① 大數據究竟能給我們帶來什麼
1,大數來據改變了生產生活方式。
大數源據讓企業擁有了增值的潛力與爆發力:通過對銷售大數據的分析應用,企業可以對消費者的需求有更精準的把握,從而進行更對路的生產;通過對用戶評價大數據的分析挖掘,企業能夠更有針對性地改善用戶體驗,從而促進產品營銷。
2,大數據改變了思維方式。
這種改變是雙向度的:被動改變與主動改變相互交織,外在對手與內在對手共存共生。某種程度上,大數據促進了商業生態系統的重構,從產品供應、營銷模式到競爭策略,誰掌握了大數據,誰就掌握了用戶。
3,大數據將改變了管理模式。
理念創新必然帶來技術創新,技術創新必然呼喚機制創新,管理模式的及時跟進將決定大數據價值的充分發揮。大數據的意義不在於數據本身,而在於對數據的分析與應用,從而釋放出數據所蘊含的巨大價值。
(1)dt大數據夢工廠微博擴展閱讀:
已經有不少國家和企業開始在這一新領域謀篇布局。作為擁有龐大人群和應用市場的中國,也力爭在這次科技變革中實現創新與引領,已經取得了大數據的三大理論創新成果——《DT時代——大數據如何改變世界》、《塊數據——大數據時代真正到來的標志》、《創新驅動力》。
② 國內大數據培訓的領頭羊是
DT大數據夢工廠
動講解抄大數據襲的各個技術點,6個月內從零起步實戰成為Spark高級(資深)工程師,輕松月薪30K+,全部內容掌握可達年薪50萬,掌握課程的全部內容後絕對可以勝任國內外任何一家大數據公司Spark高級工程師要求,談笑間進入網路、阿里、騰訊、IBM、Intel、Twitter、華為、京東、攜程、網易等公司並成為這些公司的大數據實戰技術骨幹!以實戰為導向,每節課均是純動手實戰,基於大量案例實戰,深度剖析和講解Spark及Hadoop。課程會涵蓋Linux零基礎實戰、Java零基礎實戰、Hadoop零基礎實戰,Hive實戰、Scala編程詳解、Spark核心編程、Spark SQL企業級實戰,Kafka企業級實戰、Spark Streaming企業級實戰、GraphX企業級實戰以及源碼剖析、性能調優、企業級案例實戰等內容;可以快速掌握實戰技巧及招式
③ 《DT時代:從「互聯網+」到「大數據×」》pdf下載在線閱讀全文,求百度網盤雲資源
《DT時代:從「互聯網+」到「大數據×」》(大數據戰略重點實驗室 著;連玉明 編)電子書網盤下載免費在線閱讀
鏈接:
書名:DT時代:從「互聯網+」到「大數據×」
作者:大數據戰略重點實驗室 著;連玉明 編
豆瓣評分:4.8
出版社:中信出版集團
出版年份:2015-5-1
頁數:354
內容簡介:
知識就是力量,信息就是能量,數據就是變數。本書全面闡述了人類從IT時代走向DT時代的基本特徵和規律。《DT時代》認為,大數據正成為人類的第二母語,大數據已經成為DT時代一個國家最重要的戰略資源之一。
DT不僅僅是技術的提升,而是思想的革命。《DT時代》首次提出塊數據的數量(volume)、速度(velocity)、多樣(variety)、價值(value)和數聚(variable)的五V空間理論,將對大數據的認知推進到新的高度。《DT時代》認為,塊數據作為大數據的解決方案,實現了從數據到數聚、從解構到重構、從多維到共享的跨越,塊數據社會、慢數據決策和流數據價值三位一體,標志著大數據時代的真正到來。
《DT時代》強調,眾聯、眾包、眾創、眾籌為人們越來越熟知,平等思維、共享思維、扁平化思維、跨界思維、場景思維被越來越多地掌握和運用。把大數據產業作為創新驅動的引領性產業,是實現經濟發展和生態保護雙贏的唯一選擇。
《DT時代》還提出,安全是大數據的生命線。以大數據技術對抗大數據平台安全威脅是大數據成功的必由之路,在此基礎上本書對大數據立法問題進行了探討並提出,必須建立健全安全防護體系,切實強化大數據安全管理和「公開的隱私」的保護。只有更好的保護,才有更好的分享。
作者簡介:
大數據戰略重點實驗室,是一個跨學科、專業化、國際化、開放型研究平台。實驗室聚集國內外大數據相關專業研究者、管理者和決策者,發揮獨立、客觀、公正、持續的科學精神和創新方法,立足全球大數據發展趨勢和中國大數據發展實踐,以大數據發展的重大理論和現實問題為主攻方向,進行大數據發展全局性、戰略性、前瞻性研究和咨詢,構建「塊數據」理論模型和應用模型。曾研究編制「大數據指數」,出版年度《大數據藍皮書》,建立大數據發展規劃資料庫,舉辦「中國DT產業50人論壇」,搭建開放式協作創新平台、專業化決策咨詢平台、網路化成果轉化平台和國際化合作交流平台,奮力打造具有較大影響力和國際知名度的大數據高端戰略智庫。
連玉明,著名城市專家,教授,工學博士。現任大數據戰略重點實驗室主任,北京國際城市發展研究院院長,貴州大學貴陽創新驅動發展戰略研究院院長。兼任北京市社會科學界聯合會副主席,北京市哲學社會科學京津冀協同發展研究基地首席專家,城市科學研究北京市重點實驗室主任。
④ 大數據是幹嘛的
大數據是一系列技術的統稱,經過多年的發展,大數據已經形成了從數據采內集、整理、傳輸、存儲、容安全、分析、呈現和應用等一系列環節,這些環節涉及到諸多大數據工作崗位,這些工作崗位與物聯網、雲計算也都有密切的聯系。
大數據是一個抽象的概念,對當前無論是企業還是政府、高校等單位面臨的數據無法存儲、無法計算的狀態。
(4)dt大數據夢工廠微博擴展閱讀:
大數據應用舉例
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
⑤ 從IT到DT 阿里大數據背後的商業秘密
從IT到DT:阿里大數據背後的商業秘密
空氣污染究竟在多大程度上影響了人們的網購行為?有多少比重的線上消費屬於新增消費?為什麼中國的「電商百佳縣」中浙江有41個而廣東只有4個?
這些電商的秘密就隱藏在阿里巴巴商業生態的「大數據」中。
「未來製造業的最大能源不是石油,而是數據。」阿里巴巴董事局主席馬雲如此形容「數據」的重要意義。
在他看來,阿里巴巴本質上是一家數據公司,做淘寶的目的是為了獲得零售的數據和製造業的數據;做螞蟻金服的目的是建立信用體系;做物流不是為了送包裹,而是這些數據合在一起,「電腦會比你更了解你」。與此同時,產業的發展也正在從IT時代走向以大數據技術為代表的DT時代。
而在阿里巴巴內部,由電子商務、互聯網金融、電商物流、雲計算與大數據等構成的阿里巴巴互聯網商業生態圈,也正是阿里研究院所紮根的「土壤」。
具體而言,阿里巴巴平台的所有海量數據來自於數百萬充滿活力的小微企業、個人創業者以及數億消費者,阿里研究院通過對他們的商務活動和消費行為等進行研究分析,從某種程度上可以反映出一個地方乃至宏觀經濟的結構和發展趨勢。
而隨著阿里巴巴生態體系的不斷拓展和延伸,阿里巴巴的數據資源一定程度上將能夠有效補充傳統經濟指標在衡量經濟冷暖方面存在的滯後性,幫助政府更全面、及時、准確地掌握微觀經濟的運行情況。
從IT到DT
不同於一些企業以技術研究為導向的研究院,阿里研究院副院長宋斐告訴《第一財經日報》記者,阿里研究院定位於面向研究者和智庫機構,主要的研究方向包括未來研究(如信息經濟)、微觀層面上的模式創新研究(如C2B模式、雲端制組織模式)、中觀層面上的產業互聯網化研究(如電商物流、互聯網金融、農村電商等)、宏觀層面上新經濟與傳統經濟的互動研究(如互聯網與就業、消費、進出口等)、互聯網治理研究(如網規、電商立法)等。
具體到數據領域,就是在阿里巴巴互聯網商業生態基礎上,從企業數據、就業數據、消費數據、商品數據和區域數據等入手,通過大數據挖掘和建模,開發若干數據產品與服務。
例如,將互聯網數據與宏觀經濟統計標准對接的互聯網經濟數據統計標准,包括了中國城市分級標准;網路消費結構分類標准;網上商品與服務分類標准等。
而按經濟主題劃分的經濟信息統計資料庫則包括商品信息統計資料庫;網購用戶消費信息統計資料庫;小企業與就業統計資料庫;區域經濟統計資料庫。
還有反映電商經濟發展的「晴雨表」——阿里巴巴互聯網經濟系列指數。其中包括反映網民消費意願的阿里巴巴消費者信心指數aCCI、反映網購商品價格走勢的阿里巴巴全網網購價格指數aSPI和固定籃子的網購核心價格指數aSPI-core、反映網店經營狀態的阿里巴巴小企業活躍度指數aBAI、反映區域電子商務發展水平的阿里巴巴電子商務發展指數aEDI等等。其中,現有aSPI按月呈報給國家統計局。
而面向地方政府決策與分析部門的數據產品「阿里經濟雲圖」,則將分階段地推出地方經濟總覽、全景分析、監測預警以及知識服務等功能。宋斐告訴記者,其數據可覆蓋全國各省、市、區縣各級行政單位,地方政府用戶經過授權後,可以通過阿里經濟雲圖看到當地在阿里巴巴平台上產生的電子商務交易規模、結構特徵及發展趨勢。
「藉助數據可視化和多維分析功能,用戶可以對當地優勢產業進行挖掘、對消費趨勢與結構變動進行監測、與周邊地區進行對比等等。」宋斐表示,該產品未來還可以提供API服務模式,以整合更多的宏觀經濟數據和社會公開數據,為當地經濟全貌進行畫像,給大數據時代的政府決策體系帶來新的視角和工具。
數據會「說話」
對於如何利用「大數據」,馬雲在公司內部演講中曾提到:「未來幾年內,要把一切業務數據化,一切數據業務化。」
其中,後半句話可以理解為,讓阿里巴巴各項業務所產生、積累的大數據來豐富阿里的生態,同時讓生態蘊含的數據產生新的價值,再反哺生態,這是一個相輔相成的循環邏輯。
宋斐對記者舉例稱,螞蟻金服旗下的芝麻信用已獲得人民銀行個人徵信牌照批准籌備,未來將通過分析大量的網路交易及行為數據,如用戶信用歷史、行為偏好、履約能力、身份特質、人脈等信息,對用戶進行信用評估,這些信用評估可以幫助互聯網金融企業對用戶的還款意願及還款能力做出結論,繼而為用戶提供快速授信及現金分期服務。本質上來說,「芝麻信用」是一套徵信系統,該系統收集來自政府、金融系統的數據,還會充分分析用戶在淘寶、支付寶等平台的行為記錄。
再如,對於如火如荼的農村電商領域,阿里研究院從2010年就已開始對「沙集模式」個案進行研究,後續一系列基於數據和案例調研所驅動的農村電商研究成果,對於地方政府科學決策,推動當地農村電子商務發展、創造就業和發展地方經濟起到了助力作用。到2014年底,全國已經涌現了212個淘寶村,而阿里巴巴也在這一年啟動千縣萬村計劃,將在三至五年內投資100億元,在農村建立起電子商務服務體系。
除了通過數據分析去助力業務外,宋斐告訴記者,有時候大數據報告可能會與傳統的印象結論差異很大。
以區域電子商務為例,在阿里研究院發布的2014年中國電商百強縣排行榜中,浙江有41個縣入圍,福建有16個,而廣東只有4個,這個結果與傳統的印象相差比較大。而事實上,這是因為浙江和廣東兩省電商發展在地理分布、產業結構等方面的明顯不同而帶來的。
再如,外界常常認為網路零售替代了線下零售,但事實上,麥肯錫《中國網路零售革命:線上購物助推經濟增長》的研究報告,通過借鑒阿里研究中心(阿里研究院前身)和淘寶網UED用戶研究團隊的大量報告與數據,最後發現:「約60%的線上消費確實取代了線下零售;但剩餘的40%則是如果沒有網路零售就不會產生的新增消費。」
「這一研究成果,有助於社會各界准確認識網路零售與線下零售的關系,共同探索和建設良好的商業發展環境。」
⑥ 大數據如何驅動精細化運營
大數據如何驅動精細化運營
隨著互聯網的飛速發展,信息的傳輸日益方便快捷,需求也日益突出,縱觀整個互聯網領域,大數據已被認為是繼雲計算、物聯網之後的又一大顛覆性的技術性革命,大數據市場是待挖掘的金礦,其價值不言而喻。企業運營對於企業來說是非常重要的,因為良好的運營體系會讓企業在市場宣傳中輕松應對各種情況。當我們邁入DT數據時代的時候,企業在運營上相對應的也發生了改變,從最初的粗放式運營逐漸過渡到精細化運營。
大數據,可以說是史上第一次將各行各業的用戶、方案提供商、服務商、運營商以及整個生態鏈上游廠商,融入到一個大的環境中,無論是企業級市場還是消費級市場,亦或政府公共服務,都正或將要與大數據發生千絲萬縷的聯系。
1.企業為何要做精細化運營
隨著大數據的發展,企業也越來越重視數據相關的開發和應用,從而獲取更多的市場機會。一方面,大數據能夠明顯提升企業數據的准確性和及時性;此外還能夠降低企業的交易摩擦成本;更為關鍵的是,大數據能夠幫助企業分析大量數據而進一步挖掘細分市場的機會,最終能夠縮短企業產品研發時間、提升企業在商業模式、產品和服務上的創新力,大幅提升企業的商業決策水平,降低了企業經營的風險。大數據是看待現實的新角度,不僅改變了市場營銷、生產製造,同時也改變了商業模式。數據本身就是價值來源,這也就意味著新的商業機會,沒有哪一個行業能對大數據產生免疫能力,適應大數據才能在這場變革中繼續生存下去。
對企業而言,打造精細化運營的好處在於可以對目標用戶群體或者個體進行特徵和畫像的追蹤與畫像,幫助企業分析用戶在某個時間段內容的特徵和習慣,最後讓企業形成一種根據用戶特性而打造的專屬服務。
正是因為如此,企業運營在DT數字化時代,需要進行精細化運營才能更好的從管理、營銷方面提升用戶的服務體驗,同時根據差異化的服務讓運營更加精細化。
就中國市場而言,經過幾年的積累,一般,大部分中大型的企事業單位已經建立了比較完善的CRM、ERP、OA等基礎信息化系統。這些系統的統一特點都是:通過業務人員或者用戶的操作,最終對資料庫進行增加、修改、刪除等操作。上述系統可統一稱為
OLTP(Online TransactionProcess,在線事務處理),指的就是系統運行了一段時間以後,必然幫助企事業單位收集大量的歷史數據。
但是,在資料庫中分散、獨立存在的大量數據對於實際分析人員來說,只是一些無法看懂的天書。分析人員所需要的是信息,是他們能夠看懂、理解並從中受益的抽象信息,畢竟,現金,一個專業的數據分析人員,是十分欠缺的。這導致企業運營的內容和形式難以拉動新用戶,同時又不能激活老用戶,這就導致企業在數字時代一定要進行運營的改變才可以抓住用戶。所以,企業運營走向精細化就是必然的趨勢。
2.大數據對精細化運營的價值
其實大數據對於企業精細化運營的價值表現在三個重要的維度:
幫助企業了解用戶從哪些渠道進來;
這些用戶關注什麼;
這些用戶是新關注的還是老用戶。
通過這三個維度的分析,可以讓企業決定自己的投放策略和方向,這完全是大數據給精細化運營帶來的價值。
在分析用戶從哪些渠道進來,可以幫助企業發現更多流量的來源和需要在哪些渠道加強投放,比如用戶是從微博、微信、論壇還是門戶網站,從而幫助企業不斷調整營銷投放,發現哪個渠道更有吸引用戶的潛力和價值,如果沒有被挖掘到,可以繼續深挖。
在分享用戶關注什麼方面,通過用戶對產品的點擊、話題的討論、內容的轉發能方面進行大數據分析,可以幫助企業有效找到用戶喜歡的興趣點和接受內容的方向,方便企業在運營內容和形式上及時作出調整。
最後,通過對用戶新老觀察分析,可以讓企業做精準運營的時候掌握好用戶的生命周期,知道什麼時候該對什麼樣的用戶進行內容上的營銷,以及幫助企業找到激活老用戶的方法。
3.大數據如何驅動精細化運營
精準數據體系的建設是一項任重而道遠的工程。只有擁有了精準的數據體系,運用合理的、科學的數據分析手段獲取的分析結果,方可為市場營銷、運營策略提供有價值意義的參考作用。
精準數據體系的建設,絕非一日一夕之功,需要在充分意識到數據分析為企業今後發展所帶來的巨大深遠價值意義的基礎上,將其視為一項長期的工作任務。通過各類可運作手段和多個相關部門的緊密配合,去將精準數據體系建設融於到日常的工作中去。
數據的獲取途徑是多種多樣的,但是歸類總結下,無外乎以下幾種:
1.公開信息的搜集與整理
比如統計局的數據、公司自己發布的年報、其他市場機構的研究報告、或者根據公開的零散信息整理,這類公布的信息,通常真實性較強,但是該項工作卻是一個日積月累的工作,需要持之以恆的不斷去搜集積累。
2.活動
數據獲取的最為精準的形式,在互聯網時代的今天,最好的表現就是「活動或者政策+互聯網「手段的結合形式。以明確的主題的活動形式,設置相應的合理的必須的「門檻「形式,讓活動參與者,填寫必備的相應我們所需的數據。
3.問卷調研
有時候為了某種目的也會收集很特別的數據,調研問卷雖然形式傳統,但是卻有其無法替代的作用意義。合理的問卷調研形式,往往會起到預期無法想像的效果。
4.技術採集
信息採集技術,信息採集系統以網路信息挖掘引擎為基礎構建而成,它可以在最短的時間內,幫您把最新的信息從不同的Internet站點上採集下來。信息採集技術是利用計算機軟體技術,針對定製的目標數據源,實時進行信息採集、抽取、挖掘、處理,將非結構化的信息從大量的網頁中抽取出來保存到結構化的資料庫中,從而為各種信息服務系統提供數據輸入的整個過程。該技術採集後的數據,信息雜亂無序,需要進行定製化的數據清洗和篩選工作。
5.購買的資料庫
市場上有很多產品化的資料庫,這個一般是以公司的名義買入口,不光咨詢公司還有很多高等院校及研究機構也會購買,這類數據通常以行業性代表數據居多,而且數據一般無法滿足「時效性「,切無效數據較多。
6.咨詢行業專家
當然是有償的,這個在一些企業戰略實施項目中比較常見的。有些行業專家會專門收集和銷售數據。
海量數據是金礦銀礦,但海量數據不是金銀財寶。精準數據的獲取,是一個去粗存精的過程,面對浩瀚的結構性、非結構性的數據,傳統形式的處理已蒼白無力,需要更加專業的技術手段,更加深度的數據構建思維,並且將數據的積淀付諸於日常的工作中。
4.總結
對企業而言,打造精細化運營的好處在於可以對目標用戶群體或者個體進行特徵和畫像的追蹤與畫像,幫助企業分析用戶在某個時間段內容的特徵和習慣,最後讓企業形成一種根據用戶特性而打造的專屬服務。借用大數據會讓企業的精細化運營更加有效和有針對性,精細化數據運營,拉近了企業距離用戶最近的那道關口,借用大數據做到對用戶的精準分析可以減少市場營銷很多不必要的行為,進而提升效率和增加轉化率。
⑦ DT時代,大數據的基本思維主要體現在哪幾個方面
1 大數據思維的整體性
隨著科技的不斷創新,進入大數據時代的同時必然帶動著大數據思維由一元思維升級至二元思維,目前根據人類思維的轉變模式進行分析,其依然進行至多元思維狀態,即追求和諧穩定社會的模式,但是研究大數據思維的發展進程發現,大數據的二元思維模式是一種高效率並適合現今社會發展的思維模式,其追求效率性、相關性、概率性,為創新發展提高了效率。根據當下社會的需求及其社會的快節奏發展,大數據思維已然在各領域發展處於主導地位,由其基本特徵層面分析,大數據思維主要特徵為整體性,整體性的理論基礎在於人類認識世界的能力在自然觀中的不斷變革而體現,現今社會通過人類對於整體數據的整合及分析能力進行體現,大數據時代,整體性大數據思維模式成為解決問題的首選為必然趨勢及結果,其原因在於整體性思維模式能夠更加高效的完成復雜的數據統計及分析。以我國人口普查為例,我國近三次人口普查時間間隔為十年,而面對我國龐大的人口數量,大數據思維在數據統計中佔領了絕對優勢,據悉我國人口普查總投入超過六億元人民幣,以2010年進行的人口普查數據分析,我國耗費了巨大的人力財力以及時間,倘若運用大數據進行人口普查,以其優勢進行僅使用百分之一的抽樣調查進行數據分析,將大大減少人口普查為政府帶來的難題。
2 大數據思維的互聯性
「一切皆可量化。」道格拉斯。相對微觀層面分析大數據思維特徵,較為典型的為切合現今社會及科技發展的量化互聯思維,量化為具體或明確目標的一種表述,而互聯代表著兩種事物間的連接,其作為大數據思維微觀層面的一種表達方式,更加說明大數據思維的重要性,知名投資人孫正義對於大數據時代的發展提出:「要麼數字化,要麼死亡。」直接地表達出大數據思維目前所處的地位,研究發現,數字信息成為時代發展的代表已成為必然趨勢,而量化思維為數字化特徵帶來的必然思維結果,換言之,量化可以解釋為共性語言描述和解釋世界的一種方式,其體現在於充分運用最新技術手段,對於各個領域進行信息全面定量採集以及信息互通,打通信息間隔閡,並進行全新的信息整合,實現分析實用性及數據科學性,創造更據價值的數據應用和信息資產。目前,大數據的運用不僅體現在網路平台當中,同時在人們的細微生活中、就業環境以及生態保護范圍內都做到了廣泛適用,gartner公司於2015年運用大數據分析出當下及未來人們就業環境,其調查結果表明,2015年全球范圍內數據崗位的需求量高達440萬,而2018年全球范圍內僅大數據就業背景管理人員的缺乏將高達150萬人,案例表明,全球范圍的人才緊缺將成為必然趨勢並不斷增加,該案列清晰的體現出大數據環境下大數據思維的量化互聯性,並且為未來就業環境做出了精準的預測。
3 大數據思維的價值性
由大數據思維的本質進行分析,大數據思維具有價值化特徵,大數據時代信息的不斷整合及分析已然使得信息及數據量化及互聯轉變為多維度的發展狀態,換言之,大數據思維滲透至各個領域及行業的不同維度是大數據發展的初始動機和直接目的,現今社會看待其價值化特徵將其價值性總結為大數據思維的本質,同時,萬物的量化互聯性及其整體性使得其價值性影響了多維度的發展,由此凸顯了數據及大數據思維的創造性及重要性。通過對於事實的研究證明,大數據時代背景下,其價值化特徵及其價值性的意義正在不斷演進並處於不斷被挖掘的狀態,各個領域大數據思維模式相繼被接受和適用也是大數據發展帶來的益處之一,隨著大數據思維的不斷開發和研究,其運用不僅在處理數據分析上實行了高效率,也對於事件及數據的預測上實現了精準並具有概率性的分析結果,google公司於2008年運用大數據思維對於流感爆發地點及人數進行准確預測的經典案列分析,大數據思維對於社會發展體現出其必要的價值性,並且改變了社會對於大數據的看法,可謂大數據的運用成功到達了一個全新的高度,Google公司通過對於數十億網路搜索請求的數據整合,對世界各地區的流感做出預測,該項目的成功引起了各國對於大數據的使用,同時帶動了人們的大數據思維及思考模式,將大數據思維上升至被社會認可的高度。
根據現今社會發展現狀分析,客觀角度說明我國以基本進入大數據時代,大數據思維的特徵已然體現在社會各領域當中,並且伴隨著多維度的運用,因此大數據思維全面運用指日可待,高級思維帶動我國科技及經濟的發展勢在必行。隨著人工智慧的不斷推出以及數據分析的不斷升級,並且基於大數據思維為社會帶來的發展前景研究,大數據思維引領我國科技發展已成為未來的必然趨勢。