導航:首頁 > 網路數據 > 有關大數據的段子

有關大數據的段子

發布時間:2024-01-12 16:30:20

⑴ 扒扒跟大數據有關的那些事兒

扒扒跟大數據有關的那些事兒

如今,業界和學術界一直在討論一個詞,那就是大數據。不管是學術圈還是IT圈,只要能談論點兒大數據就顯得很高大上。然而,大數據挖掘、大數據分析、大數據營銷等等事情僅僅只是個開始,對大多數公司來說,大數據仍有很強的神秘色彩。於是,在我們還沒有完全搞明白如何運用大數據進行挖掘時,各種過於神化大數據的輿論就已經不絕於耳了。當然,也有很多人直接批判大數據或大數據營銷給我們造成的隱私威脅。也有很多人根本沒有搞清楚什麼是大數據,到底有什麼價值。
於是,站在客觀的角度,圍繞下面幾個問題與大家分享有關大數據的幾個觀點,也扒扒大數據的那些事兒:1、大數據營銷和個人隱私泄露究竟有無因果和邏輯關系?
2、大數據營銷到底能帶給企業什麼樣的價值?到底能帶給用戶什麼價值?用戶是否全盤否定或反感大數據營銷?
3、如何正確看待大數據?如何看待大數據和傳統調查方法或統計學的關系?
4、大數據營銷究竟面臨什麼樣的挑戰?
一、大數據的迅猛發展與數據隱私的憂慮相伴而生
社交媒體的出現,讓用戶數據的分享數量達到了難以估量的程度。而如今,社交媒體的種類有增無減,智能手機的更大普及,又讓更多用戶轉移到移動互聯網,從而又進一步貢獻更多數據和內容。這樣的數據增量讓全球社交媒體的收入大漲,僅根據咨詢公司Gartner2012年的研究結果顯示,2012年全球社交媒體收入估計達到169億美元。
一邊是社交媒體因為大數據的盆缽滿載,另一方面則是用戶不斷毫無保留的將個人信息交給互聯網,這些信息包括年齡、性別、地域、生活狀態、態度、行蹤、興趣愛好、消費行為、健康狀況甚至是性取向等。一時間,針對海量用戶信息的大數據挖掘、大數據分析、大數據精準營銷、廣告精準投放等等迅速被各大公司提上日程。
比如,一個發生在美國的真實故事就會告訴我們,利用數據挖掘如何掌握我們的行蹤。一個美國家庭收到了一家商場投送的關於孕婦用品的促銷劵,促銷劵很明顯是給給家中那位16歲女孩的。女孩的父親很生氣,並找商場討說法。但幾天後,這位父親發現,16歲的女兒真懷孕了。而商場之所以未卜先知,正是通過若干商品的大量消費數據來預估顧客的懷孕情況。
類似的大數據挖掘和營銷事件在今天更多的發生,尤其是社交媒體產生大量數據後。於是,許多人對個人隱私數據開始擔憂,開始批判大數據精準營銷侵犯了個人隱私,憂慮我們進入了大數據失控的時代,並將原因更多歸結於社交媒體。
二、大數據營銷和個人隱私泄露之間不能完全劃等號!邏輯關系不成立!
如果客觀的分析一下上述問題就會發現,這是一個難以分說的雞生蛋還是蛋生雞的問題。一味地批判大數據分析對個人用戶數據的泄露或濫用是不客觀的。
因為,社交媒體的本質在於分享和傳播,社交媒體的出現的確滿足了人們分享個人信息、曬各種數據的慾望,讓人們在過去無聲無息的生活中突然轉移到了可以讓全世界看到自己的平台上來。人們從而達到了內心的滿足感和存在感。因此,單從個體的背後心理來考慮,社交媒體對他們來說是有益的,他們不認為自己貢獻的是不可告人的秘密,既然分享出來,那一定是希望或允許別人看到的。因此,這是一種無形的默許的交易,用戶樂意把自己的各種瑣碎細節暴露於社交媒體,而對社交媒體上雜亂無章的海量用戶數據進行有序的分類和分析也沒有什麼不妥。
當然,如果社交媒體平台隨意濫用或泄露用戶的後台數據,比如個人聯系方式、家庭住址、銀行等極為隱秘的信息,這的確是赤裸的侵犯隱私的行為,極其沒有道德,必須要受到譴責和法律制裁。
但目前,許多大數據精準營銷的前提是對用戶在互聯網上留下的公開顯在的信息進行演算法歸類和內容分析,從而對海量用戶進行人群劃分,或者對小眾群體進一步細分化,甚至達到某種程度上針對單個人的個性化定製,最終達到精準推送廣告或有針對性推出營銷活動的目的。
所以,從這個角度來看,大數據精準營銷與個人主動分享和傳播到網路上的信息數據之間並沒有矛盾。人們起初或許會驚訝:為什麼他們知道我想買什麼?為什麼他們知道我的需求?但隨著「猜透心思」的推送行為讓人們的生活越來越便利時,比如省去大量搜索、查找和對比產品或服務的時間,他們可能會十分習慣並依賴這種精準性,並不會在意他們本來就隨意分享到網路上的雜亂信息被如何挖掘和利用。
因此,用戶發布和分享的信息是否為隱私,在用戶分享信息之前就做過慎重考量和篩選。這一點非常重要,這是侵犯隱私與否的界限。那些被用戶選擇為不適合發布或不希望別人知道的信息就是用戶認為的隱私,而那些已經公開發布到社交媒體或網路上的信息則被用戶認為是可以傳播的。
所以,普通的對海量公開信息的分析、挖掘、歸類,從而進行精準營銷的大數據行為不能一味被罵成是對用戶利益的損害。而那些對用戶存儲在某些位置、不希望被他人了解的信息(私人存儲的信息)如果被別有用心的人泄露或利用,那這就是隱私侵犯行為。但這就不能歸罪於大數據,而應質問存貯平台的安全性問題。
因此,我們不能過分解讀大數據精準營銷。其實,問題的本質在於,人們是否真的在意雜亂信息的去向(涉及到分享信息的背後心理和動機)?以及大數據營銷是否真的觸碰了人們不可告人的秘密或底線(需要對秘密和底線重新定義)?因為,如果人們默認分享的都是公開的,那麼侵犯隱私的概念就是不成立的。如果人們有不希望別人知道的信息,也不會貿然在網路上分享和傳播。
三、大數據營銷究竟會給企業和用戶帶來什麼價值?
討論完上面的問題之後,我們是否應該誠懇對待大數據精準營銷這件事?那麼大數據營銷究竟對於企業和用戶兩方面來說,都有什麼樣的價值?
1、對於企業的價值
讓我們先看一個國外案例:
我們都知道美劇《紙牌屋》,提到《紙牌屋》的成功,最大的功勞便是大數據分析。因此,《紙牌屋》幾乎成了大數據營銷的經典案例,也是美國Netflix公司基於用戶信息挖掘來決定內容生產的成功嘗試。
Netflix的訂閱用戶達到了3000萬左右,而大多數用戶的觀影都與精準推薦系統有關。Netflix會定時收集並分析用戶觀看電影或電視劇的行為,比如根據用戶對電影的評分、用戶的分享行為、用戶的觀影記錄等信息去分析用戶的收看習慣,從而推斷用戶喜歡什麼樣的影視劇,喜歡什麼樣的風格,喜歡什麼樣的導演和演員。在此基礎上利用演算法對用戶感興趣的視頻進行推薦排序,直到用戶找到最喜歡的影視劇。《紙牌屋》的導演和主演就是Netflix挖掘用戶信息後的預測出來的。
那我們再看一個國內案例:
我們都知道阿里巴巴和新浪微博合作的事情,阿里巴巴斥資5.86億入股新浪微博。除了網路上各大媒體分析的,認為阿里巴巴希望打造生態圈、強化流量入口、挑戰騰訊等等原因之外,還有一個重要原因或許就是大數據營銷的戰略。
如今各大互聯網大佬都在跑馬圈地,圈住用戶,誰能圈住用戶,讓用戶在其平台上活躍,誰就掌握了用戶的大量信息(包括顯在的前台信息和隱藏的後台信息)。新浪微博在中國有幾億用戶,這個量十分龐大,但如果新浪不能把這些用戶產生的信息合理的利用,那麼這些資源就是巨大的浪費。我們再看阿里巴巴,中國最大電商平台,它有產品,但是卻沒有完整的用戶日常生活行為信息,只有購買信息,但這些購買信息不足以了解人群特點和喜好。所以,只有跟新浪微博合作,掌握大量用戶的行為信息,從而對其分類,找到不同人群甚至不同個體的喜好、偏好、興趣、愛好、習慣、傳播習慣、分享路徑等等,那麼就能實現精準營銷,甚至還可以通過不同用戶的信息傳播規律,而制定產品的最佳品牌傳播途徑。這是一座巨大的金礦。
新浪微博和阿里巴巴合作後,微博上出現了一些產品推薦信息,同時新浪微博已經推出支付功能。可以想像:未來你在微博上看到相關推薦的產品,恰好是你喜歡的產品,那麼你就可以直接在微博上實現支付和購買。從而新浪微博和阿里巴巴各取所需,共享收益。當然,這是我個人的觀察和分析,不過阿里巴巴的大數據戰略也很明顯了。
2、對於用戶的價值
上述兩個例子說的都是大數據帶給企業的價值,那麼,大數據營銷對於用戶來說,到底有沒有價值?用戶是否十分反感精準營銷?讓我們再來看看一個新的調查數據:
中國傳媒大學國家廣告研究院剛剛發布一份《2014中美移動互聯網發展報告》,這份調查報告對比了中美兩國用戶移動互聯網的使用習慣,以及移動用戶對於移動廣告的態度。
調查顯示,最可能得到智能終端用戶回應的廣告內容為:(1)與用戶要購買物品相關的廣告(2)與要購買物品相關的優惠券(3)搞笑的廣告(4)與用戶最喜愛品牌相關的廣告(5)與用戶在線上訪問過網站或使用過的應用相關的廣告(6)與最近線上購物相關的廣告(7)與用戶所在場所相關的廣告(8)與最近收聽、收看的廣播/電視相關的廣告。(佔比>=20%)
從這些數據我們可以看出,在8個結果中,有6個都是跟大數據精準營銷扯上關系的。比如,與用戶要購買物品相關的廣告,更能引起用戶的回應或互動。如何理解?大數據營銷的前提就是計算並推測用戶的真實需求,看用戶需要購買什麼相關產品,然後給用戶直接推送用戶想要的、喜歡的,做到了精準到達。那麼用戶呢?用戶樂意對這樣的推動廣告或產品做出回應,因為這些廣告少了對用戶的打擾,並且讓用戶費勁心思對對比或貨比三家後才購買的決策過程降低,節省了時間,讓用戶直接找到內心真正所需的產品或服務。
所以,這樣的結果就表明,大數據精準營銷並不是完全都會讓用戶反感,而是看你猜透用戶心思的程度。因此,如果你推送的內容和用戶想要購買的物品相關,與用戶最喜愛的品牌相關等等。那麼這種精準挖掘並不會受到用戶的反感,反而會給用戶帶來便利。

以上是小編為大家分享的關於扒扒跟大數據有關的那些事兒的相關內容,更多信息可以關注環球青藤分享更多干貨

⑵ 大數據里的青年是什麼樣子

90後海歸研製的馬桶能智能體檢;南京餐飲業求職者7成是90後,平均薪資排全國第二;00後們其實很認同傳統美德,九成認為成功要靠自己奮斗……昨天(5月4日)是五四青年節,QQ、淘寶、口碑、58等多家互聯網機構出台了各種角度關於年輕人的大數據畫像,讓我們來看看這里有沒有你熟悉的年輕人。

畫像三

南京餐飲業平均薪資6447元,求職者七成是90後

「四千塊你就想請個服務員?你想多了吧!」這個前兩年流傳的段子或許正在變成現實。58英才招聘研究院聯合口碑剛剛發布的今年1至4月全國重點城市餐飲業用工分析報告顯示,北上廣深、南京等一二線城市餐飲用工缺口巨大,餐飲人員供不應求直接拉高了餐飲企業薪資水平,服務員薪水最高的重點城市依次是北京、南京、廣州、上海等。其中,南京餐飲企業平均支付薪資水平已達6447元。

數據顯示,2018年1-4月,餐飲業企業招聘量城市前十位依次是北京、廣州、深圳、上海、成都、杭州、重慶、武漢、西安、蘇州。餐飲行業員工流動性較大,一直是用工需求最大的行業之一,招人難、留人難已成為絕大多數餐飲企業面臨的問題。

統計數據還顯示,餐飲業企業支付薪資水平城市前十位依次是北京、南京、廣州、上海、深圳、杭州、合肥、蘇州、西安、武漢。其中,北京的餐飲業企業薪資標准居全國第一,為7656元,其次是南京、廣州、上海、深圳,分別為6447元、6377元、6331元和6196元。值得一提的是,南京的餐飲業平均薪資超過了廣州、上海、深圳等一線城市,僅次於北京。

什麼樣的人應聘餐飲業最多?58英才招聘研究院數據顯示,餐飲業求職者中,90後佔比最高,達到72.5%。

以上內容來自:揚子晚報

⑶ 有關大數據 你不一定知道的幾個冷知識

有關大數據 你不一定知道的幾個冷知識

大數據的隱秘魅力就在於,他比你都了解你。你以為你每次按下手機按鍵的動作都是一樣的嗎?哈哈圖樣圖森破。

來自今日頭條的技術副總裁楊震原告訴童鞋們,他們正在測試的「黑科技」,恰恰能從你點擊按鍵的時間和手指面積,推測出你當時的情緒。你的漫不經心、憤怒或者感動,都能夠成為後台為你推送何種消息的依據。未來,如下場景可期:

如果你正處在被女神甩掉的悲傷中,也許客戶端會為你推送——搞基的一百種好處。如果你正處在領到本月工資飄飄欲仙的快樂中,也許客戶端會為你推送——在北京月兩萬何時能買一個廁所?

那麼這種「恰到好處「的情緒拿捏和大數據有什麼關系呢?實際上對你情緒的推測是建立在對你多次正常點擊的記錄之上的。這種行為數據甚至在你還未意識到的時候,就「出賣」了你的情緒。

今日頭條技術副總裁楊震原在分析一個按鈕的平均觸摸時間

你的「姿勢」,才是真的大數據

銀行每天的交易賬目流水的統計數據,並不是大數據,而每個用戶在拿號之後等待了多久才排到,有多少用戶罵娘,有多少用戶過於焦急憤而離去,這些真正的行為才是大數據。

楊震原又舉了今日頭條在應用中的另一個例子。

實際上,你在一篇文章的什麼位置停留多久,然後劃動了多遠,在新的位置停留了多久,是否看了評論,看了幾條評論,都可以按順序被記錄下來。接下來就是通過演算法評估讀者的興趣所在。

CSDN創始人蔣濤也特別提到,美國電商平台Wish正是用大數據的方法,根據每個人的數據不同,「看人下菜碟」地推薦你可能喜歡的貨品,三年時間已經發展成北美最大的電商之一。

所以,一個悲傷的消息是:未來如果你要隱藏自己的身份,不僅僅要變裝易容偽造指紋,甚至連點擊手機,查看文章的習慣都要改變了。

大數據就是:一個都不能少

如果要想知道有多大比例的人喜歡GV,那麼只需要做好抽樣調查就可以了,沒有必要對所有人進行調查。但是如果你想要推銷宅腐的周邊智能硬體產品,則需要逐個排查每個人「獨特」的興趣愛好。

所有數據一個都不能少,這就是所謂的「全量加工」,這些數據的製造者正是各大廠商利潤的源泉。

360商業產品首席架構師劉鵬是一名網紅,他在很多場合都強調:全量加工才是大數據。他說,涉及到個性化推薦、計算廣告、個人徵信這些場景,大規模的計算就是無法避免的。

從技術角度來說,之所以大數據可以做到這么精準,也主要得益於技術的進步。感知設備被豐富地用在五花八門的硬體上,使得以前無法記錄的數據,現在都可以被記錄了。

大數據不應該給人用

大數據應該交給機器做決策,而不是交給人做決策。

這種洋溢著對人類深深不信任感的論斷同樣來自於劉鵬。在他眼中,大數據是為機器提供的食糧。而能夠駕馭大數據的人類基本只有兩種:數據科學家和統計工作者。

IT企業中養一群科學家的可能性為零。而人類的判斷往往基於宏觀、戰略,不可能有精力做到「因事而異」。相比之下機器的判斷比人類更加細致。比如為每個用戶比如畫像、貼標簽。所以,要想把大數據利用透徹,愚蠢的人類還是暫時靠邊站吧。

「有點錯誤」的大數據更好用

「數據」這兩個字,天然給人一種完美而且精準的感覺。在這方面,大數據要挑戰你的底線。作為數字廣告領域的大牛,劉鵬強調,大數據可以存在半一致性這樣模稜兩可的屬性。換句話說,允許數據錯誤和丟失。

納尼?錯誤的數據也是好數據嗎?沒錯。由於數據量巨大,而且分析半天往往沒什麼有用的收獲(價值密度低),分析者往往需要選取一些特徵數據做加工,而對於這些特徵數據,也許還要簡化之後再加工。所以最終大數據要達到的結果是難得糊塗,卻一針見血。

所以,如果有人向喜愛人民網的你推薦草榴的時候,先不要發火,你可能只是大數據的一個錯誤罷了。

保險公司最喜歡和大數據在一起

如果你是一個魯莽的人,最想知道這個情況的無疑是你的汽車保險公司,想必你的保費會居高不下;如果你是一個謹小慎微的人,最想知道的也是保險公司,因為它可以用打折的保費吸引你投保。

在你身上,甚至存在一個精確的「岀險率」數字。這個聽上去很驚悚的數字恰恰是保險公司利潤的來源。因為不掌握這樣大數據的個人,是無法計算自己的岀險率的。保險公司恰恰利用這種信息不對稱,給一個岀險率是萬分之一的人開出了千分之一的保價,相當於賺了十倍的利潤。

隱私問題要靠技術改進

數據比它看上去的樣子更險惡,這是大數據業內人士的普遍共識。即使隱去了你的姓名電話等等敏感信息,只保留你和其他人聯系的記錄,熟悉你的人完全可以猜到你的身份。目前大數據的安全性,在他人的惡意之下,顯得力不從心。

隱私問題,制度只能解決20分,剩下的80分要靠技術進步來解決。

劉鵬如是說。期待市場倒退到前大數據時代,似乎沒有希望了。

如何精確統計出有多少人喜愛蒼井空,有多少人喜歡武藤蘭,但是又不泄露到底是誰喜歡蒼老師,誰喜歡武老師,這是目前大數據的最前沿研究。

有關大數據的政策再嚴格,沒有一套可靠的保密技術,數據的安全都是無從談起的。隱私演算法、數據脫敏、數據隔離。都是研究的方向。在此之前,各位的大數據還都在相對危險的狀態。這也是為什麼目前法律沒有禁止數據買賣,而各大巨頭卻不敢將數據出售的原因。當然,大資料庫市場價目前比較低也是一個重要的原因。

SDCC,中國軟體開發者大會。由全球最大中文IT社區CSDN於2007年創辦,每年一屆。主題是下一代軟體開發技術趨勢與對各行業的深刻影響,以談干貨實料著稱。

以上是小編為大家分享的關於有關大數據 你不一定知道的幾個冷知識的相關內容,更多信息可以關注環球青藤分享更多干貨

⑷ 十個有關大數的信息

十個有關大數的信息:

1)大數據計算提高數據處理效率,增加人類認知盈餘 

大數據技術就像其他的技術革命一樣,是從效率提升入手。大數據技術平台的出現提升了數據處理效率。其效率的提升是幾何級數增長的,過去需要幾天或更多時間處理的數據,現在可能在幾分鍾之內就會完成。

大數據的高效計算能力,為人類節省了更多的時間。我們都知道效率提升是人類社會進步的典型標志,可以推斷大數據技術將帶領人類社會進入另外一個階段。通過大數據計算節省下來的時間,人們可以去消費,娛樂和創造。未來大數據計算將釋放人類社會巨大的產能,增加人類認知盈餘,幫助人類更好地改造世界。 

2)大數據通過全局的數據讓人類了解事物背後的真相 

相對於過去的樣本代替全體的統計方法,大數據將使用全局的數據,其統計出來的結果更為精確,更接事物真相,幫助科學家了解事物背後的真相。大數據帶來的統計結果將糾正過去人們對事物錯誤的認識,影響過去人類行為、社會行為的結論,帶來全新的認知。

有利於政府、企業、科學家對過去人類社會的各種歷史行為真正原因的了解,大數據統計將糾正樣本統計誤差,為統計結論不斷糾錯。大數據可以讓人類更加接近了解大自然,增加對自然災害原因的了解。 

3)大數據有助於了解事物發展的客觀規律,利於科學決策 

大數據收集了全局的數據,准確的數據,通過大數據計算統計出了解事物發展過程中的真相,通過數據分析出解人類社會的發展規律,自然界發展規律。利用大數據提供的分析結果來歸納和演繹出事物的發展規律,通過掌握事物發展規律來幫助人們進行科學決策,大數據時代的精準營銷就是典型的應用。 

4)大數據提供了同事物的連接,客觀了解人類行為 

在沒有大數據之前,我們了解人類行為的數據往往來源於一些被動的調查表格及滯後的統計數據。擁有了大數據技術之後,大量的感測器如手機APP、攝像頭、分享的圖片和視頻等讓我們更加客觀的了解人類的行為。

大數據技術連接了人類行為,通過大數據將人類的行為數據收集起來,經過一定的分析後來統計人類行為,幫助我們了解人類的行為。可以說大數據的一個重要作用就是將人類行為數據進行收集分析,了解人類行為特點,為數據價值的商業運用提供基礎資產 

5)大數據改變過去的經驗思維,幫助人們建立數據思維 

人類社會的發展一直都在依賴著數據,無論是各國文明的演化,農業的規劃,工業的發展,軍事戰役及政治事件等。

但是出現大數據之後,我們將會面對著海量的數據,多種維度的數據、行為的數據、情緒的數據、實時的數據。這些數據是過去沒有了解到的,通過大數據計算和分析技術,人們將會得到不同的事物真相,不同的事物發展規律。

依靠大數據提供的數據分析報告,人們將會發現決定一件事、判斷一件事、了解一件事不再變得困難。各國政府和企業將藉助於大數據來了解民眾需求,拋棄過去的經驗思維和慣性思維,掌握客觀規律,跳出歷史預測未來的困境。

大數據發展趨勢:

1)趨勢一:數據的資源化 

何謂資源化,是指大數據成為企業和社會關注的重要戰略資源,並已成為大家爭相搶奪的新焦點。因而,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。   

2)趨勢二:與雲計算的深度結合 

大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。   

3)趨勢三:科學理論的突破 

隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。隨之興起的數據挖掘、機器學習和人工智慧等相關技術,可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。   

趨勢四:數據科學和數據聯盟的成立 

未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。與此同時,基於數據這個基礎平台,也將建立起跨領域的數據共享平台,之後,數據共享將擴展到企業層面,並且成為未來產業的核心一環。

大數據分析: 

現在的大數據分析,跟傳統意義的分析有一個本質區別,就是傳統的分析是基於結構化、關系性的數據。而且往往是取一個很小的數據集,來對整個數據進行預測和判斷。但現在是大數據時代,理念已經完全改變了,現在的大數據分析,是對整個數據全集直接進行存儲和管理分析。

(4)有關大數據的段子擴展閱讀:

大數含義

1. 交易員術語,指匯率的頭幾位數字。

2. 數學用語,指兩個數中較大的數。

3.代表十的七十二次方。

4.大數在編程中表示超過32位二進制位的數。

⑸ 一個段子解釋什麼叫大數據什麼叫藍海紅海什麼叫互聯網思維什麼叫眾籌

大數據:指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產!
紅海戰略:是指市場競爭已經白熱化,產品、服務同質化嚴重,企業利潤呈現微薄甚至負利,在這樣的市場中競爭、搏殺,價格戰此起彼伏,最後都是兩敗俱傷,所以很形象的表示為紅海;對於後進入的企業就在沒有必要進去了。
藍海戰略:是指通過創新,無論是經營管理創新、營銷創新還是商業模式創新等等,都是通過改造現有的體系,從成本、消費群體、消費方式轉變、產品服務升級提升等諸多方面,實現創新從而跳出紅海,開辟屬於自己的藍海市場空間,達到盈利的目的。通過創新實現進步,帶給消費者更多的體驗和享受,並且消費者願意接受的方式,但藍海的開拓是建立在時間效力之上的,在新開辟的市場中很快會有跟進者,從而又會出現紅海的情況,所以企業必須保持領先,不斷的超越自己,不斷發現新的藍海,保持盈利水平。
互聯網思維:充分利用互聯網的精神、價值、技術、方法、規則、機會來指導、處理、創新、工作的思想。世界公僕領袖「聯誼會公僕」、「全球大同」的作者彭友指出全球已進入互聯網時代,我思獻人人、人人助我思的互聯網思維順勢而生。
互聯網以用戶體驗為中心,真正找到用戶的痛點,找到用戶的普遍需求,為客戶創造價值。
眾籌:簡單說就是有大眾或群眾做投資的一種方式,比如現在比較流行的PHP投資這種類型

⑹ 關於大數據應用有什麼例子

大數據應用實例:

1、關能源行業大數據應用

計算居民用電量。

2、職業籃球賽大數據應用

專業籃球隊會通過搜集大量數據來分析賽事情況,然而他們還在為這些數據的整理和實際意義而發愁。通過分析這些數據,找到對手的弱點。

3、保險行業大數據應用

集中處理所有的客戶信息。

閱讀全文

與有關大數據的段子相關的資料

熱點內容
書香門第安卓 瀏覽:395
如何分離編程數值 瀏覽:996
描述文件是幹嘛的 瀏覽:868
文件格式化恢復 瀏覽:353
v顯卡驅動程序源碼 瀏覽:44
iphone5s聲音小怎麼解決 瀏覽:656
文件名文字看不清了 瀏覽:313
電腦找不到cftmon文件 瀏覽:768
qq分組久伴酒伴久伴 瀏覽:697
文檔轉成pdf格式文件 瀏覽:621
離子數據怎麼寫 瀏覽:876
jspapijar官網下載 瀏覽:366
html調用文本文件 瀏覽:921
想學數控編程哪裡好 瀏覽:860
js獲取系統動態時間間隔 瀏覽:165
win10改win7進pe卡住 瀏覽:456
u盤中毒ink文件 瀏覽:718
蘋果換機數據遷移包含哪些數據 瀏覽:234
程式控制可編程直流電源在哪裡 瀏覽:598
容積長寬高的數據從什麼面測量 瀏覽:978

友情鏈接