導航:首頁 > 網路數據 > 大數據分析結果

大數據分析結果

發布時間:2023-11-20 14:18:37

『壹』 大數據分析成績好處

大數據分析成績的好處是可以大大提高效率。在短時間內得出想要的結果。同時大數據分析成績更加精確和准確,犯錯的幾率更小。也即是說大數據分析成績得出的結果會更加真實。

大數據分析是指對規模巨大的數據進行分析。大數據可以概括為5個V, 數據量大(Volume)、速度快(Velocity)、類型多(Variety)、價值(Value)、真實性(Veracity)。

大數據作為時下最火熱的IT行業的詞彙,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等等圍繞大數據的商業價值的利用逐漸成為行業人士爭相追捧的利潤焦點。隨著大數據時代的來臨,大數據分析也應運而生。

大數據分析的六個基本方面

可視化分析

不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。

數據挖掘演算法

可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。

預測性分析能力

數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。

語義引擎

我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。

數據質量和數據管理

數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

數據存儲,數據倉庫

數據倉庫是為了便於多維分析和多角度展示數據按特定模式進行存儲所建立起來的關系型資料庫

以上內容參考:網路-大數據分析

『貳』 對大數據的理解與思考

對大數據的理解與思考
首先,大數據的到來,對人們的觀念將帶來深遠的影響。
我們以前習慣認為:找到現象背後的原因,比清楚現象是什麼更重要。通過「塔吉特懷孕預測」的例子可以看到,通過關聯分析、聚類分析等數據挖掘方法,大家很容易找到事物之間的關系。但是,這些大數據分析結果,並不會直接告訴我們,事物之間為什麼存在這些關系。在不清楚為什麼存在這些關系之前,又的確看到了這些關系帶來了價值;所以,在大數據應用領域就需要改變以前的思考方。即:先找到「是什麼」再去找「為什麼」;清楚是什麼,與搞清楚為什麼同等重要。
手工統計時代,出於收集全部數據非常困難或代價巨大的原因,很多數據分析都是採用抽樣數據;但是,現在不同了,隨著信息技術的發展,現在很多領域都能夠方便的收集到全量數據。諸如無紙化辦公的興起、信息系統的使用、電子商務的發展等等,都為收集全量數據提供了便捷的條件。那麼,這時候數據的「樣本」=「全體數據」。這相對以前來說,也是革命性的影響。
在抽樣分析時代,個別樣本的質量甚至決定結果的質量。在大數據時代,這也變了,可以允許個別數據的不精確,甚至錯誤。舉個簡單例子來說明這個道理,比如在溫室大棚里放一隻溫度計,當這只溫度計有問題時,整個溫度都是不準確的。若在大棚里均勻分布十幾只溫度計,其中一隻有問題,對溫室大棚溫度的統計結果無礙大事,基本可以忽略其影響。
其次,大數據應用,影響商業變革和社會進步。
大數據應用正改變著企業的業務發展方式。比如:京東、天貓通過對交易數據的「二次利用」,尋找目標客戶、定向推薦商品。也正是這些數據的二次利用給他們提供了大量價值,促進了這些企業的發展,推動著他們在營銷、供應鏈與客戶服務等領域的管理變革。同時,交易數據並不因為二次利用,而降低其價值;這也是,大數據應用與傳統資源使用不同的地方。
數據的「混搭」分析,推動著商業發展和社會的進步。比如歷史天氣信息與航班誤點信息,這兩個不同領域的信息一塊兒分析,便可以推算未來幾天航班的誤點率。再比如,通過神經中樞腫瘤患病率和手機使用時間長短之間的大數據關聯分析,來研究神經中樞腫瘤患病率是否與手機使用時間長短有關系等等。
大數據的應用,也促生了很多商業機會。隨著大數據時代的到來,形成了很多大數據擁有公司,以及大數據技術公司;數據與技術的結合變促生了很多大數據應用,因此帶來了很多商業機會。例如,現在很多商業銀行對自己大量客戶的交易信息分析,規劃新的理財產品,與其他商家合作,聯合搞定向促銷等等。
再次,大數據時代不再有個人隱私,將形成新的信息安全機制。
現在還經常聽到諸如某某窺探我的隱私之類的話語,但是,在大數據時代幾乎沒有個人隱私,這不是駭人聽聞。因為,現在微博、搜索引擎、社交網路、電商購物,已經成了我們生活中必不可少的一部分。根據每個人在互聯網上留下的痕跡,通過大數據分析,很容易分析出一個人的愛好、習慣、性格、癖好等等。所以,大家都被「第三隻眼」實時監控著,在大數據時代,幾乎沒有個人隱私!
沒有個人隱私,是否就代表每個人可以隨便傳播別人隱私了呢?答案當然是否定的。因為傳播別人隱私是不道德的,甚至是違法的。所以,現在新的信息安全規則正在重新定位,其中一個基調是:讓數據使用者承擔責任,不能濫用別人的隱私;我個人感覺這也比較合理。
總結
大數據只是「新概念」,並不是「新事物」。過去數據就存在,只是我們沒有收集這些數據。但是,現在收集了這些數據,這個世界變得不一樣了;它更新了人們過去對數據應用的認識,加快了商業和社會發展的新陳代謝,從中也讓大家也看到了很多機會。大數據時代,已經到來。極目遠眺,也看不到盡頭。

『叄』 大數據分析行業發展趨勢及成果有哪些

【導讀】目前,大數據分析是一個非常熱門的行業,一夜間,似乎企業的數據已經價值連城。企業都在開始嘗試利用大數據來增強自己的企業業務競爭力,但是對於大數據分析行業來說,仍然處於快速發展的初期,這是一個快速發展的領域,每時每刻的都在產生新的變化。那麼你知道大數據分析行業發展趨勢及成果有哪些嗎?還不清楚的一起來了解了解吧!

1.基於雲的大數據分析

Hadoop是用於處理大型數據集的一個框架和一組工具,這個最初被設計工作在物理機的集群上,但是目前這種現象已經改變,越來越多的基於雲中的數據處理器技術出現,例如亞馬遜利用雲的數據BI的託管長款,谷歌BigQuery中的數據分析服務,IBM的Bluemix雲平等等,這些都是基於雲的大數據分析平台。

2. Hadoop:新的企業數據操作系統

Hadoop,分布式的分析框架,如今正在演變成分布式資源管理器,它可能將是數據分析的一個通用的操作系統。有了這些系統,你可以將不同的數據操作和分析操作插入到Hadoop分布式存儲系統中來執行。

3.更多的預測分析

隨著大數據的發展,分析師不僅會嗯更多的數據一起工作,而且還將處理大量的許多屬性的工具。但是隨著大數據行業的發展,針對舊數據的分析更多的是為了提供預測的功能,畢竟人們更希望利用原有的數據來對未來產生有利的用途。

4. 更多更好的NoSQL

替代傳統的基於SQL的關系資料庫的產品被稱為NoSQL資料庫,如今被迅速的普及在特定種類的分析應用程序中。而且這一勢頭在持續增長,據估計,預計未來將有15至20個開源的NoSQL資料庫共同存在,他們各自有的的專長,這些資料庫會得到快速的發展。

5.在內存分析

使用內存資料庫來加快分析處理的方式如今越來越受歡迎,很多用戶都非常喜歡這種方式,目前很多基於內存的分析管理工具以及出現,其中以亞馬遜的HANA一體機尤為明顯。

除了分析軟體看好這個市場,作為全球的企業級市場的處理器生產商,英特爾也非常看好這一領域的發展,從目前其產品推出的發展趨勢來看,其內存支持將會越來越大,一些特定的產品甚至支持的比硬碟的容量還要大。

以上就是小編今天給大家整理發送的關於「大數據分析行業發展趨勢及成果有哪些?」的相關內容,希望對大家有所幫助。那我們如何入門學習大數據呢,如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『肆』 如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

『伍』 大數據攻略案例分析及結論

大數據攻略案例分析及結論

我們將迎來一個「大數據時代」。與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?

{研究結論}

怎樣才能用起來大數據?障礙如何解決?中國企業家研究院對10多家在大數據應用方面的領先企業進行了采訪調研,更多家企業進行了書面資料調研,我們發現:

■ 當前中國企業的大數據應用可以歸類為:大數據運營、大數據產品、大數據平台三大=領域,前兩者更多是企業內部的應用,後者則在於用大數據來繁榮整個平台企業群落的生態。

■ 大數據營銷的本質是一個影響消費者購物前心理路徑的問題,而這在大數據時代前很難做到。

■ 對於傳統企業而言,要打通線上與線下營銷,實現新的商業模式,如O2O等,離不開大數據。

■ 雖然大數據應用往往集中於大數據營銷,但對於一些企業,大數據的應用早已超越了營銷范疇,全面進入了企業供應鏈、生產、物流、庫存、網站和店內運營等各個環節。

■ 對於大部分企業,由於數據分析人員與業務人員之間的彼此視角與思考方向不同,大數據分析和運營之間存在脫節情況,這是大數據無法用於企業運營最大的阻力

■ 對於大多數互聯網公司來說,大數據量、大用戶量是一個相互促進,強者越強的循環過程。

■ 對於大型互聯網平台,大數據已經成為其生態循環中的血液,對於這些企業,最重要

的不是如何利用大數據改進自身運營,而是利用大數據更好地繁榮平台生態。

■ 對於平台企業,它們的大數據策略正逐漸從大數據運營,向運營大數據轉變,前者和

後者的差別在於,前者只是運營改進的動力,而後者則成為企業實現未來戰略的核心資源。

我們都已被反復告知:我們將迎來一個「大數據時代」。

大數據應用,將和雲計算、3D列印這些技術變革一樣,顛覆既有規則,並成為先行企業的制勝關鍵。

與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?

來自於互聯網、移動互聯網、物聯網感測器、視頻採集系統的數據正海量增長,匯成大數據的海洋,相伴的是海量數據存儲、分析技術的突破性發展,所有這一切都給企業的應用帶來了無限可能性。

許多企業希望將大數據用起來,帶動企業的經營,但不知從哪裡著手。它們不惜重金投資大數據信息系統、分析系統,聘請更多的人才,希望能從這個新趨勢中獲益,不過卻無奈地發現,大數據仍然停留在雲端,沒有帶來多少實際收益。它們找不到大數據與業務結合的突破口。而一些真正將大數據應用於實戰的企業,卻在應用過程中困難重重:大數據無法與業務結合;沒有收集、分析海量數據的能力;經營人員缺少應用大數據的動力;數據來源魚龍混雜難以使用……

中國企業家研究院對當前中國企業大數據應用的狀況進行了歸納分類,以幫助企業了解實際應用大數據時的困局難點,並提供領先企業的典型案例以資借鑒。

表1

表2

大數據運營—企業提升效率的助推力

對於大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自於互聯網、物聯網、各種感測器的海量數據撲面而至。於是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。大數據運營應用中,大數據的應用分為三類:用於企業外部營銷、用於內部運營,以及用於領導層決策。

一、大數據營銷

大數據營銷的本質是影響目標消費者購物前的心理路徑,它主要應用在三個方面:1、大數據渠道優化,2、精準營銷信息推送,3、線上與線下營銷的連接。在消費者購物前,通過各種方式,直接介入其信息收集和決策過程。而這種介入,是建立在對於線上與線下海量用戶數據分析的基礎之上。相比傳統狂轟濫炸或等客上門的營銷,大數據營銷無論在主動性和精準性方面,都有非常大的優勢。它是目前主要的大數據應用領域。

大數據營銷不僅僅是用大數據找出目標顧客,向其發布促銷信息,它還可以做到:

實現渠道優化。根據用戶的互聯網痕跡進行渠道營銷效果優化,就是根據互聯網上顧客的行為軌跡來找出哪個營銷渠道的顧客來源最多,哪個來源顧客實際購買量最多,是否是目標顧客等等,從而調整營銷資源在各個渠道的投放。例如東風日產,它利用對顧客來源的追蹤,來改進營銷資源在各個網路渠道如門戶網站、搜索和微博的投放。

精準營銷信息推送。精準建立在對海量消費者的行為分析基礎之上,消費者網路瀏覽、搜索行為被網路留下,線下的購買和查看等行為可以被門店的POS機和視頻監控記錄,再加上他們在購買和注冊過程中留下的身份信息,在商家面前,正逐漸呈現出消費者信息的海洋。

一些企業通過收集海量的消費者信息,然後利用大數據建模技術,按消費者屬性(如所在地區、性別)和興趣、購買行為等維度,挖掘目標消費者,然後進行分類,再根據這些,對個體消費者進行營銷信息推送。比如孕婦裝品牌十月媽咪通過對自己微博上粉絲評論的大數據分析,找出評論有「喜愛」相關關鍵詞的粉絲,然後打上標簽,對其進行營銷信息推送。京東商城副總經理李曦表示:「用大數據找出不同細分的顧客需求群,然後進行相應的營銷,是京東目前在做的事情。」小也化妝品將自身網站作為收集消費者信息的雷達,對不同消費者推薦相應的肌膚解決方案,創始人肖尚略希望在未來,大數據營銷能替代網站的作用,真正成為面向顧客的前端。

打通線上線下營銷。一些企業將互聯網上海量消費者的行為痕跡數據與線下購買數據打通,實現了線上與線下營銷的協同。比如東風日產,線上與線下的協同營銷方式為:其門戶網站帶來訂單線索,而通過這些線索,服務人員進行電話回訪,從而推動顧客在線下交易。在此過程中,東風日產記錄了消費者進入、瀏覽、點擊、注冊、電話回訪和購買各個環節的數據,實現了一個橫跨線上線下,以大數據分析為支持的,營銷效果不斷優化的閉環營銷通路。而國雙科技,衡量某一地區線下促銷活動的效果,就是看互聯網上,來自這個地區對於促銷內容的搜索量。一些企業,通過鼓勵線下顧客使用微信和Wi-Fi等可追蹤消費者行為和喜好的設備,來打通線上與線下數據流,銀泰百貨計劃鋪設Wi-Fi,鼓勵顧客在商場內使用,然後根據Wi-Fi賬號,找出這個顧客,再通過與其它大數據挖掘公司合作,以大數據的手段,發掘這個顧客在互聯網的歷史痕跡,來了解這個顧客的需求類型。

二、大數據用於內部運營

相比大數據營銷,大數據在內部運營中的應用更深入,對於企業內部的信息化水平,以及數據採集和分析能力的要求更高。本質上,是將企業外部海量消費者數據與企業內部海量運營數據聯系起來,在分析中得到新的洞察,提升運營效率。(詳見P96表5:大數據在內部運營中的應用)

表5

三、大數據用於決策

在大數據時代,企業面對眾多新的數據源和海量數據,能否基於對這些數據的洞察,進行決策,進而將其變成一項企業競爭優勢的來源?同大數據營銷和大數據內部運營相比,運用大數據決策難度最高,因為它需要一種依賴數據的思維習慣。

已有少數企業開始嘗試。比如國內一些金融機構在推出一個金融產品時,會廣泛分析該金融產品的應用情況和效果、目標顧客群數據、各種交易數據和定價數據等,然後決定是否推出某個金融產品。

但是,中國企業家研究院在調研中發現,目前中國企業當中,大數據決策的應用非常之少,許多企業領導者進行決策時,仍習慣於憑借歷史經驗和直覺。

大數據產品——企業利潤滋長的新源泉

大數據除了用於運營外,還能夠與企業產品結合,成為企業產品背後競爭力的核心支持或者直接成為產品。提供大數據產品的企業分為兩類,直接提供大數據產品的企業,以及將大數據作為產品和服務核心支撐的企業。前者主要為大數據產業鏈中提供數據服務的參與者,包括數據擁有者、存儲企業,挖掘企業、分析企業等,後者則主要是那些以大數據為產品核心支撐的企業,它們大多是互聯網企業,其產品和服務先天就有大數據基因,這些企業包括搜索引擎、在線殺毒、互聯網廣告交易平台以及眾多植根於移動互聯網之上,為用戶提供生活和資訊服務的APP等。

表3

表4

一、大數據作為產品核心支持

它們主要在以下幾方面使用大數據:

1、提供信息服務。很多互聯網企業通過對海量互聯網信息和線下信息的整合和分析,為個人和企業提供信息服務,典型的如網路、去哪兒、一淘、高德地圖、春雨醫生等等。在美國,一些互聯網企業甚至根據大數據提供更深度的預測信息服務,美國科技創新公司farecast,通過分析特定航線機票的價格,幫助消費者預測機票價格走勢。

2、分析用戶的個性化需求,藉此提供個性化產品和服務,或者實現更精準的廣告。典型的有移動社交工具陌陌、網路、騰訊、廣告交易平台品友互動以及一些互聯網游戲商。這種應用往往先是收集海量用戶的互聯網行為數據,將用戶分類,根據不同類型的用戶,提供個性化的產品,或者提供個性化的促銷信息。比如網易等門戶網站推出了訂閱模式,讓使用者按照個人喜好方便地定製和整合不同來源的信息。

3、增強產品功能。對於很多互聯網產品,如殺毒軟體、搜索引擎等等,海量數據的處理能夠讓產品變得更聰明更強大,如果沒有大數據,產品的功能就大大減弱。比如奇虎360公司的360殺毒軟體,憑借每天海量的殺毒處理,建立了龐大的病毒庫,這使它能夠更快地發現病毒,而一些小的殺毒軟體公司則無法做到這一點。

4、掌控信用狀況,提供信貸服務。阿里巴巴上匯集了海量中小企業的日常資金與貨品往來,通過對這些往來數據的匯總與分析,阿里巴巴能發現單個企業的資金流與收入情況,分析其信用,找出異常情況與可能發生的欺詐行為,控制信貸風險。

5、實現智能匹配。婚戀網站、交易平台等,利用大數據可以進行精準而高效的配對服務。網易花田會挖掘用戶行為數據,比如點擊哪些異性的頁面,發表什麼樣的評論,建立用戶興趣模型,從而挖掘到用戶所期待另一半的類型,然後主動推薦與對方匹配度比較高的人選。2010年,阿里巴巴嘗試性地推出「輕騎兵」服務,由阿里巴巴將中國各產業集群地的供應商與海外買家的個性采購需求進行快速匹配,所憑借的,就是對供應商的海量交易數據信息的整合與挖掘。

大數據作為產品核心支撐的關鍵在於用戶量。對於大多數互聯網公司來說,用戶量越多,收集的數據越多,憑借更多的數據,其產品與商業模式會不斷改進,進而帶來更多的用戶。

二、大數據直接作為產品

對一些企業,大數據直接成為了產品,這些產品包括海量數據、分析、存儲與挖掘的服務等,目前大數據產業鏈正在形成過程中,出現了一批開放、出售、授權大數據和提供大數據分析、挖掘的公司和機構,前者主要是一些擁有海量數據的公司,將數據服務作為新的盈利來源。如大型的互聯網平台、民航、電信運營商、一些擁有大數據的政府機構等等,後者主要包括一些能夠存儲海量數據或者將海量數據與業務場景結合,進行分析和挖掘,或者提供相關產品的公司,如IBM、SAP、拓而思、天睿公司。它們為大數據應用者們提供海量數據存儲、數據挖掘、圖像視頻、智能分析等服務以及相關系統產品。

大數據平台——企業群落繁榮的滋養劑

相對企業本身對大數據的應用,大數據平台更多是利用大數據來搭建企業生態。一些擁有龐大數據資源的大型互聯網平台,已變為包含海量寄生者的生態系統。在這個生態系統中,它們將海量用戶互聯網行為痕跡和分析提供給平台上的企業,用於它們改善經營,推動整個平台生態繁榮,在這一過程中,它們也收取數據服務費。阿里巴巴就是一個典型的例子,從數據魔方、黃金策到聚石塔,阿里巴巴不斷地為平台上中小電商提供數據產品和服務。

而網路已建成了包括網路指數、司南、風雲榜、數據研究中心和網路統計在內的五大數據體系平台,幫助其營銷平台上的企業了解消費者行為、興趣變化,以及行業發展狀況、市場動態和趨勢、競爭對手動向等信息。

而當大數據從企業內部運營的動力,變成平台企業的產品和服務時,平台企業也在經歷著一個從大數據運營到運營大數據的階段。數據從運營的支持工具,變成了生產資料。此前平台們的關注點,更多的是如何用好現有的大數據。而未來,它們的關注點則更多是如何將大數據這個生產資料管理好、經營好,如何更好地為平台上的企業服務。這就涉及到收集的數據質量怎樣?格式標準是否統一?數據作為一種原材料,其精細化程度如何?是否符合平台上企業應用的具體場景?是平台上企業拿來就能用的,還是還需要平台上的企業再加工?

為解決這些問題,各個平台在積極地努力。比如阿里巴巴建立了數據委員會,在統一數據格式標准、從源頭上保證數據的質量,採集和加工出精細化的數據,確保其能符合平台企業的應用場景等方面,不遺餘力地嘗試。尤其在大數據精細化方面,阿里巴巴更是作為其大數據戰略的重點。這方面,騰訊目前也在加快步伐。比如新版騰訊網出現了「一鍵登錄」的提示,用戶可以在上面通過一些細分標簽,訂閱自己關注的內容。實際上,這也是騰訊收集更精細化的用戶興趣數據的一個有效手段。

Tips

大數據實戰手冊

將大數據應用於內部運營中時,企業會遇到一些常見問題

1企業如何獲取與分析數據?

互聯網是大數據的一個主要來源,一些線下的傳統企業很難獲得。但它們可以:

a 和擁有或能抓取海量數據的平台、企業以及政府機構合作。比如淘寶上的電商就購買淘寶收集的海量數據中與自身運營相關的部分,用於自身業務。再如卡夫通過與IBM合作,在博客、論壇和討論版的內容中抓取了47.9萬條關於自己產品的討論信息,通過大數據分析出消費者對卡夫食品的喜愛程度和消費方式。

b 建立自己在互聯網上的平台,比如朝陽大悅城利用自己的微信、微博等平台收集消費者評論數據。

c 許多傳統企業沒有分析海量數據的能力,此時它們可以和大數據分析和挖掘公司合作,目前市場上已經有天睿公司、IBM、百分點、華勝天成等一批提供大數據分析和挖掘服務的公司,它們是傳統企業進行大數據分析可以藉助的力量。

2 如何避免大數據應用時的部門分割?

對於許多企業,其信息流被各部門彼此分割,數據難以互通,對於這種情況下,大數據的共享和匯集就只是一個泡影,更難以實現大數據的深度應用。

要打通部門之間信息分割的局面,首先要建立統一的、集中的數據系統。就像立白信息與知識總監王永紅所說的,「要真正用好大數據,企業要採用大集中的信息系統。」從更深入的角度來談,企業信息流的部門分割,更在於企業部門之間的分割,比如有一些企業的營銷按照渠道分割,導致對於顧客的大數據收集和分析效果大打折扣。

IBM智慧商務技術總監楊旭青認為,「很多時候由於組織結構問題,大數據分析有效性大大降低了。」這就需要組織與流程層面的重新設計,在這方面,阿里巴巴的部門負責人輪崗制度,對於打破部門壁壘無疑是一劑好葯。而一些企業為了打破部門分割,建立了矩陣型的組織結構,強化部門間的橫向合作,這些無疑為大數據的匯集、共享與應用創造了良好條件。

3 如何讓業務人員重視大數據的應用?

解決這個問題,一方面在於一把手對整個企業數據文化的倡導,比如1號店董事長於剛就要求業務人員無論在開會,還是匯報工作時,都以數據說話,而馬雲更是將大數據提升到了戰略高度。

另一方面,也在於數據部門的帶動,阿里巴巴數據委員會負責人車品覺分享了經驗,「因為運營部門的業務人員很難看到大數據的潛力,可以首先從一些對業務見效快,見效顯著的數據項目出發,通過一兩個項目的成功,調動對方的積極性,然後再逐步一個個地引導。」

4 為何大數據工作與運營需求脫節?

這往往是由於數據人員與業務人員視角、專業知識不同而導致的。大數據人員做了很多努力,但是業務人員卻認為這些努力無關痛癢。如何解決這個問題?

有的企業從組織設計上發力,將大數據納入業務分析部門的管理之下,用業務統馭數據。對於朝陽大悅城,由主要負責戰略和經營分析的部門來管理大數據工作,其中的大數據分析人員則作為支持人員。在負責人張岩看來,大數據要靠商業法則指導,關鍵是找到業務需求的點,然後由數據分析和挖掘人員實現。在具體操作中,大悅城對微信的數據挖掘,挖掘什麼樣的關鍵詞,由業務分析人員確定,而具體挖掘則由數據部門做;有的企業從流程設計上著手,推動業務部門與數據部門人員之間的溝通,建立數據人員工作與效果掛鉤的考核機制。

例如阿里巴巴根據數據挖掘的成效(比如帶來的商品轉化率的提升)來考核數據挖掘師,考核數據分析師則看其分析結果能否出現在經營負責人的報告中。從數據部門自身角度則需要降低運營部門使用數據的障礙和門檻,比如立白集團的數據人員會努力嘗試向運營部門提供更易懂、更生動的圖形化數據分析界面,在立白老闆辦公室上,就有一份「客戶運營健康體檢表」,讓老闆對全國經銷商的當月銷售情況一目瞭然。再如阿里巴巴開發的無線Bi,讓經營人員在手機上也可以看到大數據分析結果,拿車品覺的話說,「以數據之氧氣包圍經營人員。」

以上是小編為大家分享的關於大數據攻略案例分析及結論的相關內容,更多信息可以關注環球青藤分享更多干貨

『陸』 大數據分析與處理方法解讀

越來越多的應用涉及到大數據,這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以,大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於此,大數據分析的方法理論有哪些呢?
大數據分析的五個基本方面
(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
AnalyticVisualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
SemanticEngines(語義引擎)
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
DataMiningAlgorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
大數據處理
大數據處理數據時代理念的三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。具體的大數據處理方法其實有很多,但是根據長時間的實踐,筆者總結了一個基本的大數據處理流程,並且這個流程應該能夠對大家理順大數據的處理有所幫助。整個處理流程可以概括為四步,分別是採集、導入和預處理、統計和分析,以及挖掘。
採集
大數據的採集是指利用多個資料庫來接收發自客戶端的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的K-Means、用於統計學習的SVM和用於分類的Naive Bayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,還有,常用數據挖掘演算法都以單線程為主。

『柒』 大數據分析有哪些優勢

①大數據計算提高數據處理效率,增加人類認知盈餘


大數據技術就像其他的技術革命一樣,是從效率提升入手。通過大數據計算節省下來的時間,人們可以去消費,娛樂和創造。未來大數據計算將釋放人類社會巨大的產能,增加人類認知盈餘,幫助人類更好地改造世界。


②大數據通過全局的數據讓人類了解事物背後的真相


相對於過去的樣本代替全體的統計方法,大數據將使用全局的數據,其統計出來的結果更為精確,更接事物真相,幫助科學家了解事物背後的真相。大數據帶來的統計結果將糾正過去人們對事物錯誤的認識,影響過去人類行為、社會行為的結論,帶來全新的認知。


③大數據有助於了解事物發展的客觀規律,利於科學決策


大數據收集了全局的數據,准確的數據,通過大數據計算統計出了解事物發展過程中的真相,通過數據分析出人類社會的發展規律,自然界發展規律。利用大數據提供的分析結果來歸納和演繹出事物的發展規律,通過掌握事物發展規律來幫助人們進行科學決策。


④大數據提供了同事物的連接,客觀了解人類行為


大數據技術連接了人類行為,通過大數據將人類的行為數據收集起來,經過一定的分析後來統計人類行為,幫助我們了解人類的行為。


⑤大數據改變過去的經驗思維,幫助人們建立數據思維


出現大數據之後,我們將會面對著海量的數據,多種維度的數據、行為的數據、情緒的數據、實時的數據。通過大數據計算和分析技術,人們將會得到不同的事物真相,不同的事物發展規律。各國政府和企業將藉助於大數據來了解民眾需求,拋棄過去的經驗思維和慣性思維,掌握客觀規律,跳出歷史預測未來的困境。

『捌』 大數據分析是指的什麼

大數據分析是指對規模巨大的數據進行分析。對大數據bigdata進行採集、清洗、挖掘、分析等,大數據主要有數據採集、數據存儲、數據管理和數據分析與挖掘技術等。
大數據分析目標:語義引擎處理大數據的時候,經常會使用很多時間和花費,所以每次生成的報告後,應該支持語音引擎功能。產生可視化報告,便於人工分析通過軟體,對大量的數據進行處理,將結果可視化。通過大數據分析演算法,應該對於數據進行一定的推斷,這樣的數據才更有指導性。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、多元回歸分析、逐步回歸、回歸預測與殘差分析等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)。建立模型,採集數據可以通過網路爬蟲,或者歷年的數據資料,建立對應的數據挖掘模型,然後採集數據,獲取到大量的原始數據。導入並准備數據在通過工具或者腳本,將原始轉換成可以處理的數據,
大數據分析演算法:機器學習通過使用機器學習的方法,處理採集到的數據。根據具體的問題來定。這里的方法就特別多。

『玖』 什麼是大數據 大數據是什麼意思

大數據是一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。


(9)大數據分析結果擴展閱讀

大數據的價值體現在以三方面:

1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;

2、做小而美模式的中小微企業可以利用大數據做服務轉型;

3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。

閱讀全文

與大數據分析結果相關的資料

熱點內容
5s升級ios92無服務 瀏覽:354
ubuntu翻譯工具 瀏覽:665
wifi安裝教程 瀏覽:398
蘋果有些qq文件打不開 瀏覽:139
微信分身圖片緩存在哪個文件 瀏覽:544
眾籌用什麼網站 瀏覽:1
天馬座的幻想版本 瀏覽:536
微雲保存文件圖片沒有了 瀏覽:236
如何把excel表格圖片導出到文件夾 瀏覽:387
qq三國快速升級攻略 瀏覽:660
js監聽手機home事件 瀏覽:439
第2章linux的桌面管理副本 瀏覽:452
qq郵箱手機上登錄微信賬號密碼錯誤 瀏覽:627
編程如何讓人物重復發射子彈 瀏覽:853
db2查看錶空間文件 瀏覽:607
ps文件界面設置 瀏覽:779
c語言12位的數據應該怎麼存儲 瀏覽:953
將ape導入iphone 瀏覽:107
js組合快捷鍵 瀏覽:174
linux系統盤默認掛在的文件夾 瀏覽:667

友情鏈接