大數據數量龐大,格式多樣化。大量數據由家庭、製造工廠和辦公場所的各種設備、互聯網事務交易、社交網路的活動、自動化感測器、移動設備以及科研儀器等生成。它的爆炸式增長已超出了傳統IT基礎架構的處理能力,給企業和社會帶來嚴峻的數據管理問題。因此必須開發新的數據架構,圍繞「數據收集、數據管理、數據分析、知識形成、智慧行動」的全過程,開發使用這些數據,釋放出更多數據的隱藏價值。
一、大數據建設思路
1)數據的獲得
四、總結
基於分布式技術構建的大數據平台能夠有效降低數據存儲成本,提升數據分析處理效率,並具備海量數據、高並發場景的支撐能力,可大幅縮短數據查詢響應時間,滿足企業各上層應用的數據需求。
『貳』 【科普】企業中,大數據部門的常見組成
在IT公司里,大數據部門的成員,一般可分為4種:(以房子為例)
先用一張圖,幫助大家理解一下~~
出道題目,我們公司的大數據部門,目前有這些崗位,你能一一推測出他們的所在位置嗎?
【數據應用工程師】、【數據可視化工程師】、【數據可視化設計師】、【數據平台工程師】、【演算法工程師】、【數據分析師】
建房子地基(埋在地下)的那群人
他們就是 平台組/架構組 的那群人,他們負責搭建一套大數據的平台架構體系。一般你肉眼看不到他們的產出,但是當某一堵牆壁歪了的時候,或者你進屋打水但水龍頭卻流不出來水的時候,你就會意識到他們工作的重要性。
平台組的常見發展路徑 :
平台初期,很多公司會用自己的伺服器搭一個 私有集群 ,將數據維護起來,開始構建數據平台的第一步。這個,也是原始的大數據平台。(當然,現在有很多公司也是直接上雲伺服器)
當平台進入高速發展期,考慮到不斷擴充的數據量和伺服器的維護成本上升,很多公司會遷移平台到 雲服務 上,比如阿里雲,華為雲。雲服務的選擇要解決的是選擇平台所提供的服務,成本,數據通道的維護。【我們公司目前正處於這一階段,選擇了雲服務。當前,經過考量也正在由阿里雲遷移到華為雲】
還有一個階段,你發現雲服務的費用太高,雖然省了你很多事,或者是考慮到敏感數據的安全問題(當然,私有集群也不是百分百安全),然後又開始往 私有集群 遷移。這時候,鑒於數據規模,你大概需要一個靠譜的團隊,設計網路布局、設計運維規范、架設監控、建立機房,值班團隊走起7*24小時隨時准備出台。
至此,產生了平台組,真的大數據平台來了 。
建屋子(砌牆蓋瓦)的那群人 :
應用組 的那群人,他們負責建設各類系統/應用。他們搬磚砌牆,建好房子,還要鋪設各類管道線路,把地基裡面的數據抽出來,放在房子里,讓用戶們推開門就可以享用。
應用組,有哪些應用? :
這塊不太好講。不過,為了盡量讓大家看懂,用 從大到小的思路 嘗試下:
在整個社會層面,大數據已應用於各行各業,比如:金融行業/地產行業/零售行業/醫療行業/農業/物流行業/城市管理等等……有哪一個行業,可以脫離數據而生存?有哪一個行業可以不依賴數據而發展?
那麼,在一個企業中,數據必然是無法避免的會應用到,不管是1個員工的皮包公司,還是10萬員工的跨國集團。so,我們來講講具體有哪些應用呢?
一般而言,數據應用分為3類:分別是面向企業內部, 面向企業外部以及面向用戶這三種。
這里,鑒於今天的主題,我們只講 面向企業內部 的大數據應用。
進入正題了:
企業內部產品中,可以從2個角度來看待具體有哪些應用:
策略類 的方向較多,常見的有:
這些有時候會有部分或全部不劃在大數據部門下面,但都需要比較規范的數據基礎,以及著重與利用數據分析調整產品策略。
做企業內部的大數據應用產品,常常有些心酸的地方:
屋子裡面的人 :
產品組 的那群人,主要是一群產品經理(我們公司,目前就半個,由一個分析師兼職著,所以,我們公司沒有產品組哦),負責數據類的應用產品設計。他們和上面建房子的工程師們,是緊密的團隊關系。鑒於上面對數據應用產品已做了很多闡述,關於他們工作產出的應用具體有哪些,這里就不再贅述。
講一講, 數據產品經理 的從業人員得有幾個素質:
屋子外面的人 :
分析組 的那群人,一般會有3類:數據分析師、演算法工程師 (類似數據挖掘) 、數據科學家 (我們公司沒有) 。他們工作的日常:為你提取一份EXCEL數據、製作一張報表數據、用演算法模型分析一個問題、訓練出一套演算法模型等等工作,但不局限於此。
他們常常需要與各個部門打交道,接待很多業務的數據需求,與業務關系緊密。在一些公司,分析組不一定都設置在大數據部門下,他們可能分散在不同的業務部門,為各自部門服務。但是,他們終究也是需要從大數據平台來獲取所需的業務數據,做分析處理,得到相關結論~
據我所知,我們公司的業務部門,(好像)也是有自己的分析人員。
簡單概括一下這些職位的特點:
【數據分析師】
業務線,負責通過數據分析手段發現和分析業務問題,為決策作支持。
【演算法工程師】/【數據挖掘工程師】
偏技術線,負責通過建立模型、演算法、預測等提供一些通用的解決方案,當然也有針對某業務的。
【數據科學家】
數據科學家是使用專業知識構建機器學習模型,再以此做出預測並對關鍵業務問題進行解答的專家。數據科學家仍然需要對數據進行清洗、分析以及可視化處理,這一點和數據分析師是一致的。不過數據科學家在專業技能方面有者更深的研究,涉獵范圍也更廣,同時他們也能夠對機器學習模型進行訓練與優化。
至此,整篇文章,已經講差不多了。
最後總結下,本質上,圍繞房子的這4撥人,做的是同一件事情: 提供數據服務 。
完結~
『叄』 大數據系統架構
轉: https://www.sohu.com/a/227887005_487103
數據分析工作雖然隱藏在業務系統背後,但是具有非常重要的作用,數據分析的結果對決策、業務發展有著舉足輕重的作用。隨著大數據技術的發展,數據挖掘、數據探索等專有名詞曝光度越來越高,但是在類似於Hadoop系列的大數據分析系統大行其道之前,數據分析工作已經經歷了長足的發展,尤其是以BI系統為主的數據分析,已經有了非常成熟和穩定的技術方案和生態系統,對於BI系統來說,大概的架構圖如下:
總的來說,目前圍繞Hadoop體系的大數據架構大概有以下幾種:
傳統大數據架構
Lambda架構算是大數據系統裡面舉足輕重的架構,大多數架構基本都是Lambda架構或者基於其變種的架構。Lambda的數據通道分為兩條分支:實時流和離線。實時流依照流式架構,保障了其實時性,而離線則以批處理方式為主,保障了最終一致性。什麼意思呢?流式通道處理為保障實效性更多的以增量計算為主輔助參考,而批處理層則對數據進行全量運算,保障其最終的一致性,因此Lambda最外層有一個實時層和離線層合並的動作,此動作是Lambda里非常重要的一個動作
優點: 既有實時又有離線,對於數據分析場景涵蓋的非常到位。
缺點: 離線層和實時流雖然面臨的場景不相同,但是其內部處理的邏輯卻是相同,因此有大量榮譽和重復的模塊存在。
適用場景: 同時存在實時和離線需求的情況。
Kappa架構
Unifield架構
總結
以上幾種架構為目前數據處理領域使用比較多的幾種架構,當然還有非常多其他架構,不過其思想都會或多或少的類似。數據領域和機器學習領域會持續發展,以上幾種思想或許終究也會變得過時。
『肆』 大數據架構流程圖
大數據管理數據處理過程圖
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察力。大數據處理的主要流程包括數據收集、數據存儲、數據處理、數據應用等主要環節。隨著業務的增長,大量和流程、規則相關的非結構化數據也爆發式增長。
平台數據架構流程圖
標准大數據平台架構,標准大數據平台架構,大數據平台架構,數據倉庫,數據集市,大數據平台層級結構,數據挖掘,舉報,包含該模版的分享。數據架構設計(數據架構組) 概述 總體描述 相對於業務架構和應用架構,數據架構在總體架構中處於基礎和核心地位。
產品體驗結構流程圖
產品的功能結構圖,產品功能結構圖,產品主要流程圖,產品的核心流程,我們繼續圍繞著得到app的核心流程探究。還原產品,產品結構、核心流程體驗、核心頁面體驗的情況,而不僅僅是界面表層;從產品視角、用戶視角來分析,而不是自我感覺,撰寫報告,推出報告。產品體驗從產品現狀、目標用戶及場景、關鍵功能體驗
程序流程圖
程序流程圖又稱程序框圖,是用統一規定的標准符號描述程序運行具體步驟的圖形表示。程序框圖的設計是在處理流程圖的基礎上,通過對輸入輸出數據和處理過程的詳細分析,將計算機的主要運行步驟和內容標識出來。
軟體開發周期
軟體生命周期(Software Life Cycle,SLC)是軟體的產生直到報廢或停止使用的生命周期。軟體生命周期內有問題定義、可行性分析、總體描述、系統設計、編碼、調試和測試、驗收與運行、維護升級到廢棄等階段一個軟體產品或軟體系統也要經歷孕育、誕生、成長、成熟、衰亡等階段
軟體測試流程魚骨圖
軟體測試流程: 需求分析,制訂測試計劃,設計測試用例與編寫,實施測試,提交缺陷報告,生成測試總結和報告。軟體測試按照研發階段一般分為5個部分:單元測試、集成測試、確認測試、系統測試、驗收測試。根據設計用例的方法不同,黑盒測試包括等價劃分法、邊界值分析法、錯誤推測法、因果圖法等。
雲平台整體架構圖
雲計算的體系結構由5部分組成,分別為應用層,平台層,資源層,用戶訪問層和管理層,雲計算的本質是通過網路提供服務,所以其體系結構以服務為核心。公認的雲架構是劃分為基礎設施層、平台層和軟體服務層三個層次的。
項目管理九大體系
項目管理思維導圖包括項目采購管理、項目成本核算、時間管理等關於項目管理的九大體系。項目管理十大領域:進度、成本、質量、范圍等4個核心領域,風險、溝通、采購、人力資源、干係人等5個輔助領域,1個整體領域。
產品經理項目管理思維導圖
思維導圖可以幫助產品經理梳理多而亂的產品思路,也可以幫助產品經理進行需求管理、產品分析等。產品經理會使用思維導圖來對產品的思路進行一個有效的分析,梳理產品邏輯,然後再畫原型圖。一個優秀的產品經理,不僅僅是會畫原型,寫需求文檔,更重要的是做出用戶滿意的產品。
項目規劃時間軸流程圖
項目規劃時間軸流程圖,對一個項目從開始到竣工的整個過程進行總結歸納。時間線圖,又叫時間軸圖,能以歷史進程為載體,將過往的重要事項或者里程碑,標注在軸線上,並加以說明。它的作用是能夠可視化內容,以圖文的形式呈現出來。時間軸是一種表達事物發展進程的可視化圖示,被許多商業管理人士所使用。
『伍』 數據中心是什麼其系統結構和工作原理是怎樣的呢
一直想整理一下這塊內容,既然是漫談,就想起什麼說什麼吧。我一直是在互聯網行業,就以互聯網行業來說。
先大概列一下互聯網行業數據倉庫、數據平台的用途:
整合公司所有業務數據,建立統一的數據中心;
提供各種報表,有給高層的,有給各個業務的;
為網站運營提供運營上的數據支持,就是通過數據,讓運營及時了解網站和產品的運營效果;
為各個業務提供線上或線下的數據支持,成為公司統一的數據交換與提供平台;
分析用戶行為數據,通過數據挖掘來降低投入成本,提高投入效果;比如廣告定向精準投放、用戶個性化推薦等;
開發數據產品,直接或間接為公司盈利;
建設開放數據平台,開放公司數據;
。。。。。。
網站日誌:
業務資料庫:
來自於Ftp/Http的數據源:
其他數據源:
業務產品
報表
即席查詢
OLAP
其它數據介面
『陸』 數據的邏輯結構是指是什麼
數據的邏輯結構就是數據之間關系,如順序關系,隸屬關系等,存儲結構是指一個數據集合在計算機內存里是怎麼樣存儲的,或者說在內存里怎麼給一群數據分配內存。
數據的邏輯結構分為以下四種:
1、集合結構:集合結構的集合中任何兩個數據元素之間都沒有邏輯關系,組織形式鬆散。
2、線性結構:數據結構中線性結構指的是數據元素之間存在著「一對一」的線性關系的數據結構。
3、樹狀結構:樹狀結構是一個或多個節點的有限集合。
4、網路結構:網路結構是指通信系統的整體設計,它為網路硬體、軟體、協議、存取控制和拓撲提供標准。
簡介:
系統的邏輯結構是對整個系統從思想的分類,把系統分成若干個邏輯單元,分別實現自己的功能,一般在系統開發時,邏輯結構往往都由架構師完成,系統的邏輯結構對系統的開發起到重要性的決定。
數據的邏輯結構是對數據之間關系的描述,有時就把邏輯結構簡稱為數據結構,邏輯結構形式地定義為(K,R)(或(D,S)),其中,K是數據元素的有限集,R是K上的關系的有限集。