① 統計學中相關性和因果性到底是什麼關系有什麼區別
當討論數據時,講的最多的是數據的相關性,而希望得到的則是事件之間的因果聯系;但事實往往是復雜的,統計數據有相關性並不意味著兩個事件具有因果聯系,而具有因果聯系的兩件事從統計數據上看有時也並不相關。
相關性是指兩個或多個事物同時發生,具有關聯,而因果性是指因為A所以B,兩者具有明顯的差異。
② 大數據常見技術應用有哪些
大數據常見技術應用有農業互聯網、金融業互聯網、電子商務、醫療器械行業、零售業大數據、生物科技
一、農業互聯網
生物科技關鍵就是指雲計算技術在基因分析上的運用,根據數據管理平台人們能夠將本身和植物體基因分析的結果開展紀錄和儲存,運用創建應用場景雲計算技術的遺傳基因資料庫查詢。雲計算技術將會加快遺傳基因技術性的科學研究,迅速協助生物學家開展實體模型的創建和遺傳基因組成模擬計算。
③ 企業大數據實戰案例
企業大數據實戰案例
一、家電行業
以某家電公司為例,它除了做大家熟知的空調、冰箱、電飯煲外,還做智能家居,產品有成百上千種。在其集團架構中,IT部門與HR、財務等部門並列以事業部形式運作。
目前家電及消費電子行業正值「內憂外患」,產能過剩,價格戰和同質化現象嚴重;互聯網企業涉足,顛覆競爭模式,小米的「粉絲經濟」,樂視的「平台+內容+終端+應用」,核心都是經營「用戶」而不是生產。該公司希望打造極致產品和個性化的服務,將合適的產品通過合適的渠道推薦給合適的客戶,但在CPC模型中當前只具備CP匹配(產品渠道),缺乏用戶全景視圖支持,無法打通「CP(客戶產品)」以及「CC(客戶渠道)」的匹配。
基於上述內外環境及業務驅動,該公司希望將大數據做成所有業務解決方案的樞紐。以大數據DMP作為企業數據核心,充分利用內部數據源、外部數據源,按照不同域組織企業數據,形成一個完整的企業數據資產。然後,利用此系統服務整個企業價值鏈中的各種應用。
那麼問題來了,該公司的數據分散在不同的系統中,更多的互聯網電商數據分散在各大電商平台,無法有效利用,怎麼解決?該公司的應對策略是:1)先從外部互聯網數據入手,引入大數據處理技術,一方面解決外部互聯網電商數據利用短板,另一方面可以試水大數據技術,由於互聯網數據不存在大量需要內部協調的問題,更容易快速出效果;2)建設DMP作為企業統一數據管理平台,整合內外部數據,進行用戶畫像構建用戶全景視圖。
一期建設內容:技術實現上通過定製Spark爬蟲每天抓取互聯網數據(主要是天貓、京東、國美、蘇寧、淘寶上的用戶評論等數據),利用Hadoop平台進行存儲和語義分析處理,最後實現「行業分析」、「競品分析」、「單品分析」 三大模塊。
該家電公司大數據系統一期建設效果,迅速在市場洞察、品牌診斷、產品分析、用戶反饋等方面得到體現。
二期建設目標:建設統一數據管理平台,整合公司內部系統數據、外部互聯網數據(如電商數據)、第三方數據(如外部合作、塔布提供的第三方消費者數據等)。
該公司大數據項目對企業的最大價值是將沉澱的數據資產轉化成生產力。IT部門,通過建設企業統一的數據管理平台,融合企業內外部數據,對於新應用快速支持,起到敏捷IT的作用;業務部門,通過產品、品牌、行業的洞察,輔助企業在產品設計、廣告營銷、服務優化等方面進行優化改進,幫助企業進行精細化運營,基於用戶畫像的精準營銷和個性化推薦,幫助企業給用戶打造極致服務體驗,提升客戶粘性和滿意度;戰略部門,通過市場和行業分析,幫助企業進行產品布局和戰略部署。
二、快消行業
以寶潔為例,在與寶潔中國市場部的合作中發現,並不是一定要先整合內外部數據才能做用戶畫像和客戶洞察。寶潔抓取了主流網站上所有與寶潔評價相關的數據,利用語義分析和建模,掌握不同消費群體的購物喜好和習慣,僅僅利用外部公開數據,快速實現了客戶洞察。
此外,寶潔還在渠道管理上進行創新。利用互聯網用戶評論數據進行社群聆聽,監控與寶潔合作的50個零售商店相關的用戶評論,通過線上數據進行渠道/購物者研究並指導渠道管理優化。
實現過程:
1、鎖定微博、大眾點評等互聯網數據源,採集百萬級別消費者談及的與寶潔購物相關內容;
2、利用自然語言處理技術,對用戶評論進行多維建模,包括購物環境、服務、價值等10多個一級維度和50個二級維度,實現對用戶評論的量化;
3、對沃爾瑪、屈臣氏、京東等50個零售渠道進行持續監控,結果通過DashBoard和周期性分析報告呈現。
因此,寶潔能夠關聯企業內部數據,更有效掌握KA渠道整體情況,甚至進一步掌握KA渠道的關鍵細節、優勢與劣勢,指導渠道評級體系調整,幫助制定產品促銷規劃。
三、金融行業
對於消費金融來說,家電、快消的案例也是適用的,尤其是精準營銷、產品推薦等方面。這里主要分享徵信風控方面的應用。顯然,互聯網金融如果對小額貸款都像銀行一樣做實地考察,並投入大量人力進行分析評判的話,成本是很高的,所以就有了基於大數據的批量的信用評分模型。最終目的也是實現企業畫像和企業中的關鍵人物畫像,再利用數據挖掘、數據建模的方法建立授信模型。宜信的宜人貸、芝麻信用等本質上就是這個架構。
在與金融客戶的接觸中發現,不論銀行還是金融公司,對外部數據的需求都越發迫切,尤其是外部強特徵數據,比如失信記錄、第三方授權後的記錄、網路行為等。
以上是小編為大家分享的關於企業大數據實戰案例的相關內容,更多信息可以關注環球青藤分享更多干貨
④ 大數據的應用案例以及未來發展趨勢
趕超發達國家的重要機遇
半個世紀以來,隨著計算機技術全面融入社會生活,信息爆炸已經積累到了一個開始引發變革的程度,不僅使世界充斥著比以往更多的信息,而且其增長速度也在加快。信息爆炸的學科如天文學和基因學,創造出來大數據這個概念,如今,這個概念幾乎應用到了所有人類智力與發展的領域中。21世紀是數據信息大發展的時代,移動互聯、社交網路、電子商務等極大拓展了互聯網的邊界和應用范圍,各種數據正在迅速膨脹並變大。互聯網(社交、搜索、電商)、移動互聯網(微博)、物聯網(感測器、智慧地球)、車聯網、GPS、醫學影像、安全監控、金融(銀行、股市、保險)、電信(通話、簡訊)都在瘋狂產生著數據,大數據時代已經到來。
當前全球和我國大數據都呈現了井噴式爆發性增長,大數據已經滲透到各個行業和業務職能領域,成為重要的生產因素,大數據的演進與生產力的提高有著直接的關系。其發展特點,一是數據量呈現指數級增長。二是不同行業的大數據內容和開發應用特點各有不同,如證券、投資服務以及銀行等金融服務領域擁有最高的平均數字化數據存儲量,通信和媒體公司、公共事業公司以及政府等組織也有規模顯著的數字化數據存儲,這些行業更加具有通過大數據來創造價值的潛力。三是可以預見到大數據高速增長的現有趨勢將繼續推動數據增長,例如在各部門和地區之間,企業正在加快收集數據的步伐,推動了傳統的事務資料庫的增長;醫療衛生等面向消費者的行業中,多媒體的廣泛使用刺激了大數據的增長;社交媒體的廣泛普及以及物聯網中應用的不斷創新都進一步推動了大數據不斷增長……這些相互交叉的動力刺激了數據的增長,並將繼續推動數據池的迅速擴張。
發展大數據及其相關服務業將成為新興經濟體特別是我國在戰略性新興產業領域發揮後發優勢趕超發達國家的重要機遇。只要條件具備,發展中經濟體能夠利用大數據發揮巨大的潛力。例如,亞洲地區移動手機用戶最多,終端設備最多,其中中國設備數量最多,個人位置數據在亞洲已經領先。此外,在IT資產方面,盡管一些新興市場組織落後於發達市場,但發展中經濟體可以用最新技術跳躍式前進。大數據的應用不僅僅是商務,通過用戶行為分析實現精準管理、科學決策和人性化服務是大數據的典型應用,大數據在各行各業特別是公共服務領域具有廣闊的應用前景,包括消費行業、金融服務、食品安全、醫療衛生、軍事、交通環保、電子商務、氣象等。發展大數據產業機遇可貴潛力巨大。從經濟和產業發展維度看大數據及相關產業發展的潛力,我國獨特的位勢和經濟社會高速穩定發展,給大數據及其應用帶來了巨大的發展空間。大數據在我國各領域和不同行業的應用潛力巨大、機遇重大。大數據的核心技術進展和大數據應用有可能帶來我國新興戰略性產業發展的新機遇。
信息服務業發展的重要推力
研究表明,大數據是繼傳統IT之後下一個提高生產率的技術前沿和信息服務業發展的重要推動力。大數據的使用將成為未來提高競爭力、生產力、創新能力以及創造消費者盈餘的關鍵要素。
例如醫療衛生行業,能夠利用大數據避免過度治療、減少錯誤治療和重復治療,從而降低系統成本、提高工作效率,改進和提升治療質量;公共管理領域,能夠利用大數據有效推動稅收工作開展,提高教育部門和就業部門的服務效率;零售業領域,通過在供應鏈和業務方面使用大數據,能夠改善和提高整個行業的效率;市場和營銷領域,能夠利用大數據幫助消費者在更合理的價格範圍內找到更合適的產品以滿足自身的需求,提高附加值。數據已經成為可以與物質資產和人力資產相提並論的重要的生產要素,伴隨著信息化發展,企業將收集更多的信息,從而帶來數據呈現指數級的增長。大數據在同時為商業和消費者創造價值方面有巨大的發展潛力。
大數據應用能夠發揮重要的經濟作用,不但有利於私人商業活動,更有利於國民經濟和公民。數據可以為世界經濟創造重要價值,提高企業和公共部門的生產率與競爭力,並為消費者創造大量的經濟剩餘。例如,能夠富有創造性而有效地利用大數據來提高效率和質量。麥卡錫公司研究報告指出,預計美國醫療行業每年通過數據獲得的潛在價值可超過3000億美元,能夠使得美國醫療衛生支出降低超過8%,充分利用大數據的零售商有可能將其經營利潤提高60%以上。通過利用大數據實現政府行政管理方面的運作效率提高。估計歐洲發達經濟體可以節省開支超過1000億歐元,其中尚不包括可以用來減少欺詐、錯誤以及稅差的影響作用。可以預見的是,隨著人們存儲、匯聚和組合數據然後利用其結果進行深入分析的能力超過以往,隨著越來越尖端技術的軟體與不斷提高的計算能力相結合,從數據中提取洞見的能力也在顯著提高。
大數據及其開發利用能夠催生新的產業形態,拓展成為戰略性新興產業的重要組成部分。大數據的生產、整合、開發利用具有廣泛的高附加值,可以形成和應用於各行業的關鍵發現,大數據的有效利用可以創造巨大的潛在價值,許多行業和承擔業務職能的組織可以利用大數據提高人力、物力資源的分配和協調能力,減少浪費,增加透明度,並促進新想法和新見解的產生。其價值一是提高透明度,讓利益相關方能夠更加容易地及時獲取信息,例如在公安部門,讓原本相互分離的部門之間更加容易地獲取相關數據,就可大大降低搜索和處理時間;在製造業,整合來自研發、工程和製造部門的數據以便實現並行工程,可以顯著縮短產品上市時間並提高質量。二是可以通過實驗來發現需求、暴露可變因素並提高業績。隨著組織創造並存儲更多數字形式的交易數據,並以實時或接近實時的方式收集更多准確而詳細的績效數據,組織能夠通過安排對比實驗,運用數據分析獲取更好的決策,例如在線零售商,通過將流量和銷售結合的試驗論證決定價格調整和促銷活動的制定。三是更加精準地組織市場,根據客戶需求細分人群。利用大數據使組織能夠對人群進行非常具體的細分,以便精確地定製產品和服務以滿足用戶需求。例如在公共部門如公共勞動力機構,利用大數據為不同的求職者提供工作培訓服務,確保採用最有效和最高效的干預措施使不同的人重返工作崗位。四是可以協助決策者更加科學地進行決策。大數據的自動處理能夠更好地為決策者提供更加精準恰當的決策支持,通過對大數據的自動處理來替換或支持人為決策。有些組織已經在通過分析來自客戶、雇員甚至嵌入產品中的感測器的整個數據集而做出更有效的決策。五是能夠創新商業模式、產品和服務。例如在醫療保健領域,通過分析病人的臨床和行為數據已經創造了瞄準最適當群體的預防保健項目。例如互聯網公司收集大量的在線行為數據,創新速度非常快。
應組織實施大數據產業專項
發展大數據及其相關服務業具有重要意義,有望使各個行業產生更多收益。隨著我國經濟和社會信息化的高速發展,不僅信息產業自身獲取了巨大的數據池,各個行業都存在利用大數據獲取價值的潛力。大數據促使信息化建設模式大轉變,結構化數據向非結構化數據演進,使得未來IT投資重點不再是建系統為核心,而是圍繞大數據為核心。政府和企業決策者應對大數據發展研究制定發展戰略和策略給予高度重視。
大數據真正的問題是大數據應用,讓大數據更有意義。目前大數據管理多從架構和並行等方面考慮,解決高並發數據存取的性能要求及數據存儲的橫向擴展,但對非結構化數據的內容理解仍缺乏實質性的突破和進展,這是實現大數據資源化、知識化、普適化的核心。非結構化海量信息的智能化處理包括自然語言理解、多媒體內容理解、機器學習等。例如2012年3月29日白宮發布美國政府的大數據計劃:通過提高從大型復雜的數據集中提取知識和觀點的能力,承諾幫助加快在科學與工程中的步伐,加強國家安全,並改變教學研究。
由此,我們提出組織實施大數據產業專項的初步設想。一是圍繞拓展新興信息服務業態,組織實施以大數據示範、加工、處理、整合和深加工的信息資源與內容服務業示範工程,面向重點行業和重點民生領域包括金融證券、醫療衛生、稅務海關、交通運輸、社會保障、電子商務等領域,開展大數據重大應用示範,提升基於大數據的公共服務能力;二是加快推動北斗導航核心技術研發和產業化,推動北斗導航與移動通信、地理信息、衛星遙感、移動互聯網等融合發展,支持位置信息服務市場拓展,完善北斗導航基礎設施,推進服務模式和產品創新,在重點區域和領域開展示範應用;三是大力發展地理信息產業,拓寬地理信息服務市場,推進大數據技術和服務模式融合創新,支持大數據服務創新和商業模式創新;四是組織實施基於大數據的信息內容加工服務業典型示範工程,包括關鍵技術產品產業化和大數據生產、轉換、加工、投送平台及專用工具的產業化項目,為豐富信息消費內容產品供給提供支撐;五是組織實施自主可控的大數據關鍵技術產品產業化項目,主要包括商業智能、數據倉庫、數據集市、元數據、可視化技術等。
⑤ 大數據思維的三個維度分別是什麼
第一、描述思維
也就是要將一些的結構化的數據或者非結構化的數據都變為客觀的標准,在大數據思維的過程中,涉及了很多人為的因素,這些也是可以進行數據分析的,舉一個例子就是消費者行為的研究,消費者行為可以是定量的,也可以是不定量的,描述思維就要包含消費者行為的各個方面。這里舉一個例子就是商場會對連入區域網的客戶繼續進行數據的採集,了解客戶的消費情況以及分布的情況,消費者可以實現購物、用餐、休閑、娛樂一條龍的服務,並且也可以在很大的程度上提升用戶的體驗度。在一些大型的景區或者游樂場,大數據可以幫助景區進行更好的遊客管理。
第二、相關性思維
就是對於數據之間相關性的研究,對於消費者行為或者用戶行為的研究方面,這些行為在一定程度上,大大小小和其他不同的數據都是有內在的聯系的,大數據分析的結果就可以更好的建立起數據預測的模型,可以用來預測消費者的偏好和行為,相關性的研究和紛紛也可以更好的支持預測思維。
第三、攻略思維
在大數據繼續預測以及分析之後,企業可以根據大數據分析的結果進行營銷策略的調整,這才是大數據營銷的主要目的,從描述到預測,最後到攻略,這也是大數據思維的一個完整的過程。
關於大數據思維的三個維度分別是什麼,環球青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑥ 生活有哪些大數據分析的最新相關信息
生活中和大數據分析有關的東西太多了,問了一下我遠標大數據的哥們,他說有以下這些行業相關
對醫療行業的影響
大數據應用的計算機能力能夠在很短的時間內解碼DNA,並且制定出合理的治療方案,還可以預測疾病,比如智能手錶手環可以產生數據一樣,大數據可以幫助病人得到更好的治療,目前已經應用於醫院的某些科室中,通過記錄和分析,預測出可能會產生的症狀,大大提高了工作的效率。
對體育行業的影響
目前很多運動員在訓練的時候已經應用大數據分析技術了,比如視頻分析每個球員的表現,在運動器材中植入感測器技術,讓我們可以獲得比賽的數據以及如何改進,而且還有一部分球隊追蹤運動員的比賽之外的生活。主要是對營養和睡眠,以及社交和情感方面。
對機器設備的影響
大數據分析還可以讓積極和設備在應用上更加智能化和自主化。例如,大數據工具曾經就被谷歌公司利用研發谷歌自駕汽車。豐田的普瑞就配有相機、GPS以及感測器,在交通上能夠安全的駕駛,不需要人類的敢於。大數據工具還可以應用優化智能電話。
對安全執法的影響
大數據的應用已經擴大到安全執法的領域之內了,想必大家都知道美國安全局利用大數據進行恐怖主義打擊,甚至監控人們的日常生活。而企業則應用大數據技術進行防禦網路攻擊。警察應用大數據工具進行捕捉罪犯,信用卡公司應用大數據工具來檻車欺詐性交易。
對城市改善的影響
對城市中日常生活中的影響,比如交通信息,基於城市的實時交通情況,利用社交網路數據來優化最新的交通路況,目前大多數城市已經進行大數據分析和試點了。
對金融行業的影響
應用大數據進行金融交易,大數據的演算法應用於交易的決定,很多股權的交易都是利用大數據的演算法進行的,這些演算法是基於社交媒體和網站新聞決定未來的幾秒內是買進還是賣出。
⑦ 什麼是大數據,大數據的典型案例有哪些
隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:
「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。