導航:首頁 > 網路數據 > 大數據的演算法人工智慧

大數據的演算法人工智慧

發布時間:2023-11-25 09:47:59

㈠ 什麼叫人工智慧、大數據

人工智慧,它的范圍很廣,廣義上的人工智慧泛指通過計算機(機器)實現人的頭腦思維,使機器像人一樣去決策。機器學習是實現人工智慧的一種技術。機器學習是很多學科的知識融合,而數據分析是機器學習的基礎。只有學會了數據分析處理數據的方法,你才能看懂機器學習方面的知識。
總的來說:1人工智慧是指使機器像人一樣去決策。2機器學習是實現人工智慧的一種技術。3機器學習分很多方法(演算法),不同的方法解決不同的問題。深度學習是機器學習中的一個分支方法。4數據分析可以幫助你從零進入人工智慧時代。如果你喜歡深入技術,學會了數據分析,你才能打好基礎,去學習機器學習。如果你喜歡商業方面的內容,可以往人工智慧業務方向發展。

㈡ 什麼叫人工智慧、大數據

人工智慧是指計算機系統具備的能力,該能力可以履行原本只有依靠人類智慧才能完成的復雜任務。硬體體系能力的不足加上發展道路上曾經出現偏差,以及演算法的缺陷,使得人工智慧技術的發展在上世紀80—90年代曾經一度低迷。近年來,成本低廉的大規模並行計算、大數據、深度學習演算法、人腦晶元4大催化劑的齊備,導致人工智慧的發展出現了向上的拐點。
人工智慧和大數據的區別_大數據人工智慧哪個好
什麼是大數據
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
人工智慧和大數據的區別_大數據人工智慧哪個好
人工智慧和大數據的區別
大數據相當於人的大腦從小學到大學記憶和存儲的海量知識,這些知識只有通過消化,吸收、再造才能創造出更大的價值。
人工智慧打個比喻為一個人吸收了人類大量的知識,不斷的深度學習、進化成為一方高人。人工智慧離不開大數據,更是基於雲計算平台完成深度學習進化。
人工智慧是基於大數據的支持和採集,運用於人工設定的特定性能和運算方式來實現的,大數據是不斷採集、沉澱、分類等數據積累。
與以前的眾多數據分析技術相比,人工智慧技術立足於神經網路,同時發展出多層神經網路,從而可以進行深度機器學習。與以外傳統的演算法相比,這一演算法並無多餘的假設前提(比如線性建模需要假設數據之間的線性關系),而是完全利用輸入的數據自行模擬和構建相應的模型結構。這一演算法特點決定了它是更為靈活的、且可以根據不同的訓練數據而擁有自優化的能力。
但這一顯著的優點帶來的便是顯著增加的運算量。在計算機運算能力取得突破以前,這樣的演算法幾乎沒有實際應用的價值。大概十幾年前,我們嘗試用神經網路運算一組並不海量的數據,整整等待三天都不一定會有結果。但今天的情況卻大大不同了。高速並行運算、海量數據、更優化的演算法共同促成了人工智慧發展的突破。這一突破,如果我們在三十年以後回頭來看,將會是不弱於互聯網對人類產生深遠影響的另一項技術,它所釋放的力量將再次徹底改變我們的生活。

㈢ 人工智慧演算法簡介

人工智慧的三大基石—演算法、數據和計算能力,演算法作為其中之一,是非常重要的,那麼人工智慧都會涉及哪些演算法呢?不同演算法適用於哪些場景呢?

一、按照模型訓練方式不同可以分為監督學習(Supervised Learning),無監督學習(Unsupervised Learning)、半監督學習(Semi-supervised Learning)和強化學習(Reinforcement Learning)四大類。

常見的監督學習演算法包含以下幾類:
(1)人工神經網路(Artificial Neural Network)類:反向傳播(Backpropagation)、波爾茲曼機(Boltzmann Machine)、卷積神經網路(Convolutional Neural Network)、Hopfield網路(hopfield Network)、多層感知器(Multilyer Perceptron)、徑向基函數網路(Radial Basis Function Network,RBFN)、受限波爾茲曼機(Restricted Boltzmann Machine)、回歸神經網路(Recurrent Neural Network,RNN)、自組織映射(Self-organizing Map,SOM)、尖峰神經網路(Spiking Neural Network)等。
(2)貝葉斯類(Bayesin):樸素貝葉斯(Naive Bayes)、高斯貝葉斯(Gaussian Naive Bayes)、多項樸素貝葉斯(Multinomial Naive Bayes)、平均-依賴性評估(Averaged One-Dependence Estimators,AODE)
貝葉斯信念網路(Bayesian Belief Network,BBN)、貝葉斯網路(Bayesian Network,BN)等。
(3)決策樹(Decision Tree)類:分類和回歸樹(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5演算法(C4.5 Algorithm)、C5.0演算法(C5.0 Algorithm)、卡方自動交互檢測(Chi-squared Automatic Interaction Detection,CHAID)、決策殘端(Decision Stump)、ID3演算法(ID3 Algorithm)、隨機森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)線性分類器(Linear Classifier)類:Fisher的線性判別(Fisher』s Linear Discriminant)
線性回歸(Linear Regression)、邏輯回歸(Logistic Regression)、多項邏輯回歸(Multionmial Logistic Regression)、樸素貝葉斯分類器(Naive Bayes Classifier)、感知(Perception)、支持向量機(Support Vector Machine)等。

常見的無監督學習類演算法包括:
(1) 人工神經網路(Artificial Neural Network)類:生成對抗網路(Generative Adversarial Networks,GAN),前饋神經網路(Feedforward Neural Network)、邏輯學習機(Logic Learning Machine)、自組織映射(Self-organizing Map)等。
(2) 關聯規則學習(Association Rule Learning)類:先驗演算法(Apriori Algorithm)、Eclat演算法(Eclat Algorithm)、FP-Growth演算法等。
(3)分層聚類演算法(Hierarchical Clustering):單連鎖聚類(Single-linkage Clustering),概念聚類(Conceptual Clustering)等。
(4)聚類分析(Cluster analysis):BIRCH演算法、DBSCAN演算法,期望最大化(Expectation-maximization,EM)、模糊聚類(Fuzzy Clustering)、K-means演算法、K均值聚類(K-means Clustering)、K-medians聚類、均值漂移演算法(Mean-shift)、OPTICS演算法等。
(5)異常檢測(Anomaly detection)類:K最鄰近(K-nearest Neighbor,KNN)演算法,局部異常因子演算法(Local Outlier Factor,LOF)等。

常見的半監督學習類演算法包含:生成模型(Generative Models)、低密度分離(Low-density Separation)、基於圖形的方法(Graph-based Methods)、聯合訓練(Co-training)等。

常見的強化學習類演算法包含:Q學習(Q-learning)、狀態-行動-獎勵-狀態-行動(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度演算法(Policy Gradients)、基於模型強化學習(Model Based RL)、時序差分學習(Temporal Different Learning)等。

常見的深度學習類演算法包含:深度信念網路(Deep Belief Machines)、深度卷積神經網路(Deep Convolutional Neural Networks)、深度遞歸神經網路(Deep Recurrent Neural Network)、分層時間記憶(Hierarchical Temporal Memory,HTM)、深度波爾茲曼機(Deep Boltzmann Machine,DBM)、棧式自動編碼器(Stacked Autoencoder)、生成對抗網路(Generative Adversarial Networks)等。

二、按照解決任務的不同來分類,粗略可以分為二分類演算法(Two-class Classification)、多分類演算法(Multi-class Classification)、回歸演算法(Regression)、聚類演算法(Clustering)和異常檢測(Anomaly Detection)五種。
1.二分類(Two-class Classification)
(1)二分類支持向量機(Two-class SVM):適用於數據特徵較多、線性模型的場景。
(2)二分類平均感知器(Two-class Average Perceptron):適用於訓練時間短、線性模型的場景。
(3)二分類邏輯回歸(Two-class Logistic Regression):適用於訓練時間短、線性模型的場景。
(4)二分類貝葉斯點機(Two-class Bayes Point Machine):適用於訓練時間短、線性模型的場景。(5)二分類決策森林(Two-class Decision Forest):適用於訓練時間短、精準的場景。
(6)二分類提升決策樹(Two-class Boosted Decision Tree):適用於訓練時間短、精準度高、內存佔用量大的場景
(7)二分類決策叢林(Two-class Decision Jungle):適用於訓練時間短、精確度高、內存佔用量小的場景。
(8)二分類局部深度支持向量機(Two-class Locally Deep SVM):適用於數據特徵較多的場景。
(9)二分類神經網路(Two-class Neural Network):適用於精準度高、訓練時間較長的場景。

解決多分類問題通常適用三種解決方案:第一種,從數據集和適用方法入手,利用二分類器解決多分類問題;第二種,直接使用具備多分類能力的多分類器;第三種,將二分類器改進成為多分類器今兒解決多分類問題。
常用的演算法:
(1)多分類邏輯回歸(Multiclass Logistic Regression):適用訓練時間短、線性模型的場景。
(2)多分類神經網路(Multiclass Neural Network):適用於精準度高、訓練時間較長的場景。
(3)多分類決策森林(Multiclass Decision Forest):適用於精準度高,訓練時間短的場景。
(4)多分類決策叢林(Multiclass Decision Jungle):適用於精準度高,內存佔用較小的場景。
(5)「一對多」多分類(One-vs-all Multiclass):取決於二分類器效果。

回歸
回歸問題通常被用來預測具體的數值而非分類。除了返回的結果不同,其他方法與分類問題類似。我們將定量輸出,或者連續變數預測稱為回歸;將定性輸出,或者離散變數預測稱為分類。長巾的演算法有:
(1)排序回歸(Ordinal Regression):適用於對數據進行分類排序的場景。
(2)泊松回歸(Poission Regression):適用於預測事件次數的場景。
(3)快速森林分位數回歸(Fast Forest Quantile Regression):適用於預測分布的場景。
(4)線性回歸(Linear Regression):適用於訓練時間短、線性模型的場景。
(5)貝葉斯線性回歸(Bayesian Linear Regression):適用於線性模型,訓練數據量較少的場景。
(6)神經網路回歸(Neural Network Regression):適用於精準度高、訓練時間較長的場景。
(7)決策森林回歸(Decision Forest Regression):適用於精準度高、訓練時間短的場景。
(8)提升決策樹回歸(Boosted Decision Tree Regression):適用於精確度高、訓練時間短、內存佔用較大的場景。

聚類
聚類的目標是發現數據的潛在規律和結構。聚類通常被用做描述和衡量不同數據源間的相似性,並把數據源分類到不同的簇中。
(1)層次聚類(Hierarchical Clustering):適用於訓練時間短、大數據量的場景。
(2)K-means演算法:適用於精準度高、訓練時間短的場景。
(3)模糊聚類FCM演算法(Fuzzy C-means,FCM):適用於精確度高、訓練時間短的場景。
(4)SOM神經網路(Self-organizing Feature Map,SOM):適用於運行時間較長的場景。
異常檢測
異常檢測是指對數據中存在的不正常或非典型的分體進行檢測和標志,有時也稱為偏差檢測。
異常檢測看起來和監督學習問題非常相似,都是分類問題。都是對樣本的標簽進行預測和判斷,但是實際上兩者的區別非常大,因為異常檢測中的正樣本(異常點)非常小。常用的演算法有:
(1)一分類支持向量機(One-class SVM):適用於數據特徵較多的場景。
(2)基於PCA的異常檢測(PCA-based Anomaly Detection):適用於訓練時間短的場景。

常見的遷移學習類演算法包含:歸納式遷移學習(Inctive Transfer Learning) 、直推式遷移學習(Transctive Transfer Learning)、無監督式遷移學習(Unsupervised Transfer Learning)、傳遞式遷移學習(Transitive Transfer Learning)等。

演算法的適用場景:
需要考慮的因素有:
(1)數據量的大小、數據質量和數據本身的特點
(2)機器學習要解決的具體業務場景中問題的本質是什麼?
(3)可以接受的計算時間是什麼?
(4)演算法精度要求有多高?
————————————————

原文鏈接: https://blog.csdn.net/nfzhlk/article/details/82725769

㈣ 物聯網,雲計算,大數據和人工智慧有什麼關系

一.大數據支撐物聯網,雲計算供給大數據

由於這四者的關系比較復雜,所以只能逐個來給你做解釋。

首先說物聯網吧,其實簡單通俗的去解釋,就是物物聯網,說白了就是任何事物都可以連接到互聯網端來共享數據,如果非要去細究這個詞的含義,我相信這個世界上沒有人能給出你一個標準的定義,所以姑且先這么解釋。

這種物聯網的模式並不是很輕易就可以完成的,如果你了解互聯網的發展史你會發現,完全依靠數據來運行的互聯網其實早就有向物聯網發展的趨勢,說白了,人類不會滿足於只擁有虛擬數據的互聯網。

相較於傳統演算法,雲計算更為多元化、快速化、有效化,簡單來說就是更為強大。

而將大數據寫入人工智慧,則會讓其可實現的行為或功能越來越多,最簡單的呈現形式就是智能機器人,原來可能只會走路,現在可能都會變型或跑步了,這就是大數據製造出的人工智慧相較於之前的進步吧,總之,人工智慧的數據太過繁瑣,如果不通過這樣的方式很容易出現錯誤,人腦固然強大,但機械固化的大量運算還是沒有系統計算來的可靠。

㈤ 大數據與人工智慧的關系

大數據作為人工智慧發展的三個重要基礎之一(數據、演算法、算力),本身與人工智慧就存在緊密的聯系,正是基於大數據技術的發展,目前人工智慧技術才在落地應用方面獲得了諸多突破。

在當前大數據產業鏈逐漸成熟的大背景下,大數據與人工智慧的結合也在向更全面的方向發展,大數據與人工智慧的結合涉及到以下幾個方式:

第一:大數據分析。從技術的角度來看,大數據分析是與人工智慧一個重要的結合點,機器學習作為大數據重要的分析方式之一,正在被更多的數據分析場景所採用。機器學習不僅是人工智慧領域的六大主要研究方向之一,同時也是入門人工智慧技術的常見方式,不少大數據研發人員就是通過機器學習轉入了人工智慧領域。

第二:AIoT體系。AIoT技術體系的核心就是物聯網與人工智慧技術的整合,從物聯網的技術層次結構來看,在物聯網和人工智慧之間還有重要的「一層」,這一層就是大數據層,所以在AIoT得到更多重視的情況下,大數據與人工智慧的結合也增加了新的方式。

第三:雲計算體系。隨著雲計算服務的逐漸深入和發展,目前雲計算平台正在向「全棧雲」和「智能雲」方向發展,這兩個方向雖然具有一定的區別(行業),但是一個重要的特點是都需要大數據的參與,尤其是智能雲。

大數據的發展本身開辟出了一個新的價值空間,但是大數據本身並不是目的,大數據的應用才是最終的目的,而人工智慧正是大數據應用的重要出口,所以未來大數據與人工智慧的結合途徑會越來越多。

㈥ 雲計算,大數據,人工智慧三者有何關系

雲計算、大數據、人工智慧是相輔相成的,三者缺少了誰都不行。

雲計算相當於人的大腦,是物聯網的神經中樞。雲計算是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。

大數據相當於人的大腦從小學到大學記憶和存儲的海量知識,這些知識只有通過消化,吸收、再造才能創造出更大的價值。

人工智慧就好像為一個人吸收了人類大量的知識(數據),不斷的深度學習、進化成為一方高人。人工智慧離不開大數據,更是基於雲計算平台完成深度學習進化。

(6)大數據的演算法人工智慧擴展閱讀

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。它的特色在於對海量數據的挖掘,但它必須依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術。

雲計算早期,簡單地說,就是簡單的分布式計算,解決任務分發,並進行計算結果的合並。因而,雲計算又稱為網格計算。通過這項技術,可以在很短的時間內(幾秒鍾)完成對數以萬計的數據的處理,從而達到強大的網路服務。

㈦ 大數據與人工智慧之間有何聯系

大數據


Big data,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。


人工智慧


Artificial Intelligence,英文縮寫為AI。它的領域范疇是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。


大數據技術主要是圍繞數據本身進行一系列的價值化操作,包括數據的採集、整理、存儲、安全、分析、呈現和應用等。大數據技術與物聯網、雲計算都有密切的聯系,物聯網為大數據提供了主要的數據來源,而雲計算則為大數據提供了支撐平台。


人工智慧目前還處在初級階段,主要的研究方向集中在自然語言處理、知識表示、自動推理、機器學習、計算機視覺和機器人學等六個方面。人工智慧是典型的交叉學科,涉及到哲學、數學、計算機、經濟學、神經學、語言學等諸多領域。


大數據與人工智慧的關系


大數據和人工智慧雖然關注點不相同,但關系密切,可以這樣說,大數據是人工智慧的基石,動力。大數據和AI中的深度學習是密不可分的,有了大量數據,作為深度學習的“學習資料”,計算機可以從中找到規律,海量數據,加上演算法的突破和計算力的支撐讓人工智慧獲得突破、走向應用。


一是人工智慧需要大量的數據作為“思考”和“決策”的基礎,二是大數據也需要人工智慧技術進行數據價值化操作,比如機器學習就是數據分析的常用方式。在大數據價值的兩個主要體現當中,數據應用的主要渠道之一就是智能體(人工智慧產品)。


人工智慧就是大數據應用的體現,是大數據、雲計算的應用場景。沒有大數據就沒有人工智慧,人工智慧應用的數據越多,其獲得的結果就越准確。


關於大數據與人工智慧之間有何聯系,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈧ 大數據和人工智慧的聯系與區別是什麼

了解大數據與人工智慧的區別與聯系,首先我們從認知和理解大數據和人工智慧的概念開始。

1、大數據

大數據是物聯網、Web系統和信息系統發展的綜合結果,其中物聯網的影響最大,所以大數據也可以說是物聯網發展的必然結果。大數據相關的技術緊緊圍繞數據展開,包括數據的採集、整理、傳輸、存儲、安全、分析、呈現和應用等等。目前,大數據的價值主要體現在分析和應用上,比如大數據場景分析等。

2、人工智慧

人工智慧是典型的交叉學科,研究的內容集中在機器學習、自然語言處理、計算機視覺、機器人學、自動推理和知識表示等六大方向,目前機器學習的應用范圍還是比較廣泛的,比如自動駕駛、智慧醫療等領域都有廣泛的應用。人工智慧的核心在於「思考」和「決策」,如何進行合理的思考和合理的行動是目前人工智慧研究的主流方向。

3、大數據與人工智慧

大數據和人工智慧雖然關注點並不相同,但是卻有密切的聯系,一方面人工智慧需要大量的數據作為「思考」和「決策」的基礎,另一方面大數據也需要人工智慧技術進行數據價值化操作,比如機器學習就是數據分析的常用方式。在大數據價值的兩個主要體現當中,數據應用的主要渠道之一就是智能體(人工智慧產品),為智能體提供的數據量越大,智能體運行的效果就會越好,因為智能體通常需要大量的數據進行「訓練」和「驗證」,從而保障運行的可靠性和穩定性。

目前大數據相關技術已經趨於成熟,相關的理論體系已經逐步完善,而人工智慧尚處在行業發展的初期,理論體系依然有巨大的發展空間。從學習的角度來說,如果從大數據開始學習是個不錯的選擇,從大數據過渡到人工智慧也會相對比較容易。總的來說,兩個技術之間並不存在孰優孰劣的問題,發展空間都非常大。

㈨ 什麼叫人工智慧、大數據

人工智慧(Artificial Intelligence),英文縮寫為AI。人工智慧是計算機科學的一個分支,它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。


大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。

若幫助到您,求採納,更多人工智慧知識可進入3D視覺開發者社區~

閱讀全文

與大數據的演算法人工智慧相關的資料

熱點內容
js調用外部js 瀏覽:273
蘋果手機照片後期軟體 瀏覽:333
linux自動備份oracle資料庫 瀏覽:447
ios重啟app的代碼 瀏覽:565
裝了win10文件加鎖打不開 瀏覽:713
蘋果電腦怎麼新建一個pdf的文件 瀏覽:379
wps顯示word不是一個有效文件 瀏覽:48
凱立德地圖升級工具 瀏覽:474
linux系統參看log 瀏覽:416
用手機設置無線密碼是多少 瀏覽:829
銷售季度績效考核怎麼體現數據 瀏覽:335
c盤的文件刪除不了 瀏覽:589
智力app哪個最好用 瀏覽:203
分析程序的目的 瀏覽:346
數據線插頭用多少度錫絲 瀏覽:666
怎麼用app查看社保卡余額 瀏覽:374
蘋果手機無線網路信號不好 瀏覽:383
ue4材質中文教程 瀏覽:689
打開附帶文件在圖層 瀏覽:567
mfc怎麼刪除資料庫 瀏覽:468

友情鏈接