導航:首頁 > 網路數據 > 重構大數據統計豆瓣

重構大數據統計豆瓣

發布時間:2024-01-18 04:30:10

⑴ # 大數據的統計學基礎

概率論是統計學的基礎,統計學沖鋒在應用第一線,概率論提供武器。

我們在學習R的時候,會做過假設檢驗。做假設檢驗的時候會有一個基本的技術就是構造出統計量,這些統計量要滿足一定的概率密度分布,然後我算這個統計量的值,來判定它在這個密度分布裡面,分布在哪個區域,出現在這個區域內的可能性有多高,如果可能性太低,我們就判定我們的假設檢驗是不成立的。 那麼如何構造這個統計量,這是一個很有技術的東西,同時也是由數學家來完成的,那這個工作就是概率論所作的事情。

古典概率論: 扔硬幣,正面1/2反面1/2,扔的次數之間是相互獨立的。 但是這個等概率事件確實是一個不是很嚴謹的事情。仔細想一想其實是很有趣的。 柯爾莫哥洛夫創建現代概率論 他將概率論提出了許多公理,因此將概率論變成了非常嚴謹的一門學科。

學會和運用概率,會使人變得聰明,決策更准確。

統計學 : 統計學可以分為:描述統計學與推斷統計學 描述統計學 :使用特定的數字或者圖表來體現數據的集中程度和離散程度。比如:每次考試算的平均分,最高分,各個分數段的人數分布等,也是屬於描述統計學的范圍。 推斷統計學 :根據樣本數據推斷總體數據特徵。比如:產品質量檢查,一般採用抽樣檢測,根據所抽樣本的質量合格率作為總體的質量合格率的一個估計。 統計學的應用十分廣泛,可以說,只要有數據,就有統計學的用武之地。目前比較熱門的應用:經濟學,醫學,心理學,IT行業大數據方面等。

例如:對於 1 2 3 4 5 這組數據,你會使用哪個數字作為代表呢? 答案是3。 因為3是這組數據的中心。 對於一組數據,如果只容許使用一個數字去代表這組數據,那麼這個數字應該如何選擇???-----選擇數據的中心,即反映數據集中趨勢的統計量。 集中趨勢:在統計學裡面的意思是任意種數據向 中心值靠攏 的程度。它可以反映出數據中心點所在的位置。 我們經常用到的能夠反映出集中趨勢的統計量: 均值:算數平均數,描述 平均水平 。 中位數:將數據按大小排列後位於正中間的數描述,描述 中等水平 。 眾數:數據種出現最多的數,描述 一般水平

均值:算數平均數 例如:某次數學考試種,小組A與小組B的成員成績分別如下: A:70,85,62,98,92 B:82,87,95,80,83 分別求出兩組的平均數,並比較兩組的成績。

組B的平均分比組A的高,就是組B的總體成績比組A高。

中位數:將數據按大小順序(從大到小或者從小到大)排列後處於 中間位置 的數。 例如:58,32,46,92,73,88,23 1.先排序:23,32,46,58,73,88,92 2.找出中間位置的數23,32,46, 58 ,73,88,92 如果數據中是偶數個數,那麼結果會發生什麼改變? 例如:58,32,46,92,73,88,23,63 1.先排序:23,32,46,58,63,73,88,92 2.找出處於中間位置的數:23,32,46, 58 63 ,73,88,92 3.若處於中間位置的數據有兩個(也就是數據的總個數為偶數時),中位數為中間兩個數的算數平均數:(58+63)/2=60.5 在原數據中,四個數字比60.5小,四個數字比60.5大。

眾數:數據中出現次數最多的數(所佔比例最大的數) 一組數據中,可能會存在多個眾數,也可能不存在眾數。 1 2 2 3 3 中,眾數是2 和 3 1 2 3 4 5 中,沒有眾數 1 1 2 2 3 3 4 4 中,也沒有眾數 只要出現的頻率是一樣的,那麼就不存在眾數 眾數不僅適用於數值型數據,對於非數值型數據也同樣適合 {蘋果,蘋果,香蕉,橙子,橙子,橙子,橙子,桃子}這一組數據,沒有什麼均值中位數科研,但是存在眾數---橙子。 但是在R語言裡面沒有直接計算眾數的內置函數,不過可以通過統計數據出現的頻率變相的去求眾數。

下面比較一下均值,中位數,眾數三個統計量有什麼優點和缺點 [圖片上傳失敗...(image-57f18-1586015539906)]

例子: 兩個公司的員工及薪資構成如下: A:經理1名,月薪100000;高級員工15名,月薪10000;普通員工20名,月薪7500 B:經理1名,月薪20000;高級員工20名,月薪11000;普通員工15名,月薪9000 請比較兩家公司的薪資水平。若只考慮薪資,你會選擇哪一家公司?

A 7500 B 11000

A 7500 B 11000</pre>

若從均值的角度考慮,明顯地A公司的平均月薪比B公司的高,但是A公司存在一個極端值,大大地拉高了A公司的均值,這時只從均值考慮明顯不太科學。從中位數和眾數來看,B公司的薪資水平比較高,若是一般員工,選擇B公司顯得更加合理。

比較下面兩組數據: A: 1 2 5 8 9 B: 3 4 5 6 7 兩組數據的均值都是5,但是你可以看出B組的數據與5更加接近。但是有描述集中趨勢的統計量不夠,需要有描述數據的離散程度的統計量。

極差 :最大值 - 最小值,簡單地描述數據的范圍大小。 A: 9 - 1 = 8 B: 7 - 3 = 4 同樣的5個數,A的極差比B的極差要大,所以也比B的要分散 但是只用極差這個衡量離散程度也存在不足 比如: A: 1 2 5 8 9 B: 1 4 5 6 9 兩組數據雖然極差都是相同的,但是B組數據整體分布上更加靠近5。

方差 :在統計學上,更常地是使用方差來描述數據的 離散程度 :數據離中心越遠,越離散。 方差越大,就代表這組數據越離散。

對於前面的數據 1 2 5 8 9,前面求的一組數據的方差是12.5。 將12.5於原始數據進行比較,可以看出12.5比原數據都大,這是否就能說明這一組數據十分離散呢? 其實方差與元數據的單位是不一樣的,這樣比較也是毫無意義的。如果原始數據的單位是m的話,那麼方差的單位就是m^2 為了保持單位的一致性,我們引入一個新的統計量:標准差 標准差:sqrt(var()), 有效地避免了因為單位的平方而引起的度量問題。 與方差一樣,標准差的值越大,表示數據越分散。 A: 1 2 5 8 9 B: 3 4 5 6 7

某班40個學生某次數學檢測的成績如下:

63,84,91,53,69,81,61,69,78,75,81,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77 對於這一組數字,你能看出什麼呢? 或許先算一算平均值,中位數,或者眾數

或許算一算這組數據的方差或者標准差

但是即便是統計了上述的數據,我們還是對全班同學的分數分布,沒有一個全面的了解。 原始數據太雜亂無章,難以看出規律性,只依賴數字來描述集中趨勢與離散程度讓人難以對數據產生直觀地印象,這是我們就需要用到圖標來展示這些數字。

1.找出上面數據中的最大值和最小是,確定數據的范圍。

將成績排序後很容易得到最大值是95,最小值是53

2.整理數據,將數據按照成績分為幾個組。成績按照一般50-60,60-70,70-80,80-90,90-100這幾個分段來劃分(一般都分為5-10組),然後統計這幾個分段內部的頻數。 可以看到80-90這個分段的人數是最多的。 注意在繪制直方圖的時候,一定要知道是左閉右開還是左開右閉。 因為這個可能會直接影響到頻數的統計。

上圖就是:頻數直方圖。頻數作為縱坐標,成績作為橫坐標。通過直方圖我們可以對成績有一個非常直觀的印象。 除了頻數直方圖,還有一種直方圖:頻率直方圖。與頻數直方圖相比,頻率直方圖的縱坐標有所改變,使用了頻率/組距。 頻率=頻數/總數;組距就是分組的極差,這里的組距是10.

除了直方圖外,畫一個簡單的箱線圖也可以大致看出數據的分布。


想要看懂箱線圖,必須要學習一些箱線圖專業的名詞: 下四分位數:Q1,將所有的數據按照從小到大的順序排序,排在第25%位置的數字。 上四分位數:Q3,將所有的數據按照從小到大的順序排序,排在第75%位置的數字。 四分距:IQR,等於Q3-Q1,衡量數據離散程度的一個統計量。 異常點:小於Q1-1.5IQR或者大於Q3+1.5IQR的值。 (注意是1.5倍的IQR) 上邊緣:除異常點以外的數據中的最大值 下邊緣:除異常點以外的數據種的最小值

莖葉圖可以在保留全部數據信息的情況下,直觀地顯示出數據的分布情況。 左邊是莖,右邊是葉。 若將莖葉圖旋轉90度,則可以得到一個類似於直方圖的圖。跟直方圖一樣,也可以直觀地知道數據的分布情況。 並且可以保留所有的數據信息。 莖葉圖的畫法也非常的簡單: 將數據分為莖和葉兩部分,這里的莖是指十位上的數字,葉是指給上的數字。 將莖部份(十位)從小到大,從上到下寫出來 相對於各自的莖,將同一莖(十位)從小到大,從左往右寫出來。

但是莖葉圖也有缺陷,因為百位和十位同時畫在莖葉圖的時候,容易區分不開。同時也可能出現卻葉的情況。

以時間作為橫坐標,變數作為縱坐標,反映變數隨時間推移的變化趨勢。

顯示一段時間內的數據變化或者顯示各項之間的比較情況。

根據各項所佔百分比決定在餅圖中扇形的面積。簡單易懂,通俗明了。可以更加形象地看出各個項目所佔的比例大小。 適當的運用一些統計圖表,可以更生動形象的說明,不再只是純數字的枯燥描述。

學習鏈接: https://www.bilibili.com/video/BV1Ut411r7RG

⑵ 如何利用大數據分析工具分析豆瓣電影

小組功能是豆瓣對用戶分析的利器。兩個用戶加同一個小組,說明他們之間的興趣愛好會很接近。
讀書、音樂、電影等等也是類似。根據這些數據,豆瓣能准確猜測出用戶的各種資料,例如地域、性別、年齡、學歷、學校、喜好等等,只有當有了這些數據的時候,豆瓣電台才成為可能。

⑶ ai智能大數據在哪裡下載

ai智能大數據在豆瓣、騰訊、網易、網路、阿里可以下載。主流賽事包含了世界盃、輪檔歐冠、亞洲杯、亞冠、中超、英超、西甲、德甲、意甲、臘亂亂法甲、巴甲、日職、K聯賽等各大足球賽事、賽程、積分等信息,提供全方位的陪裂體育賽事數據服務。

⑷ 大數據的本質是什麼

在著作《大數據的真相》中,列舉了3個大數據的本質的特性。

  1. 使用所有的數據運用用戶行為觀察等大數據出現前的分析方法,通常是將調查對象范圍縮小至幾個人。這是因為,整理所有目標用戶的數據實在太費時間,所以採取了從總用戶群中,爭取不產生偏差地抽取一部分作為調查對象,並僅僅根據那幾個人的數據進行分析。

    而使用大數據技術,能夠通過發達的數據抽選和分析技術,完全可以做到對所有的數據進行分析,以提高數據的正確性。

  2. 不拘泥於單個數據的精確度

    如果我們連續扔骰子,偶爾會連續好幾次都扔出同樣的數字。但是如果無限增加扔骰子的次數,每個數字出現的概率都將越來越接近六分之一。同樣的,在大數據領域,通過觀察數量龐大的數據,更容易提高整體而言的數據的精準度。因此,可以不拘泥於個別數據的精確度,而迅速地進階到數據分析的步驟。(不過這種情況當然不包括人為的篡改等由於外部因素扭曲了數據的情況)

  3. 不過分強調因果關系

    企業在考慮服務方針時,會綜合考慮現狀、問題、改善措施、實施後果等要素之間的相互關系,在此基礎上建立假設。但是大數據能夠通過觀察海量的數據,發現人所注意不到的相互關聯。

⑸ python有什麼好的大數據/並行處理框架

從GitHub中整理出的15個最受歡迎的Python開源框架。這些框架包括事件I/O,OLAP,Web開發,高性能網路通信,測試,爬蟲等。

Django: Python Web應用開發框架
Django 應該是最出名的Python框架,GAE甚至Erlang都有框架受它影響。Django是走大而全的方向,它最出名的是其全自動化的管理後台:只需要使用起ORM,做簡單的對象定義,它就能自動生成資料庫結構、以及全功能的管理後台。

Diesel:基於Greenlet的事件I/O框架
Diesel提供一個整潔的API來編寫網路客戶端和伺服器。支持TCP和UDP。

Flask:一個用Python編寫的輕量級Web應用框架
Flask是一個使用Python編寫的輕量級Web應用框架。基於Werkzeug WSGI工具箱和Jinja2
模板引擎。Flask也被稱為「microframework」,因為它使用簡單的核心,用extension增加其他功能。Flask沒有默認使用的數
據庫、窗體驗證工具。

Cubes:輕量級Python OLAP框架
Cubes是一個輕量級Python框架,包含OLAP、多維數據分析和瀏覽聚合數據(aggregated data)等工具。

Kartograph.py:創造矢量地圖的輕量級Python框架
Kartograph是一個Python庫,用來為ESRI生成SVG地圖。Kartograph.py目前仍處於beta階段,你可以在virtualenv環境下來測試。

Pulsar:Python的事件驅動並發框架
Pulsar是一個事件驅動的並發框架,有了pulsar,你可以寫出在不同進程或線程中運行一個或多個活動的非同步伺服器。

Web2py:全棧式Web框架
Web2py是一個為Python語言提供的全功能Web應用框架,旨在敏捷快速的開發Web應用,具有快速、安全以及可移植的資料庫驅動的應用,兼容Google App Engine。

Falcon:構建雲API和網路應用後端的高性能Python框架
Falcon是一個構建雲API的高性能Python框架,它鼓勵使用REST架構風格,盡可能以最少的力氣做最多的事情。

Dpark:Python版的Spark
DPark是Spark的Python克隆,是一個Python實現的分布式計算框架,可以非常方便地實現大規模數據處理和迭代計算。DPark由豆瓣實現,目前豆瓣內部的絕大多數數據分析都使用DPark完成,正日趨完善。

Buildbot:基於Python的持續集成測試框架
Buildbot是一個開源框架,可以自動化軟體構建、測試和發布等過程。每當代碼有改變,伺服器要求不同平台上的客戶端立即進行代碼構建和測試,收集並報告不同平台的構建和測試結果。

Zerorpc:基於ZeroMQ的高性能分布式RPC框架
Zerorpc是一個基於ZeroMQ和MessagePack開發的遠程過程調用協議(RPC)實現。和 Zerorpc 一起使用的 Service API 被稱為 zeroservice。Zerorpc 可以通過編程或命令行方式調用。

Bottle: 微型Python Web框架
Bottle是一個簡單高效的遵循WSGI的微型python Web框架。說微型,是因為它只有一個文件,除Python標准庫外,它不依賴於任何第三方模塊。

Tornado:非同步非阻塞IO的Python Web框架
Tornado的全稱是Torado Web Server,從名字上看就可知道它可以用作Web伺服器,但同時它也是一個Python Web的開發框架。最初是在FriendFeed公司的網站上使用,FaceBook收購了之後便開源了出來。

webpy: 輕量級的Python Web框架
webpy的設計理念力求精簡(Keep it simple and powerful),源碼很簡短,只提供一個框架所必須的東西,不依賴大量的第三方模塊,它沒有URL路由、沒有模板也沒有資料庫的訪問。

Scrapy:Python的爬蟲框架
Scrapy是一個使用Python編寫的,輕量級的,簡單輕巧,並且使用起來非常的方便。

⑹ 新媒體方面如何能做好數據分析和統計呢

一直以來,互聯網形勢都是變幻莫測,四處充滿了可變性,隨著移動時代的到來,老一套的傳統營銷方式也可能阻擋企業發展。企業如果再不主動涉及新媒體營銷、以及做好大數據統計、融入新時代潮流,可能將遭遇始料不及的困境。
那麼企業該如何將掌控的數據信息變為自己所用呢?通常可以運用大數據來洞悉消費者的行為變化,從而精準地分析用戶的特點和喜好,最後挖掘出產品的潛在性,以及潛在使用價值用戶人群,最終完成銷售市場營銷的精準化、場景化,這樣一個完整的體系就建成了!關於大數據統計,億仁網路認為企業首先需要做的是依據用戶社會屬性、消費者行為、生活方式等信息,抽象性地總結出一個標簽化的用戶畫像,這其中就包括用戶的性別、地區、年紀、文化教育水準,以及用戶的興趣愛好、知名品牌喜好、產品喜好。
接著,企業就要依靠大數據來進行數據分析,這樣可以讓你致力於一部分用戶,而這群用戶就能意味著特殊產品的大部分潛在顧客。最後,採集大數據最大的使用價值並不是事後分析,而是進行事前預測分析和推薦。通過大數據整合更改企業的營銷方法,然後依靠顧客的個人行為數據信息去做推薦,這樣才能做好!

閱讀全文

與重構大數據統計豆瓣相關的資料

熱點內容
如何分離編程數值 瀏覽:996
描述文件是幹嘛的 瀏覽:868
文件格式化恢復 瀏覽:353
v顯卡驅動程序源碼 瀏覽:44
iphone5s聲音小怎麼解決 瀏覽:656
文件名文字看不清了 瀏覽:313
電腦找不到cftmon文件 瀏覽:768
qq分組久伴酒伴久伴 瀏覽:697
文檔轉成pdf格式文件 瀏覽:621
離子數據怎麼寫 瀏覽:876
jspapijar官網下載 瀏覽:366
html調用文本文件 瀏覽:921
想學數控編程哪裡好 瀏覽:860
js獲取系統動態時間間隔 瀏覽:165
win10改win7進pe卡住 瀏覽:456
u盤中毒ink文件 瀏覽:718
蘋果換機數據遷移包含哪些數據 瀏覽:234
程式控制可編程直流電源在哪裡 瀏覽:598
容積長寬高的數據從什麼面測量 瀏覽:978
蘋果手游工作室 瀏覽:362

友情鏈接