導航:首頁 > 網路數據 > 大數據叢書數據可視化

大數據叢書數據可視化

發布時間:2023-12-21 03:11:50

① 數據可視化分析有哪些好書值得推薦

【導讀】隨著互聯網的發展,數據分析已經成了非常熱門的職業,大數據分析師也成了社會打工人趨之若鶩的職業,不僅高薪還沒有很多職場微世界的繁瑣事情,不過要想做好數據分析工作也並不簡單,參看一些好書,對行進數據分析會更有幫助!那麼數據可視化分析有哪些好書值得推薦呢?

數據可視化

1.《數據可視化之美》

在本書中,20多位可視化專家包括藝術家、規劃師、談論家、科學家、剖析師、核算學家等,展示了他們怎樣在各自的學科範疇內翻開項目。他們一同展示了可視化所能完畢的功用以及怎樣運用它來改動國際。成功的可視化的美麗之處既在於其藝術規劃,也在於其經過對細節的高雅展示,可以有用地產生對數據的查詢和新的了解。

2. 《鮮活的數據:數據可視化攻略》

先後介紹了怎樣獲取數據,將數據格式化,用可視化東西(如R)生成圖表,以及在圖形修正軟體(如Illustrator)中修正以使圖表抵達最佳效果。本書介紹了數十種辦法(如柱形圖、餅圖、折線圖和散點圖等),以發明性的視覺辦法生動敘說了有關數據的故事。翻開本書,思維之門會豁然大開,你會發現有那麼多樣的辦法去賦予數據全新的含義!

3.《用數據講故事》

本書經過許多事例研討介紹數據可視化的根底常識,以及怎樣運用數據發明出招引人的、信息量大的、有說服力的故事,然後抵達有用溝通的意圖。具體內容包括:怎樣充沛了解上下文,怎樣挑選合適的圖表,怎樣消除凌亂,怎樣調集受眾的視界,怎樣像規劃師相同考慮,以及怎樣用數據講故事。本書得到了國內數據分析大咖秋葉、范冰、鄧凱的推薦。

4.《數據之美:一本書學會可視化規劃》

故步自封、淺顯易懂地道出了數據可視化的進程和思維。讓咱們知道了怎樣了解數據可視化,怎樣探求數據的辦法和尋覓數據間的相關,怎樣挑選合適自己的數據和意圖的可視化辦法,有哪些咱們可以運用的可視化東西以及這些東西各有怎樣的好壞。

作為數據分析師,如果僅僅安於現狀,不注重自我行進,那麼,不久的將來,你很或許成為公司的「人肉」取數機,影響往後的工作生計。

以上就是小編今天給大家整理分享關於「數據可視化分析有哪些好書值得推薦?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,一直學習,這樣更有核心競爭力與競爭資本。

② 如何實現大數據可視化

1.考慮用戶
管理咨詢公司Aspirent視覺分析實踐主管Dan Gastineau表示,企業應使用顏色、形狀、大小和布局來顯示可視化的設計和使用。
Aspirent使用顏色來突出希望用戶關注的分析方面。而大小可有效說明數量,但過多使用不同大小來傳遞信息可能會導致混亂。這里應該有選擇地使用大小,即在咨詢團隊成員想要強調的地方。
2.講述連貫的故事
與你的受眾溝通,保持設計的簡單和專注性。顏色到圖表數量等細節可幫助確保儀錶板講述連貫的故事。MicroStrategy產品管理高級副總裁Saurabh
Abhyankar說:「儀錶板就像一本書,它需要考慮讀者的設計元素,而不僅僅是強制列出所有可訪問的數據。」儀錶板的設計將成為推動部署的因素。
3.迭代設計
應不斷從視覺分析用戶獲得反饋意見。隨著時間的推移,數據探索會引發新的想法和問題,而隨時間和部署推移提高數據相關性會使用戶更智能。
從你的受眾徵求並獲取反饋意見可改善體驗。谷歌雲端數據工作室首席產品經理Nick
Mihailovski表示,快速構建概念、快速獲取反饋意見並進行迭代可更快獲得更好的結果。另外,還可將調查和表格整合到精美的報告中,也可以幫助確保大數據的可視化結果確實有助於目標受眾。
4.個性化一切
應確保儀錶板向最終用戶顯示個性化信息,並確保其相關性。並且,還應確保可視化在設計上反映其所在的設備,並為最終用戶提供離線訪問,這將讓可視化走得更長遠。Mihailovski說,通過精心設計的互動式可視化來吸引觀眾以及傳播數據文化,這會使分析具有吸引力和富有樂趣。
5.從分析目標開始
應確保數據類型和分析目標可反映所選的可視化類型。Mihailovski稱:「人們通常會採用相反的方法,他們先看到整潔或模糊的可視化類型,然後試圖使其數據相匹配。」對於大數據項目的可視化,簡單的表格或條形圖有時可能是最有效的。

③ 大數據 分類型數據可視化方法研究報告

大數據:分類型數據可視化方法研究報告
數據可視化可以將海量數據通過圖形、表格等形式直觀反映給大眾。降低數據讀取門檻,可以讓企業通過形象化方式對自身產品進行營銷。
一、數據可視化原理
數據化可視原理是綜合運用計算機圖形學、圖像、人機交互等技術,將採集或模擬的數據映射為可識別的圖形、圖像、視頻或者動畫,並允許用戶對數據進行交互分析的理論方法和技術。
數據可視化可以將不可見的現象轉換為可見的圖形符號,並從中發現規律從而獲取知識。在實際應用中,它可以針對復雜和大規模的數據,還原增強數據中的全局結構和具體細節。
二、 可視化方法
1. 數據採集:數據是可視化對象,可以通過儀器采樣,調查記錄、模擬計算等方式採集。在可視化解決方案中,了解數據來源採集方法和數據屬性,才能有的放矢解決問題。
2. 數據處理和變換:原始數據含有噪音和誤差同時數據模式和特徵往往被隱藏。通過去噪、數據清洗、提取特徵等變換為用戶可理解模式。
3. 可視化映射(核心):將數據的數值、空間坐標、不同位置數據間的聯系等映射為可視化視覺通道的不同元素如標記、位置、形狀、大小和顏色等。最終讓用戶通過可視化洞察數據和數據背後隱含的現象和規律。
4. 用戶感知:用戶感知從數據可視化結果中提取信息、知識和靈感。數據可視化可用於從數據中探索新的假設,也可嚴重相關假設與數據是否吻合,還可幫助專家向公眾展示數據中的信息。
用戶感知可以在任何時期反作用於數據的採集、處理變換以及映射過程中,如下圖所示:

三、具體操作
1. 將指標值圖形化
一個指標值就是一個數據,將數據的大小以圖形的方式表現。比如用柱形圖的長度或高度表現數據大小,這也是最常用的可視化形式。
傳統的柱形圖、餅圖有可能會帶來審美疲勞,可嘗試從圖形的視覺樣式上進行一些創新,常用的方法就是將圖形與指標的含義關聯起來。
比如 Google Zeitgeist 在展現 top10 的搜索詞時,展示的就是「搜索」形狀的柱形,圖形與指標的含義相吻合,同時也做了立體的視覺變化:

2. 將指標圖形化
一般用在與指標含義相近的 icon 來表現,使用場景也比較多,如下:

3. 將指標關系圖形化
當存在多個指標時,為了挖掘指標之間的關系並將其進行圖形化表達,可提升圖表的可視化深度。常見有以下兩種方式:
藉助已有的場景來表現
聯想自然或社會中有無場景與指標關系類似,然後藉助此場景來表現。

比如網路統計流量研究院操作系統的分布(上圖),首先分為 windows、mac 還有其他操作系統, windows 又包含 xp、2003、7等多種子系統。
宇宙星系中也有類似的關系:宇宙中有很多星系,我們最為熟悉的是太陽系,太陽系中又包括各個行星。根據這種關系聯想,圖表整體借用宇宙星系的場景,將熟知的Windows比喻成太陽系,將XP、Window7等系統比喻成太陽系中的行星,將Mac和其他系統比喻成其他星系。
構建場景來表現
指標之間往往具有一些關聯特徵,如從簡單到復雜、從低級到高級、從前到後等等。如無法找到已存在的對應場景,也可構建場景。
比如網路統計流量研究院中的學歷分布:指標分別是小學、初中、高中、本科等等。

各個類目之間是一種階梯式的關系,因此,平台就設計了一個階梯式的圖直觀的反映出了數據呈階梯式遞進的趨勢。
再比如:支付寶年初出的個人年度賬單中,在描述付款最多的三項時設計了一個類似頒獎台的樣式也很出彩:(然而並沒有覺得我在哪個類目買買買付款最多有什麼驕傲的)

下方圖示為供參考的線性化過程,實際可視化思考中,將哪類元素進行圖形化或者圖形化前後的順序可能均有不同,需根據具體情況處理。

4. 將時間和空間可視化
時間
通過時間的維度來查看指標值的變化情況,一般通過增加時間軸的形式,也就是常見的趨勢圖。
空間
當圖表存在地域信息並且需要突出表現的時候,可用地圖將空間可視化,地圖作為主背景呈現所有信息點。
Google Zeitgeist 在 2010 和 2012 年的年度熱門回顧中,都是以地圖為主要載體(同時也結合了時間),來呈現熱門事件:

5. 將數據進行概念轉換
先看下生活中的概念轉換,當我們需要喝水時,通常會說給我來杯水而不是給我來500ml 的水。要注意來(一)杯水,是具象的,並不是用量化的數據來形容。在這里,500ml就是一個具體的數據,但是它難以被感知,所以用(一)杯的概念來轉換。
同樣在數據可視化,有時需要對數據進行概念轉換。這是為了加深用戶對數據的感知,常用方法有對比和比喻。感知就是一個將數據由抽象轉化為具象的過程。
對比
比如下圖就是一個介紹中國煙民數量的圖表。如果只看左半部分中國煙民的數量:32000000(個十百千萬十萬百萬千萬億…)好吧數據量級很大,不論是數零還是數逗號都很容易數錯,而且具體這個數字有多大仍然很難感知。讓我們目光向右移動,來看右半部分:中國煙民數量超過了美國人口總和,太恐怖了。這樣一對比,對數據的感知就加深了。

比喻
下圖是一個介紹雅虎郵箱處理數據量大小的圖表,大概就是說它每小時處理的電子郵件有近1.2TB,相當於644245094 張列印的紙。
上面這個翻譯很無聊是不是,但這並不是問題的重點,這個數它到底有多大呢?文案中用了一個比喻的手法:大意就是將這些郵件列印出來首尾相連可以繞地球4圈。嗯,比香飄飄奶瓶還多3圈。到這里,我相信大家肯定能初步感受到雅虎郵箱每天處理的數據量有多大了吧,而且還沒有被列印出來,為地球節省了很多紙(假裝環保)。

6.讓圖表「動」起來
數據圖形化完成後,可結合實際情況,將其變為動態化和可操控性的圖表,用戶在操控過程中能更好地感知數據的變化過程,提升體驗。
實現動態化通常以下兩種方式: 交互和動畫。
交互
交互包括滑鼠浮動、點擊、多圖表時的聯動響應等等。下面是網路統計流量研究院的時間分布圖,該分布圖採用左圖右表的聯動形式,左圖中滑鼠浮動則顯示對應數據,點擊則可以切換選擇:

動畫
動畫包括入場動畫、交互過程的動畫和播放動畫等等。
入場動畫:即在頁面載入後,給圖表一個「生長」的過程,取代「數據載入中」這樣的提示文字。
交互動畫:用戶發生交互行為後,通過動畫形式給以及時反饋。
播放動畫:通俗的來說就是提供播放功能,讓用戶能夠完整看到數據隨時間變化的過程。下圖是 Gapminder 在描述多維數據時,提供隨時間播放的功能,可以直觀感受到所有數據的變化。

④ 大數據可視化是什麼

問題一:大數據可視化分析工具有哪些? 大數據可視化分析工具,既然是大數據,那必須得有處理海量數據的能力和圖形展現和交互的能力。能快速的收集、篩選、分析、歸納、展現決策者所需要的信息,並根據新增的數據進行實時更新。
這方面的工具一般是企業級的應用,像國外的Tableau、Qlik、Microsoft、SAS、IBM都有支持數據分析和分析結果展示的產品,個中優劣你可以分別去了解下。國內陣營的話,有側重於可視化展示的也有側重於數據分析的,兩者兼有的以商業智能產品比如FineBI為代表。

問題二:大數據可視化和大數據開發哪個好 大數據開發的學習內容中包含可視化,掌握了大數據的開發技術,也可以從事可視化的相老純關工作。
基礎階段:Linux、Docker、KVM、MySQL基礎、Oracle基礎、MongoDB、redis。hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、歷史,HDFS工作原理,YARN介紹及組件介紹。大數據存儲階段:hbase、hive、sqoop。大數據架構設計階段:Flume分布式、Zookeeper、Kafka。大數據實時計算階段:Mahout、Spark、storm。大數據數據採集階段:Python、Scala。大數據商業實戰階段:實操企業大數據處理業務場景,分析需求、解決方案實施,綜合技術實戰應用。
大數據技術人員的就業方向:大數據系統研發類人才、大數據應用開發類人才和大數據分析類人才。
工作崗位:ETL研發、Hadoop開發、可視化(前端展現)工具開發、信息架構開發、數據倉庫研究、OLAP開發、數據預測明含襪(數據挖掘)分析、企業數據管理、數據安全研究、數據科學研究等。

問題三:大數據分析和大數據可視化哪個好 不太理解你的問題,什麼叫數據分析還是數據可視化好?這兩個是可以相互結合的,很多時候數據分析和數據可視化是相互,數據分析完不能再是單純的表格呈現,而應該是可視化的形式呈現,比如數據圖表。可視化不是單純的可視化,而是建立在數據分析的基礎上,不然可視化也沒有意義啦。所以,類似BDP個人版這類的數據工具都是很好地結合了這兩個功能,讓數據能夠真正為業務、工作服務,提高分析工作效率~~~

問題四:大數據可視化需要哪些類型的呈現形式 1.可視化是連接用戶和數據的橋梁,是我們向用戶展示我們的成果的一種手段,因此可視化並不是非常特化的研究領域,它可以有非常廣泛的應用和創建途徑。作為非計算機專業的人員,你可以藉助現有的程序和軟體,根據自己數據的特點,繪制清楚直觀的圖表。Excel,SPSS,Google Public Data 等。一些博客也會介紹常用的可視化工具,比如 22個免費的數據可視化和分析工具推薦。
2. 如果你擁有一定的編程基礎,可以嘗試使用一些編程或者數學工具來進行自定義圖表繪制,比如 Mathematica,R,ProtoType等。
3. 更進一步,你就可以用編程語言來寫自己的可視化系統了。這樣你就會有很自由的發揮空間和操控能力,數據處理,表現形式,交互方式等都可以有很自主的設計。
4. 入門書的話,你可以去看看 Edward Tufte 的一些書籍。

問題五:什麼樣的大激激數據可視化效果圖算是比較酷炫的? 就是各種各樣的圖表類型,比如用BDP個人版的詞雲吧,直接附圖。

問題六:大數據可視化工具 起個什麼名字 是要起名字,還是了解可視化工具啊,有BDP商業數據平台等。

問題七:什麼是數據可視化及信息可視化 廣義的信息可視化范圍很廣,包含了數據可視化、科學可視化,狹義的(技術研究領域)信息可視化一般指大規模非數字型信息資源的可視化表達(我們經常看到很多所謂的信息圖裡面經常塞滿了文字)。
科學可視化和科學本身一樣歷史悠久,它是指利用計算機圖形學來創建視覺圖像,幫助人們理解科學技術的概念,比如流體運動圖像、醫學造影,其可視化案例一般都比較復雜。
數據可視化強調美觀和數據洞察之間的平衡,為了傳達與溝通信息,數據可視化實現了科學可視化的成熟領域與信息可視化的較年輕領域的統一。

問題八:大數據可視化工具哪個做出來最漂亮 zhuanlan.hu/...ferral你參考下

問題九:什麼是數據可視化? 簡單來說,就是通過圖形化手段將抽象數據進行具象展示,在企業管理中已多有應用,比如天津建設項目綜合運監平台、遼寧電力運監中心等等。

問題十:好用的大數據可視化分析工具? 果斷大數據魔鏡啊,國內首款免費的數據可視化分析工具,現在已經有10000多家用戶了,渲染速度賊快!

⑤ 數據可視化的優秀入門書籍有哪些

個人感覺國內可能還比較少,可以看下Julie Steele的數據可視化之美 (豆瓣),裡面有一些經典案例的介紹,可作入門; 另外向怡寧翻譯的鮮活的數據 (豆瓣)也值得一看,關鍵是介紹了數據可視化處理的具體過程,而且向怡寧翻譯的書一向通俗易懂,他翻譯的有關交互設計的就這么簡單 (豆瓣)其實也是一本和信息設計有關系的書籍,行文風趣,作為入門比較合適。 另外塗子沛的大數據 (豆瓣)也值得一看,雖然這里介紹的主要是時代發展和大背景,但也有一章專門涉及數據可視化處理。 2013年6月時,浙大的陳為老師出了本數據可視化的教材,算是在國內第一本數據可視化教材,並系統地把數據可視化相關都做了梳理,看到有人也提到了這全彩略貴的書,數據可視化 (豆瓣);如果嫌貴,可以買這本教材:數據可視化的基本原理與方法 (豆瓣),都是陳為的書,內容基本一樣,入門是夠了。 國外的能推薦的多些, Edward Tufte不用說了,有人說他的書是「信息設計的聖經」,他的The Visual Display of Quantitative Information (豆瓣)應該是入門必看了,公認的開山之作。不過目前還沒有中譯本,看完基本上可以了解數據可視化的前世今生了; 他還有一個華人學生,在美國報社工作,專門負責數據圖表的設計製作,也出了一本相關的書,很棒,Dona M.Wong,她寫的書現在已經有中譯本了:最簡單的圖形與最復雜的信息 (豆瓣) 主要側重於對數據圖表的修飾、完善,講解了一些處理數據圖表的基本原則,實操性很強。 Edward R.Tufte的其他書: Visual Explanations (豆瓣),Beautiful Evidence (豆瓣) 都可以在網上找到pdf全本。 另外除了書,還推薦一個國外老頭:Hans Rosling,他是瑞典卡羅琳學院全球公共衛生教授,有關他利用數據可視化顯示200多個國家200年來的人均壽命和經濟發展的ted視頻非常火,真是數據可視化的魅力,他的其他視頻也很棒(TED | Search),本人非常幽默,由他主持的BBC紀錄片[BBC:統計學的快樂]也值得一看,這些都是初步了解數據可視化的好材料。 總之,個人感覺數據可視化除了具有優秀的美術功底外,統計學知識也是重要部分,畢竟數據的展現和設計都是建立在對數據的獲取、清洗、處理、挖掘的基礎上的。

⑥ 大數據專業系列教材,大數據專業應該看什麼書

目前,全國高校總數477所「數據科學與大數據技術」專業,累計30所「大數據管理與應用」專業,成功高校總數超過409所。
但由於大數據專業是以軟硬體融合、數據科學和大數據技術為特色的新型復合型專業,許多高校在專業建設和人才培養方面面臨挑戰,教材選用成為許多高校的頭疼問題。
在深入調研以上情況後,清華大學博士、中國大數據應用聯盟人工智慧專家委員會主任、雲創大數據總裁劉鵬教授在業內很早就開始著手策劃,聯合國內多所高校從事一線教育科研任務的專業教師相繼擔任主編,《高級大數據人才培養叢書》
在大數據教學中,本科院校實踐教學注重系統性,偏重新技術的應用,且對工程實踐能力要求較高。
為此,劉鵬教授帶領團隊花了一年的時間編寫了《高級大數據人才培養叢書》( 《雲計算》、《大數據》、《深度學習》、《大資料庫》、《數據挖掘》、0755-0755 )
其中,《Python程序設計》多年來一直處於我國計算機圖書被引量的前列,據網路對微信公眾號( cnkipj ) 《大數據可視化》的評價,2010年至2014年《大數據實驗手冊》
《大數據應用人才培養系列教材》( 《虛擬化與容器》、《雲計算》、《【工學】高被引圖書前三甲,你讀過嗎?》、《雲計算》、《大數據導論》、0755-79055- )
內容從簡單到復雜,既遵循理論到實踐的學習過程,也遵循系統而廣的原則。
清華大學出版社王編輯說:「劉鵬教授的這個教材選題很獨特,考慮到未來高職高專大數據人才的就業需求,他選擇了一個非常有特色的選題。

從業內高校的大數據教材來看,理論知識過於復雜高深,與教學實際不契合,或者實踐部分過於簡略,學生學完往往也會感到一頭霧水。
《高級大數據人才培養叢書》和《大數據應用人才培養系列教材》大相徑庭,符合教師教育實際和學生實踐實驗,一經推出,就受到高校的廣泛關注和採用。
師生們普遍對它給予了很高彎梁的評價。 ——不僅與教學實際相符,理論部分和實踐部分比例分配合理,大量實驗提高了學生動手能力,大數據學習不再是「紙上談兵」。
大數據教育特別注重實踐,除了兩套教材外,針對目前大數據教育實踐教學中師資力量不足、實驗環境薄弱、實驗數據缺乏等問題,劉鵬教授帶領雲創大數據技術團隊,與備受高中老師好評的教師教育和教材進行了配套
師資培訓
三年來,雲創大數據(工信部教育與考試中心授權的「工業和信息化人才培養工程訓練基地」)連續舉辦了幾十期大數據/人工智慧實戰培訓班,培訓班全部採用實習方式,大大提高了參訓老師的實戰能力,各期訓練有求必應
全國2000多所虧棗高校的5000多名老師能夠參加並接受培訓,老師們普遍反饋,對未來的教育和人才培養方面有很大啟發,雲創舉辦的大數據實戰培訓班也在教育領域引起了強烈反響。
此外,雲創大數據優秀講師和技術人員還將定期或不定期赴合作高校開展包括教育、實驗人員教育指導在內的培訓服務。
2016年12月-2017年1月,多次舉辦高中(高職)大數據教師免費培訓班
2017年1月,百所高中老師齊聚二期高中(高職)大數據教師免埋空運費培訓班
2017年4月,全國千所高校大數據教師免費講習班在南京舉行
2018年5月,2018信息技術新工科產學研聯盟大數據技術師資培訓班舉辦
2018年9-10月,第二屆全國高校大數據人工智慧教師實戰免費培訓班舉辦三期
2019年1月,2019年全國高校大數據人工智慧師資培訓實戰免費培訓班連續舉辦兩期
2019年3月,2019大數據人工智慧師資培訓班在南京舉辦
2019年6月,2019雲計算免費培訓班在南京舉辦
2019年7月,2019年全國高校大數據人工智慧師資培訓實戰免費培訓班(第三期)舉辦
雲創大數據持續的大數據實戰訓練,一方面為高中老師提供了與專家討論、同事交流、向實戰經驗豐富的講師學習的機會,另一方面也一步步突破了Hadoop、Spark、Python語言、Scala等多個大數據實驗
大數據實驗室
大數據實驗室建設方案基於雲提供的大數據實驗一體化計算機和大數據實驗平台建設,採用Docker容器技術,為用戶提供大數據實驗服務,實現大量用戶同時在線實驗避免相互干擾,同時提供實驗手冊、課程資源、教學視頻、考試系統等,方便高校師生在平台上開展大數據教學和實驗。
今年5月,大數據實驗平台再次迎來更新,改版用戶界面,優化系統資源使用,增加實驗內容,豐富實驗形式,擴充題庫,完善教材與實驗內容的映射,增錄實驗操作視頻集成了商業智能實踐教學子系統,基礎鏡像速度也得到了極大優化,一鍵營造環境只需十幾秒鍾。
目前,大數據實驗平台已更新為400個大數據實驗。
操作簡便,實戰效果顯著,大數據實驗平台依託貴州大學、西北工業大學、山東理工大學、鄭州大學、河南農業大學、成都理工大學、西南大學、重慶師范大學、重慶工商大學、陝西師范大學、寧夏大學、南京財經大學、金陵科技學院、天津農學院、鄭州升達經貿管理學院
值得一提的是,鄭州升達經貿管理學院作為民辦三大高校,自天驕數據實驗平台落地以來,在課堂教學、實驗拓展、課程體系建設等諸多方面屢創新成果。
目前,大數據實驗室是該校利用率最高的實驗室,一直排到周日。
這所學校信息工程學院的計算機科學和軟體工程兩個專業分別有250名學生和學院其他專業的800多名學生在這個平台上接受了嚴格的訓練。
使用該平台畢業的學生工資水平遠遠超過普通專業大學畢業生,直接帶動了學生就業率和學校影響力的同步提高。
無論是教材體系、師資培訓,還是大數據實驗室建設,雲創大數據都在教育領域穩步發展,擁有雄厚的技術優勢和優質資源。
熱忱歡迎廣大高校、教育機構及各企事業單位與雲創業開展多方面交流合作,共同探討大數據建設相關領域,培養越來越多大數據優秀人才,為行業發展作出貢獻。
要獲取《高級大數據人才培養叢書》、《大數據應用人才培養系列教材》配套PPT、人工智慧人才培養方案大數據、人工智慧實驗室建設方案大數據、雲創大數據合作工作手冊等資源,可通過以下方式之一獲取
2 .關注「雲創大數據( cStor_cn )」,在微信後台回復「PPT」,獲取網盤全套資源下載鏈接

自考/成考有疑問、不知道自考/成考考點內容、不清楚當地自考/成考政策,點擊底部咨詢官網老師,免費領取復習資料:https://www.87dh.com/xl/

閱讀全文

與大數據叢書數據可視化相關的資料

熱點內容
窩窩app怎麼樣自動關 瀏覽:228
蘋果電腦怎麼用wps生成多個文件夾 瀏覽:309
蘋果手機哪裡有賣 瀏覽:83
app登錄狀態為什麼不過期 瀏覽:160
win10創意者無法升級 瀏覽:59
如何查殺後門程序 瀏覽:498
定類數據可以用哪些描述統計方法 瀏覽:278
微信公眾號閱讀全文怎麼跳轉文件 瀏覽:935
迷你編程怎麼免費進入 瀏覽:354
蘋果應用設置密碼 瀏覽:21
windowsmac共享文件夾 瀏覽:274
數據安全性和固態硬碟哪個好 瀏覽:433
word為什麼圖片不能旋轉 瀏覽:732
qq上本機文件怎麼刪除不了怎麼辦 瀏覽:117
美食的視頻app有哪些 瀏覽:251
買酒去什麼網站 瀏覽:140
jsdivcss 瀏覽:103
js有序數字 瀏覽:694
ps可以置入什麼文件 瀏覽:794
阿里巴巴集團您正在重置密碼 瀏覽:248

友情鏈接