導航:首頁 > 網路數據 > 大數據集成分析

大數據集成分析

發布時間:2024-01-10 13:31:37

Ⅰ 如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

Ⅱ 大數據分析一般用什麼工具分析

今天就我們用過的幾款大數據分析工具簡單總結一下,與大家分享。

1、Tableau

這個號稱敏捷BI的扛把子,魔力象限常年位於領導者象限,界面清爽、功能確實很強大,實至名歸。將數據拖入相關區域,自動出圖,圖形展示豐富,交互性較好。圖形自定義功能強大,各種圖形參數配置、自定義設置可以靈活設置,具備較強的數據處理和計算能力,可視化分析、互動式分析體驗良好。確實是一款功能強大、全面的數據可視化分析工具。新版本也集成了很多高級分析功能,分析更強大。但是基於圖表、儀錶板、故事報告的邏輯,完成一個復雜的業務匯報,大量的圖表、儀錶板組合很費事。給領導匯報的PPT需要先一個個截圖,然後再放到PPT裡面。作為一個數據分析工具是合格的,但是在企業級這種應用匯報中有點局限。

2、PowerBI

PowerBI是蓋茨大佬推出的工具,我們也興奮的開始試用,確實完全不同於Tableau的操作邏輯,更符合我們普通數據分析小白的需求,操作和Excel、PPT類似,功能模塊劃分清晰,上手真的超級快,圖形豐富度和靈活性也是很不錯。但是說實話,畢竟剛推出,系統BUG很多,可視化分析的功能也比較簡單。雖然有很多復雜的數據處理功能,但是那是需要有對Excel函數深入理解應用的基礎的,所以要支持復雜的業務分析還需要一定基礎。不過版本更新倒是很快,可以等等新版本。

3、Qlik

和Tableau齊名的數據可視化分析工具,QlikView在業界也享有很高的聲譽。不過Qlik Seanse產品系列才在大陸市場有比較大的推廣和應用。真的是一股清流,界面簡潔、流程清晰、操作簡單,交互性較好,真的是一款簡單易用的BI工具。但是不支持深度的數據分析,圖形計算和深度計算功能缺失,不能滿足復雜的業務分析需求。

最後將視線聚焦國內,目前搜索排名和市場宣傳比較好的也很多,永洪BI、帆軟BI、BDP等。不過經過個人感覺整體宣傳大於實際。

4、永洪BI

永洪BI功能方面應該是相對比較完善的,也是拖拽出圖,有點類似Tableau的邏輯,不過功能與Tableau相比還是差的不是一點半點,但是操作難度居然比Tableau還難。預定義的分析功能比較豐富,圖表功能和靈活性較大,但是操作的友好性不足。宣傳擁有高級分析的數據挖掘功能,後來發現就集成了開源的幾個演算法,功能非常簡單。而操作過程中大量的彈出框、難以理解含義的配置項,真的讓人很暈。一個簡單的堆積柱圖,就研究了好久,看幫助、看視頻才搞定。哎,只感嘆功能藏得太深,不想給人用啊。

5、帆軟BI

再說號稱FBI的帆軟BI,帆軟報表很多國人都很熟悉,功能確實很不錯,但是BI工具就真的一般般了。只能簡單出圖,配合報表工具使用,能讓頁面更好看,但是比起其他的可視化分析、BI工具,功能還是比較簡單,分析的能力不足,功能還是比較簡單。帆軟名氣確實很大,號稱行業第一,但是主要在報表層面,而數據可視化分析方面就比較欠缺了。

6、Tempo

另一款工具,全名叫「Tempo大數據分析平台」,宣傳比較少,2017年Gartner報告發布後無意中看到的。是一款BS的工具,申請試用也是費盡了波折啊,永洪是不想讓人用,他直接不想賣的節奏。

第一次試用也是一臉懵逼,不知道該點那!不過抱著破罐子破摔的心態稍微點了幾下之後,操作居然越來越流暢。也是拖拽式操作,數據可視化效果比較豐富,支持很多便捷計算,能滿足常用的業務分析。最最驚喜的是它還支持可視化報告導出PPT,徹底解決了分析結果輸出的問題。深入了解後,才發現他們的核心居然是「數據挖掘」,演算法十分豐富,也是拖拽式操作,我一個文科的分析小白,居然跟著指導和說明做出了一個數據預測的挖掘流,簡直不要太驚喜。掌握了Tempo的基本操作邏輯後,居然發現他的易用性真的很不錯,功能完整性和豐富性也很好。

Ⅲ 大數據分析平台哪個好

大數據分析平台比較好的有:Cloudera、星環Transwarp、阿里數加、華為FusionInsight、Smartbi。

1、Cloudera

Cloudera提供一個可擴展、靈活、集成的平台,可拿喊此用來方便的管理您的企業中快速增長的多種多樣的數據,從而部署和管理Hadoop和相關項目、操作和分析您的數據以及保護數據的安全。

Ⅳ 常用的大數據分析軟體有哪些

數據分析軟體有Excel、SAS、R、SPSS、Tableau Software。

1、Excel

為Excel微軟辦公套裝軟體的一個重要的組成部分,它可以進行各種回數據的處理、答統計分析和輔助決策操作,廣泛地應用於管理、統計財經、金融等眾多領域。



5、Tableau Software

Tableau Software用來快速分析、可視化並分享信息。Tableau Desktop 是基於斯坦福大學突破性技術的軟體應用程序。它可以以在幾分鍾內生成美觀的圖表、坐標圖、儀表盤與報告。

Ⅳ 什麼是大數據分析 主要應用於哪些行業以製造業為例

大數據作為IT行業最流行的詞彙,圍繞大數據的商業價值的使用,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等,逐漸成為業界所追求的利潤焦點。隨著大數據時代的到來,大數據分析也應運而生。

1.大數據分析主要應用於哪些行業?

製造業: 利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

金融業: 大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

汽車行業: 利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。

互聯網行業: 藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。

餐飲行業: 利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。

2.大數據分析師就業前景如何?

從20世紀90年代起,歐美國家開始大量培養數據分析師,直到現在,對數據分析師的需求仍然長盛不衰,而且還有擴展之勢。

根據美國勞工部預測,到2018年,數據分析師的需求量將增長20%。就算你不是數據分析師,但數據分析技能也是未來必不可少的工作技能之一。在數據分析行業發展成熟的國家,90%的市場決策和經營決策都是通過數據分析研究確定的。

3.關於大數據分析具體含義?

1、數據分析可以讓人們對數據產生更加優質的詮釋,而具有預知意義的分析可以讓分析員根據可視化分析和數據分析後的結果做出一些預測性的推斷。

2、大數據的分析與存儲和數據的管理是一些數據分析層面的最佳實踐。通過按部就班的流程和工具對數據進行分析可以保證一個預先定義好的高質量的分析結果。

3、不管使用者是數據分析領域中的專家,還是普通的用戶,可作為數據分析工具的始終只能是數據可視化。可視化可以直觀的展示數據,讓數據自己表達,讓客戶得到理想的結果。

什麼是大數據分析 主要應用於哪些行業?中琛魔方大數據平台指出大數據的價值,遠遠不止於此,大數據針對各行各業的滲透,大大推動了社會生產和生活,未來必將產生重大而深遠的影響。

我們可以看看億信華辰關於製造業的案例,

某電建集團主要從事國內外高速公路、市政、鐵路、軌道交通、橋梁、隧 道、城市綜合體開發、機場、港口、航道、地下綜合管廊以及生態水環境治理、海綿 城市建設、環境保護等項目投資、建設、運營等,為客戶提供投資融資、咨詢規劃、 設計建造、管理運營一攬子解決方案和集成式、一體化服務。成立以來,投資建設了 一大批體量大、強度高、領域寬的基礎設施及環保項目。

該公司的數據化建設,或將成為新型基礎設施建設的一個縮影。

項目背景 數字經濟時代,數據資源已經成為企業的核心資源和核心競爭力,各類企業信息化建設的重心正從 IT(信息技術) 向 DT(數據技術) 轉化,未來信息化建設的重心將是如何對組織內外部的數據進行深入、多維、實時的挖掘和分析,以滿足決策層的需求,推動信息化向更高層面進化,構築公司數字經濟時代的新優勢。目前,由於各級各部門大量的時間用在內外部各種繁雜的報表填報、匯總、統計和分析上,同時各級領導有對公司或者所轄單位的整體經營情況仍舊通過傳統的匯報、傳統的報表等了解,缺乏直觀和可視化系統支撐決策分析,主要存在問題如下:1、數據孤島嚴重各級各部門數據無法有效共享,跨部門跨層級的數據採集、共享和分析利用困難。2、數據採集方式落後數據採集仍舊採用傳統 EXCEL 方式進行,缺乏自下而上的數據採集、數據審核、數據報送、匯總分析的數據採集平台支撐,導致數據源分散、數據標准不統一、數據質量難以保證、數據採集效率低下。3、缺乏統一的決策經營指標體系和數據資源統一管理機制導致數據資源不能有效利用,價值無法充分發揮,無法為各級領導決策提供有效支持。

建設內容 為徹底解決以上問題,根據需求和數據資產類項目建設方式,系統實現按照「指標資源整理-應用場景展現設計--數據獲取-指標資源池-頁面實現-決策門戶 」的方式設計。即根據梳理的指標體系應用場景需要確定設計展現界面展現內容,根據展現內容確定指標體系,根據指標體系來並收集相關數據。

1、搭建智能填報系統 梳理指標體系,構建決策指標和主題指標,明確指標類型,指標數據來源,各指標輸出口徑:是否填報、填報維度與對象、填報周期等等。實現公司各級各部門自下而上決策數據填報、數據審核、 數據報送、匯總查詢、數據補錄等全過程網路化數據採集的需要。

2、構建經營決策指標體系構建公司經營決策指標體系。收集數據分析需求,分析匯總形成公司市場、經營、履約、運營、項目等生產經營關鍵指標和相關數據分析主題、指標,形成指標 資源池,實現決策數據的體系化、指標化和模型化。

3、決策指標體系建設根據某電建集團提供數據的內容和主要特徵,將決策指標體系的指標分為運營指標、經營指標、整體指標、市場指標、履約指標五類一級指標。每類一級指標又分別由若干個二級指標組成。

4、建設決策支持系統通過億信BI工具,基於報表採集的數據和相關信息系統積累的數據, 初步構建管理駕駛艙,滿足面向公司決策層和部門領導的數據分析,可視化圖表化輔助領導管理決策,並集成電建通APP應用,實現決策移動化。

5、搭建自助式BI通過豌豆BI工具搭建自助式 BI。為市場營銷、建設管理、資產運營、財務管理等部門有自助探索數據分析的業務人員提供自助式可視化分析工具。

價值體現 在合作中,億信華辰根據當前數據分析應用的訴求,幫助該電建集團建設決策整體指標、市場指標、履約指標、運營指標五個模塊,提供了從數據採集、數據匯總到指標口徑定義、指標建模、指標數據落地和數據可視化分析於一體的完整的解決方案。決策管理平台以業務分析平台為基礎,以更核心的指標、更直觀的展現方式實現數據的分析與監控,支撐領導層的管理決策。主要包括管理駕駛艙、項目看板專題、市場專題、經營專題、履約專題、運營專題等場景。使數據資源得到充分利用,最大程度的發揮數據價值。

Ⅵ 盤點2021年大數據分析常見的5大難點!

2021年已經到來,現在是深入研究大數據分析面臨的挑戰的時候了,需要調查其根本原因,本文重點介紹了解決這些問題的潛在解決方案。

1、解決方案無法提供新見解或及時的見解

(1)數據不足

有些組織可能由於分析數據不足,無法生成新的見解。在這種情況下,可以進行數據審核,並確保現有數據集成提供所需的見解。新數據源的集成也可以消除數據的缺乏。還需要檢查原始數據是如何進入系統的,並確保所有可能的維度和指標均已經公開並進行分析。最後,數據存儲的多樣性也可能是一個問題。可以通過引入數據湖來解決這一問題。

(2)數據響應慢

當組織需要實時接收見解時,通常會發生這種情況,但是其系統是為批處理而設計的。因此有些數據現在仍無法使用,因為它們仍在收集或預處理中。

檢查組織的ETL(提取、轉換、載入)是否能夠根據更頻繁的計劃來處理數據。在某些情況下,批處理驅動的解決方案可以將計劃調整提高兩倍。

(3)新系統採用舊方法

雖然組織採用了新系統。但是通過原有的辦法很難獲得更好的答案。這主要是一個業務問題,並且針對這一問題的解決方案因情況而異。最好的方法是咨詢行業專家,行業專家在分析方法方面擁有豐富經驗,並且了解其業務領域。

2、不準確的分析

(1)源數據質量差

如果組織的系統依賴於有缺陷、錯誤或不完整的數據,那麼獲得的結果將會很糟糕。數據質量管理和涵蓋ETL過程每個階段的強制性數據驗證過程,可以幫助確保不同級別(語法、語義、業務等)的傳入數據的質量。它使組織能夠識別並清除錯誤,並確保對某個區域的修改立即顯示出來,從而使數據純凈而准確。

(2)與數據流有關的系統缺陷

過對開發生命周期進行高質量的測試和驗證,可以減少此類問題的發生,從而最大程度地減少數據處理問題。即使使用高質量數據,組織的分析也可能會提供不準確的結果。在這種情況下,有必要對系統進行詳細檢查,並檢查數據處理演算法的實施是否無故障

3、在復雜的環境中使用數據分析

(1)數據可視化顯示凌亂

如果組織的報告復雜程度太高。這很耗時或很難找到必要的信息。可以通過聘請用戶界面(UI)/用戶體驗(UX)專家來解決此問題,這將幫助組織創建引人注目的用戶界面,該界面易於瀏覽和使用。

(2)系統設計過度

數據分析系統處理的場景很多,並且為組織提供了比其需要還要多的功能,從而模糊了重點。這也會消耗更多的硬體資源,並增加成本。因此,用戶只能使用部分功能,其他的一些功能有些浪費,並且其解決方案過於復雜。

確定多餘的功能對於組織很重要。使組織的團隊定義關鍵指標:希望可以准確地測量和分析什麼,經常使用哪些功能以及關注點是什麼。然後摒棄所有不必要的功能。讓業務領域的專家來幫助組織進行數據分析也是一個很好的選擇。

4、系統響應時間長

(1)數據組織效率低下

也許組織的數據組織起來非常困難。最好檢查其數據倉庫是否根據所需的用例和方案進行設計。如果不是這樣,重新設計肯定會有所幫助。

(2)大數據分析基礎設施和資源利用問題

問題可能出在系統本身,這意味著它已達到其可擴展性極限,也可能是組織的硬體基礎設施不再足夠。

這里最簡單的解決方案是升級,即為系統添加更多計算資源。只要它能在可承受的預算范圍內幫助改善系統響應,並且只要資源得到合理利用就很好。從戰略角度來看,更明智的方法是將系統拆分為單獨的組件,並對其進行獨立擴展。但是需要記住的是,這可能需要對系統重新設計並進行額外的投資。

5、維護成本昂貴

(1)過時的技術

組織最好的解決辦法是採用新技術。從長遠來看,它們不僅可以降低系統的維護成本,還可以提高可靠性、可用性和可擴展性。逐步進行系統重新設計,並逐步採用新元素替換舊元素也很重要。

(2)並非最佳的基礎設施

基礎設施總有一些優化成本的空間。如果組織仍然採用的是內部部署設施,將業務遷移到雲平台可能是一個不錯的選擇。使用雲計算解決方案,組織可以按需付費,從而顯著降低成本。

(3)選擇了設計過度的系統

如果組織沒有使用大多數系統功能,則需要繼續為其使用的基礎設施支付費用。組織根據自己的需求修改業務指標並優化系統。可以採用更加符合業務需求的簡單版本替換某些組件。

Ⅶ 誰知道大數據分析工具都有什麼

常用到的大數據分析工具大概有
1.專業的大數據分析工具
2.各種Python數據可視化第三方庫
3.其它語言的數據可視化框架
一、專業的大數據分析工具
1、FineReport
FineReport是一款純java編寫的、集數據展示(報表)和數據錄入(表單)功能於一身的企業級web報表工具,只需要簡單的拖拽操作便可以設計復雜的中國式報表,搭建數據決策分析系統。
2、FineBI
FineBI是新一代自助大數據分析的商業智能產品,提供了從數據准備、自助數據處理、數據分析與挖掘、數據可視化於一體的完整解決方案,也是我比較推崇的可視化工具之一。
FineBI的使用感同Tableau類似,都主張可視化的探索性分析,有點像加強版的數據透視表。上手簡單,可視化庫豐富。可以充當數據報表的門戶,也可以充當各業務分析的平台。
二、Python的數據可視化第三方庫
Python正慢慢地成為數據分析、數據挖掘領域的主流語言之一。在Python的生態里,很多開發者們提供了非常豐富的、用於各種場景的數據可視化第三方庫。這些第三方庫可以讓我們結合Python語言繪制出漂亮的圖表。
1、pyecharts
Echarts(下面會提到)是一個開源免費的javascript數據可視化庫,它讓我們可以輕松地繪制專業的商業數據圖表。當Python遇上了Echarts,pyecharts便誕生了,它是由chenjiandongx等一群開發者維護的Echarts Python介面,讓我們可以通過Python語言繪制出各種Echarts圖表。
2、Bokeh
Bokeh是一款基於Python的互動式數據可視化工具,它提供了優雅簡潔的方法來繪制各種各樣的圖形,可以高性能地可視化大型數據集以及流數據,幫助我們製作互動式圖表、可視化儀錶板等。
三、其他數據可視化工具
1、Echarts
前面說過了,Echarts是一個開源免費的javascript數據可視化庫,它讓我們可以輕松地繪制專業的商業數據圖表。
大家都知道去年春節以及近期央視大規劃報道的網路大數據產品,如網路遷徙、網路司南、網路大數據預測等等,這些產品的數據可視化均是通過ECharts來實現的。
2、D3
D3(Data Driven Documents)是支持SVG渲染的另一種JavaScript庫。但是D3能夠提供大量線性圖和條形圖之外的復雜圖表樣式,例如Voronoi圖、樹形圖、圓形集群和單詞雲等。

Ⅷ 教育大數據分析的三大方法

一、常用大數據分析方法
1、描述性分析
這是業務上使用最多的分析方法,也是最簡單的數據分析方法,為企業提供重要的指標和業務衡量方法,可以通過企業各種數據獲得很多客戶的情況,例如客戶的喜好,使用產品習慣等。
2、診斷分析
做好描述性分析之後就可以進行診斷分析了,主要是通過評估描述性數據,診斷分析工具可以使數據分析對數據進行深入分析,並深入數據的核心,一個設計良好的數據分析工具可以集成數據讀取、特徵過濾和按時間序列進行數據鑽取的功能,從而更好地分析數據。
3、預測分析
預測分析是用於預測未來事件發生的可能性,一個可量化值的預測,或者事件發生時間點的預測,都可以通過預測模型來完成,預測模型也是一種重要的方法,在許多領域得到應用。
4、指令分析
數據和復雜性分析的下一步是指令分析,指令模型可以幫助用戶決定應該採取什麼措施。

閱讀全文

與大數據集成分析相關的資料

熱點內容
wt是什麼文件 瀏覽:75
孩子出生證能在什麼網站找到嗎 瀏覽:465
java日期compare 瀏覽:120
深州有哪個編程學校好 瀏覽:826
抖音數據中心怎麼才算合格 瀏覽:540
全棧視頻數據是什麼 瀏覽:787
網上少兒編程哪個好些 瀏覽:132
oracle資料庫優化方法 瀏覽:844
怎麼關閉網路喚醒 瀏覽:894
孤單的微信頭像動漫 瀏覽:305
有沒有哪個大學教編程 瀏覽:851
wordpress後台添加廣告位置 瀏覽:491
怎樣快速修改qq密碼 瀏覽:145
怎麼清除惡意攻擊網站 瀏覽:511
qq頭像女生側顏馬尾 瀏覽:718
蘋果自己的文件格式 瀏覽:85
放在c盤的app如何刪除 瀏覽:912
華為手機克隆後文件放在哪裡 瀏覽:631
清樂網站製作需要多少人 瀏覽:294
網路游戲系統 瀏覽:933

友情鏈接