㈠ 大數據對電子商務的作用是什麼意思
大數據處理對電子商務的作用:
大數據處理使電子商務的運營方式數據化
在大數據的影響下,電子商務領域很大程度上改變了傳統的運營模式,現今更多哦地以數據方式為主導,貫穿於企業運營中的采購、營銷以及財務等過程。大數據處理使電商企業數據化運營,使企業能夠通過數據分析出顧客的需求,並以此對日後的經營提前做預測,從而使成本最小化、利潤最大化。例如,亞馬遜企業的分別為FDFC和FC的旦岩兩種數據化運營模式,前者主要用於預測熱銷商品,而後者則用於小眾商品的分析。
大數據處理使行業應用得以垂直整合
垂直整合可以理解為一種方法,以將公司的投入與產出的比例提高或者降低到某種程度。垂直整合與價值鏈模型緊密聯系,可指公司、供應商與經銷商三者之間價值鏈的整合程度,而當公司將另外二者的價值鏈整合至其價值鏈之中,即是完全垂直整吵脊合。電商領域對大數據處理的應用,使得企業自身對供應商與營銷商的整合能力不斷增強,其間的資源得到更好的共享,企業與用戶的關系越來越近,也就獲得了更多制勝的機會。
大數據處理使電子商務數據資產化
隨著信息時代的發展與進步,數據或大數據作為信息時代的產物將占據越發重要的地位。有相關學者分析表示,數據化競爭將引領未來的商業競爭,而企業制勝的關鍵將以其對數據的掌握來衡量。企業將越發重視數據,將會有越來越多有關數據的業務相應而生,如對數據分析、可視化的業務和眾包模式等。大數據在模碰御不久後的將來將發展成為一項產業,將為企業創造更多的利益。
㈡ 大數據在電子商務中應用體現在哪些方面
1、通過大數據進行市場營銷
通過大數據進行市場營銷能夠有效的節約企業或是電子商務平台的營銷成本,還能夠通過大數據來實現營銷的精準化,達成精準營銷。
通過分析大數據對消費者的消費偏好進行分析,在消費者輸入關鍵詞之後,提供與消費者消費偏好匹配程度較高的產品,節約了消費者的尋找商品的時間成本,使交易雙方實現快速的對接。實現電子商務平台或是企業營銷的高效化。在數據化時代,針對消費者進行針對性的營銷能夠實現精準營銷,提升產品的下單率,提升電子商務 的營銷效率。
2、實現導購服務的個性化
對於電子商務的平台來講,往往都會針對用戶提供一些推薦和導購服務。通過大數據的分析和挖掘能夠實現導購服務的個性化。針對消費者的年齡、性別、職業、購買歷史、購買商品種類、查詢歷史等信息,對消費者的消費意向、消費習慣、消費特點進行系統性的分析,根據大數據的分析針對消費者個人制定個性化的推薦和導購服務。
大數據的運用能夠抵消電子商務虛擬性所帶來的影響,提升競爭力,挖掘更多的潛在消費者。針對消費者的消費偏好,進行適宜的廣告推廣,提升產品的廣告轉化率,同時提供個性化的導購服務。
對於一些大型的電子商務平台來講,產品種類繁多,想要提升消費者的消費量,提升消費者的下單率就要通過分析消費者的消費偏好,主動進行商品的推送。這種通過大數據進行分析的方式不僅僅能提升產品的瀏覽量,還能針對消費者的消費需求提供商品的推送,提升消費者的用戶體驗,進而提升消費者的忠誠度。
3、為商家提供數據服務
大數據的分析不僅僅能夠幫助電子商務平台提升下單率和銷售額,還能將大數據的分析作為產品和服務向中小型的電子商務商家進行銷售。這樣不僅僅能夠提昇平台的收益,還能幫助商家了解消費者的消費偏好、消費者對於該類 產品的喜好等信息,來幫助商家及時針對大部分消費者的消費偏好以及市場的動態,針對產品的性能等進行研發和調整。
大數據的應用:
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
㈢ 大數據時代的電子商務模式發展分析
大數據時代的電子商務模式發展分析
商務的復雜性和不斷變化發展決定了電子商務沒有一個或幾個固定模式,各種各樣的電子商務模式充分反映了市場變化的需要,贏利空間是判斷電子商務模式好壞的基本依據。
一、電子商務
電子商務是利用微電腦技術和網路通訊技術進行的商務活動;以信息網路技術為手段,以商品交換為中心的商務活動;電子商務分為:ABC、B2B、B2C、C2C、B2M、M2C、B2A(即B2G)、C2A(即C2G)、O2O 等。
廣義的電子商務是指利用各種信息技術所進行的經營管理活動,即利用整個工廠技術對整個商務活動實現電子化。
狹義的電子商務是指利用網際網路開展的交易活動。
電子商務的目的是高效率、高效益、低成本地進行產品生產和服務,提高企業的整體競爭能力。
二、電子商務模式
電子商務模式,就是指在網路環境中基於一定技術基礎的商務運作方式和盈利模式。研究和分析電子商務模式的分類體系,有助於挖掘新的電子商務模式,為電子商務模式創新提供途徑,也有助於企業制定特定的電子商務策略和實施步驟。
電子商務在其發展的過程中,出現了各種各樣的電子商務模式。電子商務模式可以從多個角度建立不同的分類框架,最簡單的分類莫過於BtoB、BtoC、CtoC、OtoO、新型的BOB模式,這樣的分類,但就各模式還可以再次細分。
二、電子商務模式的基本類型
1.企業與消費者之間的電子商務(Business to Consumer,即B2C)。B2C就是企業通過網路銷售產品或服務給個人消費者。這是消費者利用網際網路直接參與經濟活動的形式,類同於商業電子化的零售商務。
2.企業與企業之間的電子商務(Business to Business,即B2B)。企業可以使用Internet或其他網路對每筆交易尋找最佳合作夥伴,完成從定購到結算的全部交易行為。
3.消費者與消費者之間的電子商務(Consumer to Consumer 即C2C)。C2C商務平台就是通過為買賣雙方提供一個在線交易平台,使賣方可以主動提供商品上網拍賣,而買方可以自行選擇商品進行競價。
4.線下商務與互聯網之間的電子商務(Online To Offline即O2O)。這樣線下服務就可以用線上來攬客,消費者可以用線上來篩選服務,還有成交可以在線結算,很快達到規模。這種模式的關鍵是:在網上尋找消費者,然後將他們帶到現實的商店中。
5.所謂BOB 是 Business-Operator-Business的縮寫,意指供應方(Business)與采購方(Business)之間通過運營者(Operator)達成產品或服務交易的一種新型電子商務模式。
四、大數據時代電子商務模式分析
電子商務的發展經歷了用戶數量為王、銷售量為王、數據為王的三大時代,大數據時代給電子商務發展帶來的機遇和挑戰,未來電子商務的競爭是數據的競爭。
(1)數據服務的變革
大數據背景下,把消費者分成很多群體,對每個群體甚至每個人提供針對性的服務。消費行為等數據量的增加為電商提供了精準把握用戶群體和個體消費行為模式的基礎。電商通過大數據應用,可以探索個性化、精準化和智能化廣告推送和推廣服務,創立比現有推廣形式更好的全新商業模式。另外,電商也可以通過運用大數據,尋找更多更好地增加用戶粘性、開發新產品和新服務、降低運營成本的途徑和方法。
(2)數據化運營
電商運營更多地轉變為數據驅動的運營,在企業內部所有環節都利用數據進行分析、評價、利用數據視圖進行管理。以阿里為例,其對旗下的淘寶、天貓、阿里雲、支付寶、萬網等業務平台進行資源整合,形成了強大的電子商務客戶群及消費者行為的全產業鏈信息。可進行運營分析、商品分析、營銷效果分析、買家行為分析、訂單分析、供應鏈分析、行業分析、財務分析和預測分析等。
(3)數據資產化
大數據背景下,「 數據即資產」成為最核心的產業趨勢。未來企業的競爭,將是規模和活性的競爭,數據的經濟效益和作用將日漸引起企業重視,因而催生出許多關於數據的業務。「 數據成為資產」是互聯網泛在化的一種資本體現,他讓互聯網的作用不僅僅局限於應用和服務本身,而且具有了內在的「 金融」價值。數據的功能不再只是體現於「 使用價值」方面的產品,而成為實實在在的「 價值」。
(4)個性化導購服務
在互聯網普及的時代,為解決消費者信息超載的問題,引導消費者更便捷地購買商品,導購系統便成為眾多電子商務企業提供的一種服務模式。所謂導購系統,就是一種根據消費者的需求、偏好、個人資料及歷史消費行為,為消費者提供決策建議的軟體系統,如推薦他們想要的商品或從哪裡獲得想要的商品。傳統電子商務導購服務,或是基於消費者歷史數據來抽取和推薦他們共同偏好的商品如熱銷商品推薦等,或是根據企業促銷意圖將其主打產品推送給顧客,如新品推薦、特價推薦等,能夠為顧客提供較好的決策支持服務。
(5)數據產品服務
在大數據背景下,數據成為資產,所有電商企業都想獲得並充分了解它們在運營中所獲得的消費者的信息數據,但往往由於技術等原因無法對大數據進行分析、挖掘,因此對於具有平台以及技術等優勢的電商企業可以利用這樣優勢,將獲得的海量數據進行產品化的包裝營銷給需要的企業,從而開辟出一種新的電子商務服務模式。由於大數據背景下企業對數據有更深層次的需求,因此搭建數據構建需要與銷售之間的橋梁,將為產生數據服務型的電子商務新模式。
(6)垂直細分領域服務
目前,淘寶等占據了國內的絕大部分電商市場份額。中小規模電商企業崛起難度很大。因此,在大數據時代下,把握每一個垂直細分領域,然後做得更精更專,這樣才能贏得自己的一席之地。而且行為垂直細分類的電商平台規模較小、成本較低,能更好地挖掘分析消費者的信息數據,從而能更專注於專業特定的客戶群體提供專業的產品和服務,更能了解產業鏈上客戶的需求,也能容易完善自身的服務。
大數據背景下,爆發式的信息資源給電商企業帶來了機遇和挑戰,通過對數據的挖掘、分析運用必將帶來更多的服務模式的革新,給消費者更好的服務體驗。隨著大數據的技術和運作的成熟,必將涌現出更多、更好的新的服務模式,從而促進電子商務的發展。
以上是小編為大家分享的關於大數據時代的電子商務模式發展分析的相關內容,更多信息可以關注環球青藤分享更多干貨
㈣ 在大數據時代中,你認為數據挖掘技術可以為電子商務帶來哪些商業價值
廣義的大數據包括數據處理本身以及數據挖掘。如今,大數據技術在電子商務領喊茄域的應用日漸深入和普及,大數據浪潮自15年高漲以來此卜並沒有消退跡象。
關於二者的結合,從人的角度來講,對消費者——成熟的推薦系統可以快速定位消費者興趣,減少尋找商品浪費的時間,大數據提供更加透明的比價服務,詳實的商品評價等,不再是兩眼一抹黑,找商品猶如大海撈針。對商家企業——用戶畫像體系幫助商戶精準的找到目標客戶,發現潛在的客戶,數據挖掘技術發現商品背後的統計學關聯,可以賣出更多的鄭扒察商品。(如經典的「啤酒和尿布」)
從業務功能角度,數據挖掘產品,如淘寶的「生意參謀」(「數據魔方」),使得商家對自身經營情況有了更加准確和及時的掌握,不再是拍腦袋決定。能夠大大降低決策失誤帶來的損失,大數據能夠幫助商家進一步挖掘市場機會,發現商機,結合運營策略使得自己的經營更上一層樓。現在主要的是用戶畫像領域,幫助商品廣告進行精準投放。
數據挖掘在電子商務的應用早已落地。歸根到底,電商本質也是賣東西,就是要在合適的時間地點把商品賣給合適的人。個人經營中的數據量一般不會很大,但若是掌握了數據挖掘技術的思想,進行數據驅動的決策,找到商品買賣的脈搏,因地制宜,就會降低企業經營風險,賣出更多的東西。長此以往,雪球就會越滾越大。你們說對嗎?