導航:首頁 > 網路數據 > 大數據時代信息安全面臨的挑戰與機遇

大數據時代信息安全面臨的挑戰與機遇

發布時間:2023-11-18 22:10:42

大數據時代的挑戰、價值與應對策略

大數據時代的挑戰、價值與應對策略
隨著移動互聯網、物聯網、雲計算等的快速發展,及視頻監控、智能終端、應用商店等的快速普及,全球數據量出現爆炸式增長。在此背景下,電信運營商在其網路無休止擴容的同時,卻面臨「增量不增收」的困境;而一些採用「數據驅動型決策」模式經營的公司,則可將其生產力提高5%~6%。因此,有必要深入研究大數據時代(Big Data Era)的挑戰、價值與務實應對策略。
1大數據時代的基本特徵
據統計,2010年以互聯網為基礎所產生的數據比之前所有年份的總和還要多;而且不僅是數據量的激增,數據結構亦在演變。Gartner預計,2012年半結構和非結構化的數據,諸如文檔、表格、網頁、音頻、圖像和視頻等將佔全球網路數據量的85%左右;而且,整個網路體系架構將面臨革命性改變。由此,所謂大數據時代已經來臨!
對於大數據時代,目前通常認為有下述四大特徵,稱為「四V」特徵:
(1)量大(Volume Big)。數據量級已從TB(1012位元組)發展至PB乃至ZB,可稱海量、巨量乃至超量。
(2)多樣化(Variable Type)。數據類型繁多,愈來愈多為網頁、圖片、視頻、圖像與位置信息等半結構化和非結構化數據信息。
(3)快速化(VelocityFast)。數據流往往為高速實時數據流,而且往往需要快速、持續的實時處理;處理工具亦在快速演進,軟體工程及人工智慧等均可能介入。
(4)價值高和密度低(Value HighandLowDensity)。以視頻安全監控為例,連續不斷的監控流中,有重大價值者可能僅為一兩秒的數據流;360°全方位視頻監控的「死角」處,可能會挖掘出最有價值的圖像信息。
2大數據時代面臨的挑戰
(1)運營商帶寬能力與對數據洪流的適應能力面臨前所未有的挑戰,管道化壓力化解及「雲-管-端」的有效裝備也均面臨新挑戰。
(2)大數據的「四V」特徵在數據存儲、傳輸、分析、處理等方面均帶來本質變化。數據量的快速增長,對存儲技術提出了挑戰;同時,需要高速信息傳輸能力支持,與低密度有價值數據的快速分析、處理能力。
(3)海量數據洪流中,在線對話與在線交易活動日益增加,其安全威脅更為嚴峻;而且現今黑客的組織能力、作案工具、作案手法及隱蔽程度更上一層樓,典型的有APT(Advanced Persistent Threat,高級持續性安全威脅)。
(4)大數據環境下通過對用戶數據的深度分析,很容易了解用戶行為和喜好,乃至企業用戶的商業機密,對個人隱私問題必須引起充分重視。
(5)大數據時代的基本特徵,決定其在技術與商業模式上有巨大的創新空間,這將對可持續發展起關鍵作用。
(6)大數據時代的基本特徵及安全挑戰,對政府制訂規則與監管部門發揮作用提出了新的挑戰。
3大數據帶來的價值
(1)利用大數據特徵,藉助雲計算等有效工具,深度挖掘流量與數據價值,可幫助運營商實施好流量經營,減輕管道化風險,發揚「雲-管-端」的智能管道的威力。
(2)多業務環境下掌握用戶體驗效果尤為重要,可從海量用戶數據中深度分析、挖掘出用戶的行為習慣和消費愛好,以實施精準營銷及網路優化,掌控數據增值的「金鑰匙」。
(3)掌握好大數據的存儲、分類、挖掘、快速調用和決策支撐,並應用於企業的日常運營、維護及戰略轉型中,成為企業可持續發展、維持競爭優勢的當務之急與重要途徑。
(4)充分利用對大數據的分析、挖掘,可幫助找到隱蔽性極強的APT之類的安全威脅,助力信息安全部門找到應對新型安全威脅的有效途徑。
(5)通過對公共大數據的分析、挖掘與利用,可減少欺詐行為及錯誤數據的負面作用、追收逃稅漏稅及刺激公共機構生產力等,幫助政府節省開支。例如英國政府即通過此途徑節省大約330億英鎊/年。
4大數據時代的應對策略
(1)大數據時代應以智慧創新理念融合大數據與雲計算,在大數據洪流中提升知識價值洞察力,實施高效實時個性化運作,建立有效增值的商業模式,確保應對APT之類的新型安全威脅。
(2)電信運營商轉型中流量經營已成共識,即以智能管道與聚合平台為基礎,以擴大流量規模、提升流量層次及豐富流量內涵作為基本經營方向,並以釋放流量價值為基本目標,可見大數據和雲計算的深度融合與此流量經營目標十分吻合。實際上已經有一些運營商藉助大數據Hadoop雲工具管理與分析網路中的用戶數據,為日常運維及制定市場戰略等提供有效支撐。
(3)針對大數據時代的基本特徵,加強全方位創新。包括IBM、EMC、HP、Microsoft等在內的IT巨頭,紛紛加速收購相關大數據公司進行技術整合,尋找數據洪流大潮中新的立足點。而涉及人工智慧、機器學習等新技術的創新應用,已初顯效益。
(4)將大數據時代全方位創新工作和智慧城市發展緊密結合。藉助移動互聯網、大數據與雲計算的融合、智能運營管道等,建立智能平台,優化配置城市資源,向真正的智慧城市邁進。
(5)藉助大數據創新處理技術應對APT安全攻擊。APT安全攻擊的最主要特徵為單點隱蔽能力強、攻擊空間路徑不確定、攻擊渠道不確定;同時APT攻擊一旦入侵成功則長期潛伏,攻擊時間上具有持續性。目前,全流量審計方案具備強大的實時檢測能力與事後回溯能力,並可將安全工作人員的分析能力、計算機存儲與運算能力組合在一起,是一種較完整的解決方案。

② 大數據乃雙刃劍 機遇和風險並存

大數據乃雙刃劍 機遇和風險並存
對於大多數企業來說,大數據已經成為左右戰局的決定性力量,安全風險也隨之更加凸顯。企業已經搜集並存儲了所有的數據,接下來他們該幹些什麼?他們如何對這些數據進行保護?而且最為重要的是,他們如何安全合法地利用這些數據?
無論是從企業存儲策略與環境來看,還是從數據與存儲操作的角度來看,大數據帶來的「管理風險」不僅日益突出,而且如果不能妥善解決,將肯定會造成「大數據就是大風險」的可怕後果。
從信息安全的角度來看,圍繞大數據的問題主要集中在以下五個方面:
1.網路安全
隨著線交易、在線對話、在線互動,在線數據越來越多,黑客們的犯罪動機也比以往任何時候都來得強烈。如今的黑客們組織性更強,更加專業,作案工具也是更加強大,作案手段更是層出不窮。相比於以往一次性數據泄露或者黑客攻擊事件的小打小鬧,現在數據一旦泄露,對整個企業可以說是一著不慎滿盤皆輸,不僅會導致聲譽受損、造成巨大的經濟損失,嚴重的還要承擔法律責任。所以在大數據時代,網路的恢復能力以及防範策略可以說是至關重要。
2.雲數據
目前來看,企業快速採用和實施諸如雲服務等新技術還是存在不小的壓力,因為它們可能帶來無法預料的風險和造成意想不到的後果。而且,雲端的大數據對於黑客們來說是個極具吸引力的獲取信息的目標,所以這就對企業制定安全正確的雲計算采購策略提出了更高的要求。
3.消費化
眾所周知,數據的搜集、存儲、訪問、傳輸必不可少的需要藉助移動設備,所以大數據時代的來臨也帶動了移動設備的猛增。隨之而來的是BYOD(bring your own device)風潮的興起,越來越多的員工帶自己的移動設備進行辦公。不可否認的是,BYOD確實為人們的工作帶來了便利,而且也幫助企業節省很大一筆開支,但也給企業帶來了更大的安全隱患。曾幾何時,手持設備被當成黑客入侵內網的絕佳跳板,所以企業管理和確保員工個人設備的安全性也相應增加了難度。
4.互相聯系的供應鏈
每個企業都是復雜的、全球化的、相互依存的供應鏈中的一部分,而供應鏈很可能就是最薄弱的環節。信息將供應鏈緊密地聯系在一起,從簡單的數據到商業機密再到知識產權,而信息的泄露可能導致名譽受損、經濟損失、甚至是法律制裁。信息安全的重要性也就不言而喻了,它在協調企業之間承包和供應等業務關系扮演著舉足輕重的角色。
5.隱私
隨著產生、存儲、分析的數據量越來越大,隱私問題在未來的幾年也將愈加凸顯。所以新的數據保護要求以及立法機構和監管部門的完善應當提上日程。
拋開以上提到的問題,數據聚合以及大數據分析就像是企業營銷情報的寶庫。基於用戶過去的購買方式,情緒以及先前的個人偏好進行目標客戶的定位,對市場營銷者來說絕對是再合適不過了。但是那些出於商業利益考慮而迫切想要採用新技術的企業領導者會被建議先去了解法律和其他方面的限制,這些限制可能涉及多個司法機構;此外,他們應該實施一些隱私最佳實踐,並將其設計成分析程序,增加透明度和實行問責制度,而且不應該忽視大數據對人們、對技術的影響。
很顯然,保證數據輸入以及大數據輸出的安全性是個很艱巨的挑戰,它不僅會影響到潛在的商業活動和機會,而且有著深遠的法律內含。我們應該保持敏捷性並在問題出現前對監管規則作出適當的改變,而不是坐等問題的出現再亡羊補牢。
當然,一切都還處於初級階段,而且目前也沒有太多外在要求來強制企業保證信息的完整性。然而,企業每天處理的數據規模依然在保持增長,大數據分析使得商務決策越來越接近原生數據,信息的質量也變得愈加重要。如果同樣復雜的分析可以運用到相關安全數據上面,那麼大數據甚至可以用來改善信息安全。
雖然目前這些解決方案很難普及開來,但是他們正在和大數據分析一起用於防騙,網路安全檢測,社會分析以及多通道實時監測等過個領域。
總的說來,大數據應該說是具有相當大的價值,但同時它又存在巨大的安全隱患,一旦落入非法分子手中,勢必對企業和個人造成巨大的損失。套用一句話,世界是很公平的,收入與風險是成正比的。

③ 大數據時代的信息安全和未來展望

大數據時代的信息安全和未來展望
隨著高級可持續性攻擊的出現以及惡意軟體的復雜性與日俱增,企業急需一種突破傳統信息安全保障模式的、靈活的技術和方案來應對未來不斷變化的安全威脅。大數據徹底的改變了信息安全行業,基於大數據分析的智能驅動型安全戰略將幫助信息安全從業人員重獲警惕性和時間的優勢,以使他們更好地檢測和防禦高級網路威脅。
大數據時代信息安全面臨挑戰
在大數據時代,無處不在的智能終端、隨時在線的網路傳輸、互動頻繁的社交網路使得互聯網時時刻刻都在產生著海量的數據。隨著產生、存儲、分析的數據量越來越大,在這些海量數據背後隱藏著大量的經濟與政治利益。大數據如同一把雙刃劍,在我們享受大數據分析帶來的精準信息的同時,其所帶來的安全問題也開始成為企業的隱患。
1、黑客更顯著的攻擊目標:在網路空間里,大數據是更容易被「發現」的大目標。一方面,大數據意味著海量的數據,也意味著更復雜、更敏感的數據,這些數據會吸引更多的潛在攻擊者。另一方面,數據的大量匯集,使得黑客成功攻擊一次就能獲得更多數據,無形中降低了黑客的攻擊成本,增加了其「收益率」。
2、隱私泄露風險增加:大量數據的匯集不可避免地加大了用戶隱私泄露的風險。一方面,數據集中存儲增加了泄露風險,而這些數據不被濫用,也成為人身安全的一部分。另一方面,一些敏感數據的所有權和使用權並沒有明確界定,很多基於大數據的分析都未考慮到其中涉及的個體隱私問題。
3、威脅現有的存儲和防護措施:大數據存儲帶來新的安全問題。數據大集中的後果是復雜多樣的數據存儲在一起,很可能會出現將某些生產數據放在經營數據存儲位置的情況,致使企業安全管理不合規。大數據的大小也影響到安全控制措施能否正確運行。安全防護手段的更新升級速度無法跟上數據量非線性增長的步伐,就會暴露大數據安全防護的漏洞。
4、大數據技術成為黑客的攻擊手段:在企業用數據挖掘和數據分析等大數據技術獲取商業價值的同時,黑客也在利用這些大數據技術向企業發起攻擊。黑客會最大限度地收集更多有用信息,比如社交網路、郵件、微博、電子商務、電話和家庭住址等信息,大數據分析使黑客的攻擊更加精準。此外,大數據也為黑客發起攻擊提供了更多機會。黑客利用大數據發起僵屍網路攻擊,可能會同時控制上百萬台傀儡機並發起攻擊。
5、成為高級可持續攻擊的載體:傳統的檢測是基於單個時間點進行的基於威脅特徵的實時匹配檢測,而高級可持續攻擊(APT)是一個實施過程,無法被實時檢測。此外,由於大數據的價值低密度特性,使得安全分析工具很難聚焦在價值點上,黑客可以將攻擊隱藏在大數據中,給安全服務提供商的分析製造很大困難。黑客設置的任何一個會誤導安全廠商目標信息提取和檢索的攻擊,都會導致安全監測偏離應有方向。
6、信息安全產業面臨變革:大數據的到來也為信息安全產業的發展帶來了新的契機,還沒有意識到這場變革的安全廠商將在這場變革大潮中被拋棄。大數據正在為安全分析提供新的可能性,在未來的安全架構體系中,通過大數據智能分析有效的將原來分割的安全產品更好的融合起來,成為不同的安全智能節點,這將是在大數據時代安全產業需要研究突破的重點。
大數據安全未來趨勢展望
據MacDonald預測,到2016年,40%的企業(銀行、保險、醫葯和國防行業為主)將積極地對至少10TB數據進行分析,以找出潛在危險的活動。然而,供應商的產品格局卻無法在短期內進行轉變。現在,企業通常依賴於SIEM系統來關聯和分析安全相關的數據,MacDonald表示目前的SIEM產品無法處理這么大的工作量,大多數SIEM產品提供接近實時數據,但只能處理規范化數據,還有些SIEM產品能夠處理大量原始交易數據,但無法提供實時情報信息。
Gartner公司分析師表示,使用「大數據」來提高企業信息安全不完全是炒作,這在未來幾年內這將成為現實。大數據將為安全團隊帶來新的工作方式,通過了解大數據的優勢、制定切合實際的目標以及利用現有安全技術的優勢,安全管理人員將會發現他們在大數據進行的投資是值得的。
RSA大中國區總經理胡軍表示,「大數據將帶動安全行業方向性的改變,安全與數據互相影響,未來共同促進發展。現今的安全需要更全面和廣泛的可視性,敏捷的分析,可採取行動的情報和可擴展的基礎設施。」
我們可以看到,大數據安全已經成為不可阻擋的趨勢。在未來,不論是從商業需求角度,還是產業技術角度,大數據安全都將成為業界關注的熱點。而在這場大數據安全的盛宴中,也必然會出現新老更替、推陳出新,這一切就讓我們拭目以待吧!

④ 大數據安全問題及應對思路研究

大數據安全問題及應對思路研究

隨著互聯網、物聯網、雲計算等技術的快速發展,全球數據量出現爆炸式增長。與此同時,雲計算為這些海量的多樣化數據提供了存儲和運算平台,分布式計算等數據挖掘技術又使得大數據分析規律、研判趨勢的能力大大增強。在大數據不斷向各個行業滲透、深刻影響國家的政治、經濟、民生和國防的同時,其安全問題也將對個人隱私、社會穩定和國家安全帶來巨大的潛在威脅,如何應對面臨巨大挑戰。

一、大數據安全關鍵問題

隨著數字化進程不斷深入,大數據逐步滲透至金融、汽車、製造、醫療等各個傳統行業,甚至到社會生活的每個角落,大數據安全問題影響也日益增大。

(一)國家數據資源大量流失。互聯網海量數據的跨境流動,加劇了大數據作為國家戰略資源的大量流失,全世界的各類海量數據正在不斷匯總到美國,短期內還看不到轉變的跡象。隨著未來大數據的廣泛應用,涉及國家安全的政府和公用事業領域的大量數據資源也將進一步開放,但目前由於相關配套法律法規和監管機制尚不健全,極有可能造成國家關鍵數據資源的流失。

(二)大數據環境下用戶隱私安全威脅嚴重。隨著大數據挖掘分析技術的不斷發展,個人隱私保護和數據安全變得非常緊迫。一是大數據環境下人們對個人信息的控制權明顯下降,導致個人數據能夠被廣泛、詳實的收集和分析。二是大數據被應用於攻擊手段,黑客可最大限度地收集更多有用信息,為發起攻擊做准備,大數據分析讓黑客的攻擊更精準。三是隨著大數據技術發展,更多信息可以用於個人身份識別,個人身份識別信息的范圍界定困難,隱私保護的數據范圍變得模糊。四是以往建立在「目的明確、事先同意、使用限制」等原則之上的個人信息保護制度,在大數據場景下變得越來越難以操作。

(三)基於大數據挖掘技術的國家安全威脅日益嚴重。大數據時代美國情報機構已搶佔先機,美國通過遍布在全球的國安局監聽機構如地面衛星站、國內監聽站、海外監聽站等採集各種信息,對採集到的海量數據進行快速預處理、解密還原、分析比對、深度挖掘,並生成相關情報,供上層決策。2013年6月底,美中情局前雇員斯諾登爆料,美國情報機關通過思科路由器對中國內地移動運營商、中國教育和科研計算機網等骨幹網路實施長達4年之久的長期監控,以獲取網內海量簡訊數據和流量數據。

(四)基礎設施安全防護能力不足引發數據資產失控。一是基礎通信網路關鍵產品缺乏自主可控,成為大數據安全缺口。我國運營企業網路中,國外廠商設備的現網存量很大,國外產品存在原生性後門等隱患,一旦被遠程利用,大量數據信息存在被竊取的安全風險。二是我國大數據安全保障體系不健全,防禦手段能力建設處於起步階段,尚未建立起針對境外網路數據和流量的監測分析機制,對棱鏡監聽等深層次、復雜、高隱蔽性的安全威脅難以有效防禦、發現和處置。

二、國外大數據安全相關舉措及我國應對思路

目前世界各國均通過出台國家戰略、促進數據融合與開放、加大資金投入等推動大數據應用。相比之下,各國在涉及大數據安全方面的保障舉措則起剛剛起步,主要集中在通過立法加強對隱私數據的保護。德國在2009年對《聯邦數據保護法》進行修改並生效,約束范圍包括互聯網等電子通信領域,旨在防止因個人信息泄露導致的侵犯隱私行為;印度在2012年批准國家數據共享和開放政策的同時,通過擬定非共享數據清單以保護涉及國家安全、公民隱私、商業秘密和知識產權等數據信息;美國在2014年5月發布《大數據:把握機遇,守護價值》白皮書表示,在大數據發揮正面價值的同時,應該警惕大數據應用對隱私、公平等長遠價值帶來的負面影響,建議推進消費者隱私法案、通過全國數據泄露立法、修訂電子通信隱私法案等。

我國在布局、鼓勵和推動大數據發展應用的同時,也應提早謀劃、積極應對大數據帶來的安全挑戰,從戰略制定、法律法規、基礎設施防護等方面應對大數據安全問題。

(一)將大數據資源保護上升為國家戰略,建立分級分類安全管理機制。一是把數據資源視為國家戰略資源,將大數據資源保護納入到國家網路空間安全戰略框架中,構建大數據環境下的信息安全體系,提高應急處置能力和安全防範能力,提升服務能力和運作效率。二是通過國家層面的戰略布局,明確大數據資源保護的整體規劃和近遠期重點工作。三是對國內大數據資源按實施分級分類安全保護思路,保障數據安全、可靠,積極開展大數據安全風險評估工作,針對不同級別大數據特點加強安全防範。五是盡快制定不同級別的大數據採集、存儲、備份、遷移、處理和發布等關鍵環節的安全規范和標准,配套完善相應的監管措施。

(二)完善法律法規,加大個人信息保護監管力度。一是積極推動個人信息保護法律的立法工作,探索通過技術標准、行業自律等手段解決法律出台前的個人信息保護問題。加快《網路安全法》的出台,在《網路安全法》中對電信和互聯網行業用戶信息保護作出明確法律界定,為相關工作開展提供法律依據。二是加強對個人隱私保護的行政監管,同時要加大對侵害個人隱私行為的打擊力度,建立對個人隱私保護的測評機制,推動大數據行業的自律和監督。

(三)加強國家信息基礎設施保護,提升大數據安全保障與防範能力。一是促進技術研究和創新,通過加大財政支持力度,激勵關系國家安全和穩定的政府和國有企事業單位採用安全可控的產品,提升我國基礎設施關鍵設備的安全可控水平。二是加強大數據信息安全系統建設,針對大數據的收集、處理、分析、挖掘等過程設計與配置相應的安全產品,並組成統一的、可管控的安全系統,推動建立國家級、企業級的網路個人信息保護態勢感知、監控預警、測評認證平台。三是充分利用大數據技術應對網路攻擊,通過大數據處理技術實現對網路異常行為的識別和分析,基於大數據分析的智能驅動型安全模型,把被動的事後分析變成主動的事前防禦;基於大數據的網路攻擊追蹤,實現對網路攻擊行為的溯源。

以上是小編為大家分享的關於大數據安全問題及應對思路研究的相關內容,更多信息可以關注環球青藤分享更多干貨

⑤ 如何應對大數據時代的變革機遇挑戰

大數據搭著信息時代的快車來到了我們的面前,數據的價值逐漸為人們所重視,同時也讓數據分析師的身價倍增。而隨著大數據分析工具等大數據應用技術的出現,未來的數據分析師又將遇到怎樣的挑戰和機遇呢?
工具搶了人的飯碗?
很多大數據分析工具的設計起點非常高,定位了數據分析過程中所需要的大部分功能。很多工具的功能涵蓋了從數據前期整合、收集到挖掘、分析乃至末端的數據可視化的整個數據分析過程,功能不可謂不強大。
但如果僅憑這些就認定大數據分析工具能取代數據分析師,未免有些杞人憂天了。恰恰相反,大數據分析工具不是數據分析師的競爭者,而是協助者。工具本來就是為人服務的,數據分析師的專業素養讓其能很好的發揮大數據分析工具的性能,二者相輔相成,是友非敵。
企業的支持
雖然大數據的概念已經普及,但是很多企業還是留存有一些傳統的觀念。很多企業雖然重金聘用了數據分析師甚至是組建了數據分析師團隊,但是卻並沒有建立完善的數據價值體系。對數據分析工作缺乏理解與支持。
相對於數據管理,數據分析工的工作重心還應該放在「挖掘數據價值」上。企業與數據分析師直接缺少職能的溝通,將直接影響企業對數據分析師工作性質的定位;同時,企業應該建立資料庫並部署大數據分析工具,為了能更好地對接用戶,也為企業和數據分析師留有足夠的空間。
從幕後到台前的轉變
以往的業務人員經常要磨破嘴皮才能得到別人的認同,而現在許多企業正在考慮讓數據分析師帶著數據分析結果去談業務。打算以「讓數據說話,以數據服人」去贏得客戶的信任。而主要的實施過程,是靠數據可視化技術來實現的。
數據可視化技術讓數據能以圖表和視頻的方式直觀地展示在人們面前,而數據分析師作為數據的管理者和挖掘者,是最適合不過的講解人了。這樣就要求數據分析師不僅要有扎實的數據分析能力,還要能提取數據精髓,並將之演講出來以獲得他人的認同。從幕後轉到台前,這裡面會需要許多技能,數據分析師的工作性質也將發生改變。
在大數據時代,數據分析師所扮演的角色不可能是一成不變的。而只有順應時代的潮流,響應時代的需要,數據分析師這個行業才能繼續生存並發展。其實,大數據分析工具,數據可視化這些技術的出現固然使行業受到了影響與挑戰,但對於數據分析師來說,未嘗不是一次擺脫傳統束縛的機遇!

⑥ 大數據技術的出現給地理信息系統帶來哪些機遇和挑戰

機遇是,通過結合大數據,gis可以更好地研究區域的時空變化,以及全國乃至全球的時空變化,也可以研究多指標耦合影響下的時空變化。挑戰就是,技術可能更難實現。

閱讀全文

與大數據時代信息安全面臨的挑戰與機遇相關的資料

熱點內容
看小黃APP有哪些 瀏覽:206
怎樣在手機看264文件 瀏覽:80
常熟有哪裡學編程的 瀏覽:162
我的下載的文件在哪裡 瀏覽:563
文本顯示器編程教程 瀏覽:942
電腦應用如何設置密碼 瀏覽:336
怎麼編程搜狗指南 瀏覽:155
代聊微信號 瀏覽:623
linux切換用戶執行腳本 瀏覽:841
局內人未刪減版本 瀏覽:159
app計步器軟體如何同步支付寶 瀏覽:979
iPhone516g升級ios9 瀏覽:744
iphone修改名稱 瀏覽:843
win10開啟藍光護眼 瀏覽:745
如何網路共享掃描儀 瀏覽:19
聯盟28級去哪裡升級好 瀏覽:687
電腦不能網路連接 瀏覽:651
現場監理文件多少卷 瀏覽:807
vbnet同步資料庫 瀏覽:314
招商銀行app在哪裡查銀行狀態 瀏覽:124

友情鏈接