❶ 如何進行大數據分析及處理
聚雲化雨的處理方式
聚雲:探碼科技全面覆蓋各類數據的處理應用。以數據為原料,通過網路數據採集、生產設備數據採集的方式將各種原始數據凝結成雲,為客戶打造強大的數據存儲庫;
化雨:利用模型演算法和人工智慧等技術對存儲的數據進行計算整合讓數據與演算法產生質變反應化雲為雨,讓真正有價值的數據流動起來;
開渠引流,潤物無聲:將落下「雨水」匯合成數據湖泊,對數據進行標注與處理根據行業需求開渠引流,將一條一條的數據支流匯合集成數據應用中,為行業用戶帶來價值,做到春風化雨,潤物無聲。
❷ 大數據技術常用的數據處理方式有哪些
大數據技術常用的數據處理方式,有傳統的ETL工具利用多線程處理文件的方式;有寫MapRece,有利用Hive結合其自定義函數,也可以利用Spark進行數據清洗等,每種方式都有各自的使用場景。
在實際的工作中,需要根據不同的特定場景來選擇數據處理方式。
1、傳統的ETL方式
傳統的ETL工具比如Kettle、Talend、Informatica等,可視化操作,上手比較快,但是隨著數據量上升容易導致性能出問題,可優化的空間不大。
2、Maprece
寫Maprece進行數據處理,需要利用java、python等語言進行開發調試,沒有可視化操作界面那麼方便,在性能優化方面,常見的有在做小表跟大表關聯的時候,可以先把小表放到緩存中(通過調用Maprece的api),另外可以通過重寫Combine跟Partition的介面實現,壓縮從Map到rece中間數據處理量達到提高數據處理性能。
3、Hive
在沒有出現Spark之前,Hive可謂獨占鰲頭,涉及離線數據的處理基本都是基於Hive來做的,Hive採用sql的方式底層基於Hadoop的Maprece計算框架進行數據處理,在性能優化上也不錯。
4、Spark
Spark基於內存計算的准Maprece,在離線數據處理中,一般使用Spark sql進行數據清洗,目標文件一般是放在hdf或者nfs上,在書寫sql的時候,盡量少用distinct,group by recebykey 等之類的運算元,要防止數據傾斜。
❸ 如何進行大數據處理
大數據處理之一:收集
大數據的收集是指運用多個資料庫來接收發自客戶端(Web、App或許感測器方式等)的 數據,而且用戶能夠經過這些資料庫來進行簡略的查詢和處理作業,在大數據的收集進程中,其主要特色和應戰是並發數高,因為同時有可能會有成千上萬的用戶 來進行拜訪和操作
大數據處理之二:導入/預處理
雖然收集端本身會有許多資料庫,但是假如要對這些海量數據進行有效的剖析,還是應該將這 些來自前端的數據導入到一個集中的大型分布式資料庫,或許分布式存儲集群,而且能夠在導入基礎上做一些簡略的清洗和預處理作業。導入與預處理進程的特色和應戰主要是導入的數據量大,每秒鍾的導入量經常會到達百兆,甚至千兆等級。
大數據處理之三:核算/剖析
核算與剖析主要運用分布式資料庫,或許分布式核算集群來對存儲於其內的海量數據進行普通 的剖析和分類匯總等,以滿足大多數常見的剖析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及根據 MySQL的列式存儲Infobright等,而一些批處理,或許根據半結構化數據的需求能夠運用Hadoop。 核算與剖析這部分的主要特色和應戰是剖析觸及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
大數據處理之四:發掘
主要是在現有數據上面進行根據各種演算法的核算,然後起到預測(Predict)的作用,然後實現一些高等級數據剖析的需求。主要運用的工具有Hadoop的Mahout等。該進程的特色和應戰主要是用於發掘的演算法很復雜,並 且核算觸及的數據量和核算量都很大,常用數據發掘演算法都以單線程為主。
關於如何進行大數據處理,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❹ 大數據預處理的方法有哪些
1、數據清理
數據清理常式就是通過填寫缺失值、光滑雜訊數據、識別或者刪除離群點,並且解決不一致性來進行“清理數據”。
2、數據集成
數據集成過程將來自多個數據源的數據集成到一起。
3、數據規約
數據規約是為了得到數據集的簡化表示。數據規約包括維規約和數值規約。
4、數據變換
通過變換使用規范化、數據離散化和概念分層等方法,使得數據的挖掘可以在多個抽象層面上進行。數據變換操作是提升數據挖掘效果的附加預處理過程。