導航:首頁 > 網路數據 > 大數據運用基礎

大數據運用基礎

發布時間:2024-01-13 17:45:10

『壹』 大數據的基礎是什麼

大數據的基礎是存儲和計算。大數據的特點就是數據量的規模較大,因此首要問題就是存儲問題。然後核心問題就是大數據量的計算問題。這兩個部分組成了大數據的根基。

『貳』 大數據分析的基礎是什麼

1、可視化分析


大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。


2、數據挖掘演算法


大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。


3、預測性分析能力


大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。


4、語義引擎


大數據分析廣泛應用於網路數據挖掘,可從用戶的搜索關鍵詞、標簽關鍵詞、或其他輸入語義,分析,判斷用戶需求,從而實現更好的用戶體驗和廣告匹配。


5、數據質量和數據管理


大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。 大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。

『叄』 如何學習「大數據」方面的知識

總體思維

社會科學研究社會現象的總體特徵,以往采樣一直是主要數據獲取手段,這是人類在無法獲得總體數據信息條件下的無奈選擇。在大數據時代,人們可以獲得與分析更多的數據,甚至是與之相關的所有數據,而不再依賴於采樣,從而可以帶來更全面的認識,可以更清楚地發現樣本無法揭示的細節信息。

正如舍恩伯格總結道:「我們總是習慣把統計抽樣看作文明得以建立的牢固基石,就如同幾何學定理和萬有引力定律一樣。但是,統計抽樣其實只是為了在技術受限的特定時期,解決當時存在的一些特定問題而產生的,其歷史不足一百年。如今,技術環境已經有了很大的改善。在大數據時代進行抽樣分析就像是在汽車時代騎馬一樣。在某些特定的情況下,我們依然可以使用樣本分析法,但這不再是我們分析數據的主要方式。

」也就是說,在大數據時代,隨著數據收集、存儲、分析技術的突破性發展,我們可以更加方便、快捷、動態地獲得研究對象有關的所有數據,而不再因諸多限制不得不採用樣本研究方法,相應地,思維方式也應該從樣本思維轉向總體思維,從而能夠更加全面、立體、系統地認識總體狀況。

容錯思維

在小數據時代,由於收集的樣本信息量比較少,所以必須確保記錄下來的數據盡量結構化、精確化,否則,分析得出的結論在推及總體上就會「南轅北轍」,因此,就必須十分注重精確思維。然而,在大數據時代,得益於大數據技術的突破,大量的非結構化、異構化的數據能夠得到儲存和分析,這一方面提升了我們從數據中獲取知識和洞見的能力,另一方面也對傳統的精確思維造成了挑戰。

舍恩伯格指出,「執迷於精確性是信息缺乏時代和模擬時代的產物。只有5%的數據是結構化且能適用於傳統資料庫的。如果不接受混亂,剩下95%的非結構化數據都無法利用,只有接受不精確性,我們才能打開一扇從未涉足的世界的窗戶」。

也就是說,在大數據時代,思維方式要從精確思維轉向容錯思維,當擁有海量即時數據時,絕對的精準不再是追求的主要目標,適當忽略微觀層面上的精確度,容許一定程度的錯誤與混雜,反而可以在宏觀層面擁有更好的知識和洞察力。

相關思維

在小數據世界中,人們往往執著於現象背後的因果關系,試圖通過有限樣本數據來剖析其中的內在機理。小數據的另一個缺陷就是有限的樣本數據無法反映出事物之間的普遍性的相關關系。而在大數據時代,人們可以通過大數據技術挖掘出事物之間隱蔽的相關關系,獲得更多的認知與洞見,運用這些認知與洞見就可以幫助我們捕捉現在和預測未來,而建立在相關關系分析基礎上的預測正是大數據的核心議題。

通過關注線性的相關關系,以及復雜的非線性相關關系,可以幫助人們看到很多以前不曾注意的聯系,還可以掌握以前無法理解的復雜技術和社會動態,相關關系甚至可以超越因果關系,成為我們了解這個世界的更好視角。舍恩伯格指出,大數據的出現讓人們放棄了對因果關系的渴求,轉而關注相關關系,人們只需知道「是什麼」,而不用知道「為什麼」。

我們不必非得知道事物或現象背後的復雜深層原因,而只需要通過大數據分析獲知「是什麼」就意義非凡,這會給我們提供非常新穎且有價值的觀點、信息和知識。也就是說,在大數據時代,思維方式要從因果思維轉向相關思維,努力顛覆千百年來人類形成的傳統思維模式和固有偏見,才能更好地分享大數據帶來的深刻洞見。

智能思維

不斷提高機器的自動化、智能化水平始終是人類社會長期不懈努力的方向。計算機的出現極大地推動了自動控制、人工智慧和機器學習等新技術的發展,「機器人」研發也取得了突飛猛進的成果並開始一定應用。應該說,自進入到信息社會以來,人類社會的自動化、智能化水平已得到明顯提升,但始終面臨瓶頸而無法取得突破性進展,機器的思維方式仍屬於線性、簡單、物理的自然思維,智能水平仍不盡如人意。

但是,大數據時代的到來,可以為提升機器智能帶來契機,因為大數據將有效推進機器思維方式由自然思維轉向智能思維,這才是大數據思維轉變的關鍵所在、核心內容。

眾所周知,人腦之所以具有智能、智慧,就在於它能夠對周遭的數據信息進行全面收集、邏輯判斷和歸納總結,獲得有關事物或現象的認識與見解。同樣,在大數據時代,隨著物聯網、雲計算、社會計算、可視技術等的突破發展,大數據系統也能夠自動地搜索所有相關的數據信息,並進而類似「人腦」一樣主動、立體、邏輯地分析數據、做出判斷、提供洞見,那麼,無疑也就具有了類似人類的智能思維能力和預測未來的能力。

「智能、智慧」是大數據時代的顯著特徵,大數據時代的思維方式也要求從自然思維轉向智能思維,不斷提升機器或系統的社會計算能力和智能化水平,從而獲得具有洞察力和新價值的東西,甚至類似於人類的「智慧」。

『肆』 大數據入門需學習哪些基礎知識

前言,學大數據要先換電腦:

保證電腦4核8G內存64位操作系統,盡量有ssd做系統盤,否則卡到你喪失信心。硬碟越大越好。
1,語言要求

java剛入門的時候要求javase。

scala是學習spark要用的基本使用即可。

後期深入要求:
java NIO,netty,多線程,ClassLoader,jvm底層及調優等,rpc。
2,操作系統要求
linux 基本的shell腳本的使用。

crontab的使用,最多。

cpu,內存,網路,磁碟等瓶頸分析及狀態查看的工具

scp,ssh,hosts的配置使用。

telnet,ping等網路排查命令的使用
3,sql基本使用
sql是基礎,hive,sparksql等都需要用到,況且大部分企業也還是以數據倉庫為中心,少不了sql。

sql統計,排序,join,group等,然後就是sql語句調優,表設計等。

4,大數據基本了解
Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等這些框架的作用及基本環境的搭建,要熟練,要會運維,瓶頸分析。

5,maprece及相關框架hive,sqoop
深入了解maprece的核心思想。尤其是shuffle,join,文件輸入格式,map數目,rece數目,調優等。
6,hive和hbase等倉庫
hive和hbase基本是大數據倉庫的標配。要回用,懂調優,故障排查。

hbase看浪尖hbase系列文章。hive後期更新。

7,消息隊列的使用
kafka基本概念,使用,瓶頸分析。看浪尖kafka系列文章。

8,實時處理系統
storm和spark Streaming

9,spark core和sparksql
spark用於離線分析的兩個重要功能。

10,最終方向決策
a),運維。(精通整套系統及故障排查,會寫運維腳本啥的。)

b),數據分析。(演算法精通)

c),平台開發。(源碼精通)

自學還是培訓?
無基礎的同學,培訓之前先搞到視頻通學一遍,防止盲目培訓跟不上講師節奏,浪費時間,精力,金錢。
有基礎的盡量搞點視頻學基礎,然後跟群里大牛交流,前提是人家願意,
想辦法跟大牛做朋友才是王道。

『伍』 學大數據需要什麼基礎知識和能力

大數據的發展歷程總體上可以劃分為三個重要階段,萌芽期、成熟期和大規模應用期,20世紀90年至21世紀初,為萌芽期,隨著,一批商業智能工具和知識管理技術的開始和應用,度過了數據萌芽。

21世紀前十年則為成熟期,主要標志為,大數據解決方案逐漸走向成熟,形成了並行計算與分布式系統兩大核心技,谷歌的GFS和MapRece等大數據技術受到追捧,Hadoop平台開始大行期道,2010年以後,為大規模應用期,標志為,數據應用滲透各行各業,數據驅動決策,信息社會智能化程度快速提高。

點擊鏈接加入群聊【大數據學習交流群】:互聯網科技發展蓬勃興起,人工智慧時代來臨,抓住下一個風口。為幫助那些往想互聯網方向轉行想學習,卻因為時間不夠,資源不足而放棄的人。我自己整理的一份最新的大數據進階資料和高級開發教程, 歡迎進階中和進想深入大數據的小夥伴加入。

數據時代的到來,也推動了數據行業的發展,包括企業使用數據獲取價值,促使了大量人員從事於數據的學習,學習大數據需要掌握基礎知識,接下從我的角度,為大家做個簡要的闡述。

學習大數據需要掌握的知識,初期了解概念,後期就要學習數據技術,主要包括:

1.大數據概念

2.大數據的影響

3.大數據的影響

4.大數據的應用

5.大數據的產業

6.大數據處理架構Hadoop

7.大數據關鍵技術

8.大數據的計算模式

後三個牽涉的數據技技術,就復雜一點了,可以細說一下:

1.大數據處理架構Hadoop:Hadoop的特性、Hadoop生態系統、Hadoop的安裝與使用;

2.大數據關鍵技術技術:數據採集、數據存儲與管理、數據處理與分析、數據隱私與安全;

3.大數據處理計算模式:批處理計算、流計算、圖計算、查詢分析計算

數據的核心技術就是獲取數據價值,獲取數據前提是,先要有數據,這就牽涉數據挖掘了。

一、Java語言以java語言為基礎掌握面向對象編程思想所涉及的知識,以及該知識在面向對象編程思想中的應用,培養學生設計程序的能力。掌握程度:精通

二、數據結構與演算法掌握基於JAVA語言的底層數據結構和演算法原理,並且能夠自己動手寫出來關於集合的各種演算法和數據結構,並且了解這些數據結構處理的問題和優缺點。掌握程度:熟練。
三、資料庫原理與MYSQL資料庫掌握關系型資料庫的原理,掌握結構化數據的特性。掌握關系型資料庫的範式。通過MYSQL資料庫掌握通過SQL語言與MYSQL資料庫進行交互。熟練掌握各種復雜SQL語句的編寫。掌握程度:熟練。
四、LINUX操作系統全面了解LINUX。詳解LINUX下的管理命令、用戶管理、網路配置管理等。掌握SHELL腳本編程,能夠根據具體業務進行復雜SHELL腳本的編寫。掌握程度:精通。
五、Hadoop技術學習Hadoop技術的兩個核心:分布式文件系統HDFS和分布式計算框架MapRece。掌握MR的運行過程及相關原理,精通各種業務的MR程序編寫。掌握Hadoop的核心源碼及實現原理。掌握使用Hadoop進行海量數據的存儲、計算與處理。掌握程度:精通。
六、分布式資料庫技術:精通分布式資料庫HBASE、掌握Mongodb及了解其它分布式資料庫技術。精通分布式資料庫原理、應用場景、HBASE資料庫的設計、操作等,能結合HIVE等工具進行海量數據的存儲於檢索。掌握程度:精通。
七、數據倉庫HIVE精通基於hadoop的數據倉庫HIVE。精通HIVESQL的語法,精通使用HIVESQL進行數據操作。內部表、外部表及與傳統資料庫的區別,掌握HIVE的應用場景及Hive與HBase的結合使用。掌握程度:精通。
八、PYTHON語言精通PYTHON語言基礎語法及面向對象。精通PYTHON語言的爬蟲、WEB、演算法等框架。並根據業務可以基於PYTHON語言開發完成的業務功能和系統。掌握程度:精通。
九、機器學習演算法熟練掌握機器學習經典演算法,掌握演算法的原理,公式,演算法的應用場景。熟練掌握使用機器學習演算法進行相關數據的分析,保證分析結果的准確性。掌握程度:熟練。
十、Spark高級編程技術掌握Spark的運行原理與架構,熟悉Spark的各種應用場景,掌握基於SparkRDD的各種運算元的使用;精通SparkStreaming針對流處理的底層原理,熟練應用SparkSql對各種數據源處理,熟練掌握Spark機器學習演算法庫。達到能夠在掌握Spark的各種組件的基礎上,能夠構建出大型的離線或實時的業務項目。掌握程度:精通。
十一、真實大數據項目實戰通過幾個真實的大數據項目把之前學習的知識與大數據技術框架貫穿,學習真實的大數據項目從數據採集、清洗、存儲、處理、分析的完整過程,掌握大數據項目開發的設計思想,數據處理技術手段,解決開發過程中遇到的問題和技術難點如何解決。

『陸』 大數據的應用

大數據典型的應用有電商領域、傳媒領域、金融領域、交通領域、電信領域、安防領域、醫療領域等。


大數據的價值關鍵在於大數據的應用。大數據成為經濟社會發展新的驅動力。隨著物聯網、雲計算、移動互聯網等網路新技術的應用和發展與普及,社會信鍵判息化進程進埋虧入數據時代,海量數據的產生與流轉成為常態。

『柒』 學習大數據需要哪些基礎

第一:計算機基礎知識。計算機基礎知識涉及到三大塊內容,包括操作系統、編程語言和計算機網路,其中操作系統要重點學習一下Linux操作系統,編程語言可以選擇Java或者Python。如果要從事大數據開發,應該重點關注一下Java語言,而如果要從事大數據分析,可以重點關注一下Python語言。計算機網路知識對於大數據從業者來說也比較重要,要了解基本的網路通信過程,涉及到網路通信層次結構和安全的相關內容。
第二:資料庫知識。資料庫知識是學習大數據相關技術的重要基礎,大數據的技術體系有兩大基礎,一部分是分布式存儲,另一部分是分布式計算,所以存儲對於大數據技術體系有重要的意義。初學者可以從Sql語言開始學起,掌握關系型資料庫知識對於學習大數據存儲依然有比較重要的意義。另外,在大數據時代,關系型資料庫依然有大量的應用場景。
第三:數學和統計學知識。從學科的角度來看,大數據涉及到三大學科基礎,分別是數學、統計學和計算機,所以數學和統計學知識對於大數據從業者還是比較重要的。從大數據崗位的要求來看,大數據分析崗位(演算法)對於數學和統計學知識的要求程度比較高,大數據開發和大數據運維則稍微差一些,所以對於數學基礎比較薄弱的初學者來說,可以考慮向大數據開發和大數據運維方向發展。

『捌』 大數據技術的應用

大數據的應用是以大數據技術為基礎,對各行各業或生產生活方面提供決策參考。

大數據應用的典型有:電商領悟、傳媒領領域、金融領域、交通領域、電信領域、安防領域、醫療領域等。

同時大數據的應用是把雙刃劍,一方面可以為我們帶來便利,另一方面也會造成個人隱私泄露的問題。

『玖』 大數據分析和應用的基礎是什麼

大數據分析和應用的基礎是分布式原理
因為數據量大,因此單機不能處理,因此用到版分布式存儲和計算
如何在此權基礎上獲得更佳的性能 那就是要掌握分布式相關的原理,比如分布式計算Maprece知道數據流式怎麼走的,
分布式分析基本都是基於這個範式,雖然用起來和單機一樣,但是能不能寫出高效的演算法 你必須懂原理

閱讀全文

與大數據運用基礎相關的資料

熱點內容
文件格式化恢復 瀏覽:353
v顯卡驅動程序源碼 瀏覽:44
iphone5s聲音小怎麼解決 瀏覽:656
文件名文字看不清了 瀏覽:313
電腦找不到cftmon文件 瀏覽:768
qq分組久伴酒伴久伴 瀏覽:697
文檔轉成pdf格式文件 瀏覽:621
離子數據怎麼寫 瀏覽:876
jspapijar官網下載 瀏覽:366
html調用文本文件 瀏覽:921
想學數控編程哪裡好 瀏覽:860
js獲取系統動態時間間隔 瀏覽:165
win10改win7進pe卡住 瀏覽:456
u盤中毒ink文件 瀏覽:718
蘋果換機數據遷移包含哪些數據 瀏覽:234
程式控制可編程直流電源在哪裡 瀏覽:598
容積長寬高的數據從什麼面測量 瀏覽:978
蘋果手游工作室 瀏覽:362
數據型號特別多怎麼合並 瀏覽:600
企業微信電腦版怎麼無法接受文件 瀏覽:968

友情鏈接