來,發現新的商業機會。
一石激起千層浪,國務院發布的2015 第50號文《促進大數據發展行動綱要》刷滿了朋友圈,特別是其中提到了大力推動政府部門數據共享,穩步推動公共數據資源開放。2017年底前形成跨部門數據資源共享格局,到2018年實現統一共享平台全覆蓋和數據共享及交換。2020年培育10家國際領先的大數據核心龍頭企業,500家大數據應用、服務和產品製造企業。
眾所周知,大數據商業價值巨大。但是中國大數據的商業價值還沒有被充分挖掘。主要的困難在大數據的分散,具有價值的數據大部分集中在在政府內部,壟斷國企業,以及互聯網巨頭之中。分散的數據無法幫助企業拿到具有價值的信息,無法實現大數據的商業變現。政府開放數據,以及大數據交易市場的建立是中國大數據商業價值應用的重中之重。
另外大數據的應用場景和大數據隱私問題,也是大數據商業應用功能的兩大問題,不知道數據應用場景,就無法尋找具有價值的數據,就無讓數據發揮作用,大數據的應用就會停留在解決數據採集、處理、存儲等大數據1.0時代的低級階段,無法實現大數據商業變現,無法激勵企業進一步投資大數據,無法形成數據價值應用的生態循環。大數據隱私問題是所有企業不能迴避的問題,到底何種數據可以進行交換,何種數據可以採集和變現,何種數據可以作為商品在市場流通,這些問題既影響個人隱私保護,又影響到企業購買數據產品的積極性,同時也影響了數據企業的發展。
中國大數據企業分為三類,一類是大數據技術公司,為企業提供大數據平台搭建,技術咨詢,大數據計算和存儲的產品,例如華為、亞信、浪潮等傳統IT公司。一類是大數據服務公司,為企業提供基於大數據技術的服務、平台、產品。包括為企業搭建大數據挖掘工具,搜索引擎,分析引擎等大數據處理平台,大數據清洗和挖掘服務例如明略科技,ADMaster,百分點。最後一類是提供數據產品的大數據公司,他們擁有數據,加工生成具有價值的數據,為市場提供標準的數據產品。例如芝麻信用,TalkingData,九次方,星圖數據等。
中國大數據市場的數據來源有四種,一種是通過網路爬蟲採集的外部數據,大多數提供輿情分析的公司就是通過爬蟲技術來進行數據採集的。例如海量數據。一種是提供SaaS服務得到的數據,例如Talkindata。另外一種是靠和運營商或政府合作,通過數據挖掘得到的數據,例如亞信和九次方。最後一種就是自身平台產生的數據(電商、旅遊、媒體等互聯網企業),包括BAT以及較大的一些互聯網公司如360、當當、唯品會、聚美優品、攜程、今日頭條等。
一、開放數據的價值
開放數據就是政府向社會公布自己所擁有的,並經過脫敏的數據。包括天氣數據、GPS數據、金融數據、教育數據、交通數據、能源數據、醫療數據、政府投資數據、農業數據等。這些原始數據本身並沒有明顯的商業價值,但經過一些公司加工之後,可以產生巨大的商業價值。
開放數據在美國有幾千億美金的市場,包括300億美金的氣象數據,900億美金的GPS數據,上千億美金的醫療數據。但政府開放的數據是原始數據,數據自身的商業價值並不大,需要專業的公司對數據進收集,清洗,挖掘,展現,從而形成具有商業價值的數據。在美國有很多公司是依靠加工政府開放數據而實現其商業價值的,例如處理天氣數據的Zillow公司,the weather channel 公司,以及處理GPS數據的Garmin公司,它們的總市值已經超過了一百億美金。
1 、政府開放數據的主要范圍
a政府收集和製造的科學數據。例如天氣數據,政府資助的醫療研究數據。這些數據都可以作為公共資源進行使用。
b 政府運行的數據,例如政府支出或大型項目運行數據。開放數據一方面可以增加民眾對政府的信任,另一個方面可以給一些公司帶來商業機遇。
c監管行業的數據。這些數據由企業提供給政府,並且經過政府二次加工。這些宏觀數據對於產業規劃,企業的投資戰略都有很大影響。
2、 中國開放數據之路的挑戰
a 國家對數據治理還沒有完成。很多數據沒有集中管理,還是處於信息孤島狀態,這些都是開放數據需要解決的問題。數據治理投資巨大,時間周期較長,都是巨大的挑戰。
b 一些開放數據還不是電子形式。例如醫療數據和教育數據,在一些地區還處於紙質記錄狀態,沒有形成電子檔案。這些數據的電子化也是一個較大的挑戰。
c 開放數據的脫敏和整合將是一項重大的挑戰。特別是國有企業的數據,哪些數據可以公開,哪些數據需要脫敏,如何整合各個地方的數據,這些都是一個挑戰
d 大數據服務公司和大數據人才匱乏。由於大數據市場剛剛開始,市場上缺少大數據人才和大數據服務公司,公開的數據短時間可能很難產生商業價值,這會影響政府和企業開放數據的積極性,不利於形成良性的大數據商業市場,會影響開放數據項目的持續發展。
3、有關開放數據一些建議
人類社會即將進入數字時代,開放數據將會是巨大的生產力。政府已經認識到了開放數據的價值,會持續推動政府和國企的數據開放。即使短時間內開放數據的投資看不到商業價值,但其未來經濟價值會促使政府堅持開放數據的政策,持續進行投資。就像中國的高速公路,開放數據是另外一條信息高速公路,將數據轉化為資產,轉化為巨大的社會生產力,幫助企業實現更大的商業價值。
對於數據擁有者的政府,需要在保障公共安全和個人隱私的前提下,完成數據治理和數據整合,逐步向社會開放數據,並提高數據質量,公開面向所有個人和企業,有效利用政府科技資金,讓利益相關企業和個人參與到開放數據項目中,鼓勵創新,接受外部挑戰,利用集體智慧,實現數據最優選擇。
對於國有企業,需要在保護自身商業利益的前提下開放數據,幫助各自產業鏈企業的發展。同時開放數據也可以幫助其自身進行產業規劃,進行有效投資,發現市場機會和風險,穩健經營,科學決策。企業可以利用開放數據提高生產效率,減少資源浪費,降低決策失誤風險。產業鏈企業的良性發展,也會推動國企自身發展和進化,提高競爭力,優化企業經營,實現產業共贏。
對於企業家,開放數據將會作為新的資源,幫助企業進行發展,聚焦新的商業機遇,特別是在開放數據影響較大的保健行業,金融行業,能源行業,教育行業。數據服務公司可以利用開放數據,幫助消費者挖掘數據的潛在價值,為企業和政府提供具有價值的商業數據。對於經營中的公司,可以利用開放數據評價商業夥伴和潛在投資,通過提供數據來樹立消費者的忠誠度,學會在透明的商業社會中進行經營,尋找公共或私人合作的機會,專注自身產品和客戶,為消費者提供更好的產品和服務。
二、萬億的大數據市場
2014年的GDP中消費佔比已經超過了50%,標志著中國經濟正在向市場經濟轉型,消費佔GDP 50%-70%是中等發達國家向市場經濟過渡的一個表現,未來中國經濟增長最大的引擎應該來源於消費,特別是個人消費。中國正在經歷經濟結構調整和城鎮化,個人消費需求巨大,社會產品較為豐富,渠道也較為通暢,物流成本正在下降,運輸能力正在提高。但是社會消費零售總額增加的還不夠快,資源配置不平衡,社會整體消費水平還處於較低的水平。這些問題正在成為中國經濟發展的難題,是企業和社會需要解決的問題。
大數據的商業應用將會幫助企業解決這些問題;大數據的有效利用將會提高社會消費水平,將會幫住企業提高效率、洞察客戶、增加收入。大數據商業應用未來是萬億級的大市場,大數據是大生意。
大數據時代最重要的特徵是人類所有的行為都被數據記錄下來,無論是在電商的購買行為,旅遊度假,娛樂活動,行為軌跡等,所有的人類社會行為都被各種感測器和互聯網記錄下來。數據記錄了一切,人類社會的行為都變成了數據,用紙質媒體記錄人類歷史的時代已經過去,歷史正在被數據以文字、數據、表格、聲音、影像的方式記錄了下來。中國的大數據應用主要集中在徵信和精準營銷,這兩個市場的規模加在一起不過兩千億,但是大數據如果同所有企業的商業需求相結合,其產生的化學反應將是巨大的,市場規模將會超過萬億,大數據是個大生意。
網路連接了信息與讀者,阿里連接了商品與消費者,騰訊連接了人與人。BAT所有的連接都是建立在數據基礎之上的,可以認為大數據連接了一切。數據連接了消費者和商家,數據連接了客戶習慣,數據連接客戶喜好,數據連接了位置,數據連接了時間和空間,數據連接了歷史和現在。連接一切的大數據將會反饋所連接的事物、空間和時間,通過數據記錄來反饋物體的移動,客戶的消費習慣,個人愛好,行為習慣,活動軌跡,運動規律等。重要的這些反饋數據能知道;你是誰、你在哪裡、你喜歡什麼、你在干什麼、你的消費能力、以及你未來的需求等。所有被反饋的事物都被打上了一個或多個數據標簽,這些具有價值的標簽經過整理和分析後,將會揭示事物之間的相關性和規律,將會為個人、商家、社會帶來巨大價值。
1、大數據幫助製造業規劃生產,降低資源浪費
製造業過去面臨生產過剩的壓力,很多產品包括家電、紡織產品、鋼材、水泥、電解鋁等都沒有按照市場實際需要生產,造成了資源的極大浪費。利用電商數據、移動互聯網數據、零售數據,我們可以了解未來產品市場都需求,為客戶定製產品。
例如依據用戶在電商搜索產品的數據以及物流數據,可以推測出家電產品和紡織產品未來的實際需求量,廠家將依據這些數據來進行生產,避免生產過剩。移動互聯網的位置信息可以幫助了解當地人口進出的趨勢,避免生產過多的鋼材和水泥,
2、移動大數據幫助房地產開發商規劃房地產開發
房地產行業在過去為中國GDP貢獻了很大力量,未來粗放型的房地產行業將會轉向精細化經營,從選地到規劃和從設計到建設,都需要參考當地到人口數據和消費者信息,進行科學決策;利用大數據商業應用加快房子銷售速度,降低自身負債。
房地產公司可以利用人群的手機位置信息來幫助企業進行開發規劃、土地選址、商鋪開發等。同時利用人群到用戶畫像信息幫助房產公司選擇合作商戶,提升消費人氣,最終提高房產價值。
3、移動大數據幫助餐飲零售行業進行選址和顧客導流
餐飲零售行業最關注客戶流量,過去開店選址時經常安排人員在十字路口進行人流統計,利用統計的人口流動信息來決定開店地址。進入到移動互聯網時代之後,智能手機的位置信息可以幫助餐飲零售行業進行開店選址,企業可以參考客戶畫像來決定開店的規模,以及產品的類別。
移動互聯網端的用戶標簽和畫像數據還可以幫助企業進行一些精準營銷,為新開的商戶導入客流。特別是在規模較大的購物商廈中,移動App端的位置導航功能,可以指引客戶找到新的商戶,參加促銷活動。市場上已經有成熟的零售餐飲商家和移動互聯網大數據公司在開店引流方面進行合作,資金利用的杠桿率超過了5倍,投入產出比較高。
4、感測器數據幫助產品進行故障診斷和預測
家電和汽車正在走向智能化,通過安裝感測器,汽車和智能家電可以將運行參數和運行狀態傳送到廠家的雲平台,廠家可以了解其產品的運行狀態,零部件的老化程度,幫助廠家及時更換故障器件,延長產品使用壽命,提高安全系數。汽車行業和智能家電在物聯網領域將會產生巨大的市場,雲計算和大數據處理平台將起到關鍵的作用。
中國汽車市場的銷售規模超過萬億,家電市場也有一萬多億。車聯網和智能家電涉及的大數據應用市場也是巨大的,按照大數據商業變現高杠桿率的特點,其市場規模至少應該在百億左右。
5、利用移動互聯網位置信息進行精準營銷
O2O已經成為了一個重要的商業模式,很多互聯網企業和傳統企業都在尋找O2O的應用場景,訂餐、教育、家政、汽車美容等都成為O2O的應用典範。移動互聯網數據具有LBS和實時特點,可以幫助企業及時連接客戶,依據客戶需求進行精準營銷。
大型購物中心一般都設有電影院,經常存在某些電影在開場前30分鍾,大量電影票還沒有出售的情況。藉助於手機App推送廣告功能,電影院在電影放映前30分鍾,可以將電影票以2折價格推送給正在周圍就餐的客戶。依據客戶畫像信息,電影票將推送給喜愛看電影的顧客,增加電影銷售額。企業可以利用手機App進行廣告推送,做到千人千面,依據客戶喜好來進行廣告推送。這種精準廣告推送具有成本低、轉化率高的特點,在餐飲、服裝、美容、零售等行業取得了良好的應用效果。如果基於位置信息的精準廣告推送被大規模的商業應用,將會促進商品流轉,大幅度提高社會消費總額,幫助傳統企業實現互聯網+的戰略。
6、電商大數據將會幫助企業優化資源配置
電商是最早利用大數據進行精準營銷的行業,電商網站內推薦引擎將會依據客戶的購買行為,進行關聯產品的推薦。除了精準營銷,電商還可以依據客戶消費習慣來提前為客戶備貨,並利用便利店作為貨物中轉點,在客戶下單後的短時間內,將貨物送上門,提高客戶體驗。電商還可以利用其交易數據和現金流數據,為其生態圈內的商戶提供小額貸款,也可以將此數據提供給銀行,為中小企業信貸提供支持。
電商的數據量足夠大,數據較為集中,數據種類較多,其商業應用具有較大的想像空間。包括預測流行趨勢,消費趨勢、地域消費特點、客戶消費習慣、消費行為的相關度、消費熱點等。依託大數據分析,電商可幫助企業進行產品設計、庫存管理、計劃生產、資源配置等,有利於精細化大生產,提高生產效率,優化資源配置。
7、移動大數據助力交通運輸規劃和管理
交通大數據應用主要在兩個方面,一方面可以利用大數據感測器的數據了解車輛通行密度,合理進行道路規劃。另一方面可以利用大數據分析來實現交通信號燈智能切換,提高已有線路運輸能力。
在美國,政府依據某一路段的交通事故信息來增設信號燈,降低了50%以上的交通事故率。大數據可以幫助機場安排航班起降,提高管理效率;航空公司可以利用大數據提高上座率,降低運行成本;鐵路公司可以利用大數據安排客運和貨運列車,降低運營成本。
8、大數據幫助金融行業進行價值變現
大數據在金融行業應用范圍較廣,典型的案例有花旗銀行利用IBM沃森電腦為財富管理客戶推薦產品,美國銀行利用客戶點擊數據集為客戶提供特色服務。招商銀行(600036,股吧)利用客戶刷卡、存取款、電子銀行轉帳、微信評論等行為數據進行分析,每周給客戶發送針對性廣告信息。
中國目前金融行業大數據價值變主要在用戶體驗提升和大數據營銷兩個方面,其中招商銀行信用卡中心和平安銀行(000001,股吧)走到了金融行業的前面。
大數據在很多行業都有廣泛的應用場景,例如在醫療行業,農林牧漁、能源行業、物流行業等,大數據將會是電商之後的另外一個巨大市場,結合了所有行業的商業需求之後,大數據產業的市場規模將會是個萬億級別。大數據不是電力但是比電力更能提供動力,大數據不是石油,但是比石油更能驅動企業發展。大數據就是資產,能夠幫助企業進行價值變現。大數據的生意經其實很簡單,就是收入增加,花費減少;就是增加客戶,提高客戶體驗,提高資金回報的杠桿率;大數據應用成熟之後,大數據可以預測商業未來,發現新的商業機會。
⑵ 做大數據真的能賺錢嗎
瞧您這話說的。當然能掙錢了。而且是能掙大錢。
傳統意義上,我們侍正並不將谷歌列為大數據公司。但他其實是乾的是數據挖掘的活,他收錄了所有網上公開的數據,從中間按關鍵詞,挖掘出用戶需要的數據。然後賺了大錢,現在全年營收應該是千億美元級別的。
比如我們三大運營商,核心業務其實是數據傳輸,靠這個每天一個億的小中雹目標是妥妥的。還有全國各地正在建的各種大數據中心是做數據存儲的,比較有代表性的icloud,一個季度賣談帆可以掙10億美刀。
比如我們現在正在用的今日頭條,也是做數據挖掘的。不過谷歌挖的是數據,頭條挖的是用戶。記住用戶的閱讀歷史,猜測用戶的閱讀喜好,然後有目標的推送閱讀內容。今年也就是2019年,今日頭條打算靠這個掙1000個億軟妹幣。
那您說大數據掙錢么?
⑶ 大數據賺錢
利用大數據通常可以實現情報挖掘、輿情分析、銷售追蹤、精準營銷、個性化推薦、網站/APP分析等功能,收費方式採取按需購買,部分功能服務免費,部分功能服務收費。以此實現盈利
⑷ 公司如何通過大數據賺錢
公司如何通過大數據賺錢
現代大數據項目具備巨大的節約成本的潛力,其效果對於過去的數據處理方式而言有如童話。但需要謹記的是,在投入時間和資源到大數據項目之前,首先要確認你的項目是收益大於成本的。只有傻瓜才會匆匆對一個點子一見鍾情並傾其所有。
大數據無疑是時下炙手可熱的流行詞彙,然而,我們鮮少看到具體大數據如何帶來收益,和具體如何實現的例子,這是怎麼回事呢?
多年來,在經歷了幾個通信和投行的大數據相關早期實施項目後,我認為這個新興技術的收益主要在於:實現對復雜系統更為精準的剖析,例如股票市場或供應鏈。(投行成為最早一批應用大數據分析的行業之一,可謂毫不意外。對利用技術提升效率,創造效益更為敏銳的商業模式,往往也是更賺錢的。)
在投行的日常工作中,為了精準地選擇投資機會、選購股票,有大量對文檔處理的需求,例如新聞簡報,財務報表。如果人工進行,工作量過於龐大。因此助理分析師們往往簡化他們的預測分析過程,並使用電子表格來完成絕大部分工作。通過大數據技術,投行可以整合各種信息,減少可能的(簡化分析帶來的)風險,從整體上帶來更優越的分析和預測能力。
公司如何通過大數據賺錢
通過大數據平台,股票經紀和投資經理們可以聚合各種來源的非格式化數據,輔助判斷哪些公司值得投資。所謂『非格式化數據』包括如公司新聞,產品評論,供應商數據,價格變化,將這些信息以所謂「大數據」形式整合,通過建模,幫助股票經紀決策買入或售出股票。
有些採用如上方式進行投資預測的公司,很注重節約實施成本,例如使用雲平台(如AWS),先從很小數量的伺服器開始,隨著獲益增長,逐步提高投入。一位我認識的分析師,從一家大投行離職創業後,在不到六個月的時間內,僅僅使用非常有限的投入,創立了一個盈利良好的大數據交易系統。
即便在傳統製造領域,大數據仍然可以提升預測能力。我曾經擔任過顧問的某歐洲一線汽車製造廠商,通過建立一個鋼材交易成本的分析系統,選擇更好的時機,以更優價格買入原材料。這個系統由開源Java框架Hadoop創建,整合了多個供應商的共計15Tb的數據,在兩年內為該公司節省了1600萬美元。
這個項目的成功主要有兩個原因:首先,公司有足夠的信息為所有的供應商建模;其次,該項目節省的原材料成本超過了實施這個項目的費用。
公司為何因為大數據虧錢
然而,並非每個大數據項目都會這樣成功。公司在大數據項目上以虧損告終的概率,有時和成功的概率相差無幾。大數據項目失敗的早期症狀有很多種,最常見的問題如:
步子邁太大:大數據並不需要一筆巨大的預算,如果懷著巨大的投入將帶來巨大回報的預期開始一個大數據項目,往往會產生問題。在正式開始前,明智的做法是,嘗試用有限的投入,在小范圍內測試這個技術是否確實能帶來預期的收益。按這樣的節奏,一個項目可以按部就班地隨著收益逐步提高,而逐步擴大投入規模,確保收益始終大於投入。
低估人力投入:在開始實施一個大數據系統前,問自己一個簡單的問題:這個項目是否可以不需要持續的人工支持來運作?如果答案是,需要人工支持,那麼建議停止項目。建立這樣一個項目往往意味著百萬級的損失,無法在有利潤情況下保持維護和運行。
迷信自然語言處理:大數據有個經常聽到的功能是,通過自然語言處理,將各種領域的各種數據處理成直接可讀可理解的形式。這聽起來確實很贊,但是在實際應用中,往往不盡如人意。自然語言處理仍然存在許多妨礙應用的限制,主要由於人工智慧的發展還不夠--而且在可見的10年內,這個情況可能不會有很大改觀。
現代大數據項目具備巨大的節約成本的潛力,其效果對於過去的數據處理方式而言有如童話。但需要謹記的是,在投入時間和資源到大數據項目之前,首先要確認你的項目是收益大於成本的。只有傻瓜才會匆匆對一個點子一見鍾情並傾其所有。
以上是小編為大家分享的關於公司如何通過大數據賺錢的相關內容,更多信息可以關注環球青藤分享更多干貨
⑸ 數據如何賺錢
現在是大數據時代,如果有海量的數據,而且數據是有意義的,總能通過大數據分析來得到一些有價值的信息/知識。
利用數據賺錢,一種方案是直接賣數據,讓別人去分析。一種是分析出結果來,再賣分析結果。還有一種是利用數據吸引人來,通過流量賺錢。
直接賣數據一種是通過API賣,每次只能給一小部分數據;還有一種是海量數據賣。後者可能會帶來數據資產轉移的後果,賣了一次就沒法賣了。可以考慮UZER.ME大數據安全共享解決方案。
⑹ 如何用大數據賺錢
問題一:通過大數據如何賺錢 首先要確定自己有的「大數據」是什麼數據,大到怎樣的量級,其中包含的數據元素有多少;
其次找到自己擁有的數據本身的商業屬性,找到需要這些數據的用戶,並確定他們對這些數據需要是否剛性,以及調研可以為使用這些數據的用戶帶來哪些價值或者改善;
最後就是設計一套運營模式,讓這些數據變現。包括可以一次性的出售,這基本上不會有太多價值;更好的方式是數據動態更新,提供各種數據之間關聯分析和目標組合,分別按照不同用戶需要持續提供,也就可以長期的賺錢了。
市場上多數大數據本身並非真正的大數據,只是一部分數據資料而已!
問題二:大數據怎麼賺錢 擁有大數據的人,才考慮這個事情哪李。
對大數據進行分析、挖掘,發現一些在小規模數據情況下不能發信的東西,這就是價值,就是錢。
問題三:如何利用大數據賺錢的方法和途徑 這個要看具體的情況吧,而且做生意還是要多選擇,我在國外看過一個很有特色的無比牆畫,畫面漂亮,不要開店的,不知道國內有沒有,可以找找,以後絕對會取代牆紙
問題四:人人都在講大數據,怎麼利用大數據賺錢 大數據技術應用上可以通過開發各種APP或者系統、網站等藉助大數據分析,精準營銷,節約成本,挖去潛在用戶人群及消費市場,從而實現變現盈利
問題五:怎麼用大數據賺錢 可以說得具體點嗎
問題六:大數據不再神秘 可誰知道怎麼用大數據賺錢 用大數據賺錢,最低層次的,是賣數據――通過交易平台把掌握的數據直接賣出變毀扒現。
更高層次的,對數據進行分析,形成分析報告,提供給有需求的組織,這是數據可視化變現。
再高點層次的,像精準營銷這種,通過掌握的海量用戶數據進行用戶畫像,為他們展示精準的廣告,收取廣告主的錢,這是用數據間接變現。
最高層次的,醉翁之意不在酒,通過數據找准客戶所在,最終完成自己產品的銷售,或促成項目達成,這是數據商業價值變現。
問題七:怎麼李余遲樣利用大數據賺錢? 要看新聞更新的是否快,可以做個自己的新聞類門戶網站
問題八:怎樣通過大數據賺錢 擁有大數據的人,才考慮這個事情。
對大數據進行分析、挖掘,發現一些在小規模數據情況下不能發信的東西,這就是價值,就是錢。
問題九:大數據公司怎麼賺錢? 根據個人理解,大數據公司賺錢分為三個等級
1. 直接出售數據: 包括脫敏的各種交易、操作、用戶信息;互聯網抓取的 *** 息
2. 對數據進行結構化分析後出售: 各種輿情監測,廣告投放,傳播分析等
3. 根據批量結構化後信息數據進行建模: 用於個性化推薦,走勢預測等
中介公司大概能做第一個級別的吧。
當然,後面還有人工智慧,只是目前依靠這個賺錢的公司還沒看到。
問題十:現有的大數據公司,都是如何賺錢的呢 為各行業和企業做數據分析啊,互聯網時代數據是很重要的,依賴有效的數據分析,可以預測到很多方面,並作出適當的運作調整。會有企業因為自己沒有能力做這一塊,但又需要有這方面,就找他們設計開發咯。