導航:首頁 > 網路數據 > 阿里大數據排查

阿里大數據排查

發布時間:2023-11-08 18:12:58

Ⅰ 7.阿里大數據——大數據建模

數據模型就是數據組織和存儲方法,它強調從業務、數據存取和使用角度合理存儲數據。
適合業務和基礎數據存儲環境的模型,大數據能獲得以下好處:

大數據系統需要數據模型方法來幫助更好的組織和存儲數據,以便在性能、成本、效率和質量之間取得最佳平衡。

不管是Hadoop、Spark還是阿里巴巴集團的MaxCompute系統,仍然在大規模使用SQL進行數據的加工和處理,仍然在用Table存儲數據,仍然在使用關系理論描述數據之間的關系,只是在大數據領域,基於其數據存取的特點在關系數據模型的範式上有了不同的選擇而已。

從全企業的高度設計一個3NF模型,用實體關系(Entity Relationship,ER)模型描述企業業務,在範式理論上符合3NF。數據倉庫中的3NF與OLTP中不同過,有以下特點:

ER模型建設數據倉庫的出發點是整合數據,為數據分析決策服務。建模步驟分為三個階段:

維度建模從分析決策的需求出發構建模型,為分析需求服務,因此它重點關注用戶如何更快速地完成需求分析,同時具有較好的大規模復雜查詢的響應性能。其典型代表事星形模型,以及在一些特殊場景下使用的雪花模型。其設計步驟如下:

它是ER模型的衍生,其設計的出發點也是為了實現數據的整合,但不能直接用於數據分析決策。它強調建立一個可審計的基礎數據層,也就是強調數據的歷史性、可追溯性和原子性,而不要求對數據進行過度的一致性處理和整合。該模型由一下幾部分組成:

Anchor對Data Vault模型做了進一步規范化處理,設計的初衷是一個高度可擴展的模型,其核心思想是所有的擴展只是添加而不是修改,因此將模型規范到6NF,基本變成了k-v結構化模型。組成如下:

經歷了多個階段:

Ⅱ 2022年淘寶售假排查時間怎麼算

每年過年前的這段時間,都是淘寶網售假排查高峰期。
阿里的演算法和排查邏輯並不是固定的,不要用固定的思維想去做避免。
排查售假基於阿里的大數據,如果說你的售假不撤銷或者不處理,但是你的店鋪還是在繼續的賣類似的產品,那麼主動防控的機制就會一直監視店鋪,導致後續接二連三的排查你的鏈接售假,直到你的店鋪關閉或者你不在賣類似的產品為止。

Ⅲ 阿里巴巴大數據將嚴重威脅國家安全嗎

阿里巴巴大數據對個人隱私的威脅的確存在,但並不是沒有解決的辦法,即便擔憂對國家安全產生威脅,也不必動輒高呼「國有化」。

  1. 阿里巴巴並不能掌握「各種戰略資源的流轉」,阿里的大數據本身就包含各種商品流轉的數據,通過各種商品的流轉很容易分析出國家各種資源的流轉,由此繪制出中國各種戰略資源的流轉及節點圖。顯然,無論戰時還是平時,這樣一份戰略資源的流轉及節點圖都可用作瓦解國家安全的導航圖。

  2. 首先,雖然阿里巴巴在中國電商中占據主導地位,但據國家統計局和商務部數據顯示,阿里巴巴還遠未達到掌握絕大多數商品流轉數據的程度。

  3. 更重要的是,阿里巴巴即便掌握商品流轉的數據,距離分析出各種資源的流轉也很遠,更不要說在目前的佔有規模下分析出「各種戰略資源的流轉」。

  4. 事實上,在今年稍早些時候,在葯品領域,阿里巴巴曾面臨過更具體的指責。南方周末報道稱,按照國家食葯總局的監管要求,中國各類葯品從生產、流通、經營和消費等所有節點的全部信息,將會儲存在「阿里雲」上。當時就有人認為,阿里健康將就此「運用大數據的研究方法,分析葯品電子監管碼所蘊含的信息,能夠繪制出國內的疾病發生的時間、地域、周期,進而掌握國人的健康情況;甚至還能通過葯品流轉,繪制出中國各種戰略資源節點圖。」

  5. 僅憑阿里巴巴掌握了很多電子商務數據,就認為這些數據有可能被製作成「瓦解國家安全的導航圖」,是聳人聽聞的說法。

  6. 大數據的能力不應該被過度誇大,聲稱「大數據威脅國家安全」的這篇文章,還一個說法是,「阿里巴巴的大數據和雲計算簡直就是有史以來最為強大的情報搜集和分析系統——通過其大數據和雲計算,中國人的一舉一動及行為偏好都可以盡在其掌握之中。」這種說法完全是過分虛誇了大數據的能力。

Ⅳ 阿里大數據營銷存在哪些問題

問題有如下幾點:
1、數據存在失真情況。數據的失真主要體現在兩個方面:一方面,消費者在注冊時可能會輸入虛假的個人信息或者是一人使用多個賬戶、使用他人賬戶等,其在網路操作過程中產生的數據信息本身就不真實,另一方面,由於網路技術的發展和消費者的個性化需求促使阿里巴巴每隔一段時間就要進行網站維護與更新,在這個過程中,會有不少用戶因為不熟悉新的界面而進行錯誤的操作,這些錯誤的操作信息也被阿里巴巴記錄,造成資料庫中真假信息混雜,嚴重影響了大數據的質量。
2、消費者的個人權益難以保障。直至目前,阿里巴巴仍沒有提出有效預防用戶信息泄露的方法或是用戶信息泄露之後的維護方法。
3、大數據營銷效果易出現兩極化。用戶在使用淘寶的過程中會將自己的手機號碼、郵箱等聯系方式提供給阿里巴巴,為了擴大經營,阿里巴巴會進一步分析資料庫中的客戶需求,針對不同的客戶,通過簡訊、郵件等形式向客戶推銷產品,這在某些方面增加了客戶,然而大多情況下這些信息會被消費者無視,更有甚者,會引起消費者的反感,因此,大數據營銷的效果如何,仍存在極大的不確定性,效果難以預料。

Ⅳ 從IT到DT 阿里大數據背後的商業秘密

從IT到DT:阿里大數據背後的商業秘密

空氣污染究竟在多大程度上影響了人們的網購行為?有多少比重的線上消費屬於新增消費?為什麼中國的「電商百佳縣」中浙江有41個而廣東只有4個?
這些電商的秘密就隱藏在阿里巴巴商業生態的「大數據」中。
「未來製造業的最大能源不是石油,而是數據。」阿里巴巴董事局主席馬雲如此形容「數據」的重要意義。
在他看來,阿里巴巴本質上是一家數據公司,做淘寶的目的是為了獲得零售的數據和製造業的數據;做螞蟻金服的目的是建立信用體系;做物流不是為了送包裹,而是這些數據合在一起,「電腦會比你更了解你」。與此同時,產業的發展也正在從IT時代走向以大數據技術為代表的DT時代。
而在阿里巴巴內部,由電子商務、互聯網金融、電商物流、雲計算與大數據等構成的阿里巴巴互聯網商業生態圈,也正是阿里研究院所紮根的「土壤」。
具體而言,阿里巴巴平台的所有海量數據來自於數百萬充滿活力的小微企業、個人創業者以及數億消費者,阿里研究院通過對他們的商務活動和消費行為等進行研究分析,從某種程度上可以反映出一個地方乃至宏觀經濟的結構和發展趨勢。
而隨著阿里巴巴生態體系的不斷拓展和延伸,阿里巴巴的數據資源一定程度上將能夠有效補充傳統經濟指標在衡量經濟冷暖方面存在的滯後性,幫助政府更全面、及時、准確地掌握微觀經濟的運行情況。
從IT到DT
不同於一些企業以技術研究為導向的研究院,阿里研究院副院長宋斐告訴《第一財經日報》記者,阿里研究院定位於面向研究者和智庫機構,主要的研究方向包括未來研究(如信息經濟)、微觀層面上的模式創新研究(如C2B模式、雲端制組織模式)、中觀層面上的產業互聯網化研究(如電商物流、互聯網金融、農村電商等)、宏觀層面上新經濟與傳統經濟的互動研究(如互聯網與就業、消費、進出口等)、互聯網治理研究(如網規、電商立法)等。
具體到數據領域,就是在阿里巴巴互聯網商業生態基礎上,從企業數據、就業數據、消費數據、商品數據和區域數據等入手,通過大數據挖掘和建模,開發若干數據產品與服務。
例如,將互聯網數據與宏觀經濟統計標准對接的互聯網經濟數據統計標准,包括了中國城市分級標准;網路消費結構分類標准;網上商品與服務分類標准等。
而按經濟主題劃分的經濟信息統計資料庫則包括商品信息統計資料庫;網購用戶消費信息統計資料庫;小企業與就業統計資料庫;區域經濟統計資料庫。
還有反映電商經濟發展的「晴雨表」——阿里巴巴互聯網經濟系列指數。其中包括反映網民消費意願的阿里巴巴消費者信心指數aCCI、反映網購商品價格走勢的阿里巴巴全網網購價格指數aSPI和固定籃子的網購核心價格指數aSPI-core、反映網店經營狀態的阿里巴巴小企業活躍度指數aBAI、反映區域電子商務發展水平的阿里巴巴電子商務發展指數aEDI等等。其中,現有aSPI按月呈報給國家統計局。
而面向地方政府決策與分析部門的數據產品「阿里經濟雲圖」,則將分階段地推出地方經濟總覽、全景分析、監測預警以及知識服務等功能。宋斐告訴記者,其數據可覆蓋全國各省、市、區縣各級行政單位,地方政府用戶經過授權後,可以通過阿里經濟雲圖看到當地在阿里巴巴平台上產生的電子商務交易規模、結構特徵及發展趨勢。
「藉助數據可視化和多維分析功能,用戶可以對當地優勢產業進行挖掘、對消費趨勢與結構變動進行監測、與周邊地區進行對比等等。」宋斐表示,該產品未來還可以提供API服務模式,以整合更多的宏觀經濟數據和社會公開數據,為當地經濟全貌進行畫像,給大數據時代的政府決策體系帶來新的視角和工具
數據會「說話」
對於如何利用「大數據」,馬雲在公司內部演講中曾提到:「未來幾年內,要把一切業務數據化,一切數據業務化。」
其中,後半句話可以理解為,讓阿里巴巴各項業務所產生、積累的大數據來豐富阿里的生態,同時讓生態蘊含的數據產生新的價值,再反哺生態,這是一個相輔相成的循環邏輯。
宋斐對記者舉例稱,螞蟻金服旗下的芝麻信用已獲得人民銀行個人徵信牌照批准籌備,未來將通過分析大量的網路交易及行為數據,如用戶信用歷史、行為偏好、履約能力、身份特質、人脈等信息,對用戶進行信用評估,這些信用評估可以幫助互聯網金融企業對用戶的還款意願及還款能力做出結論,繼而為用戶提供快速授信及現金分期服務。本質上來說,「芝麻信用」是一套徵信系統,該系統收集來自政府、金融系統的數據,還會充分分析用戶在淘寶、支付寶等平台的行為記錄。
再如,對於如火如荼的農村電商領域,阿里研究院從2010年就已開始對「沙集模式」個案進行研究,後續一系列基於數據和案例調研所驅動的農村電商研究成果,對於地方政府科學決策,推動當地農村電子商務發展、創造就業和發展地方經濟起到了助力作用。到2014年底,全國已經涌現了212個淘寶村,而阿里巴巴也在這一年啟動千縣萬村計劃,將在三至五年內投資100億元,在農村建立起電子商務服務體系。
除了通過數據分析去助力業務外,宋斐告訴記者,有時候大數據報告可能會與傳統的印象結論差異很大。
以區域電子商務為例,在阿里研究院發布的2014年中國電商百強縣排行榜中,浙江有41個縣入圍,福建有16個,而廣東只有4個,這個結果與傳統的印象相差比較大。而事實上,這是因為浙江和廣東兩省電商發展在地理分布、產業結構等方面的明顯不同而帶來的。
再如,外界常常認為網路零售替代了線下零售,但事實上,麥肯錫《中國網路零售革命:線上購物助推經濟增長》的研究報告,通過借鑒阿里研究中心(阿里研究院前身)和淘寶網UED用戶研究團隊的大量報告與數據,最後發現:「約60%的線上消費確實取代了線下零售;但剩餘的40%則是如果沒有網路零售就不會產生的新增消費。」
「這一研究成果,有助於社會各界准確認識網路零售與線下零售的關系,共同探索和建設良好的商業發展環境。」

Ⅵ BAT三巨頭開始挖掘大數據

BAT三巨頭開始挖掘大數據
阿里巴巴CTO即阿里雲負責人王堅博士說過一句話:雲計算和大數據,你們都理解錯了。
實際上,對於大數據究竟是什麼業界並無共識。大數據並不是什麼新鮮事物。信息革命帶來的除了信息的更高效地生產、流通和消費外,還帶來數據的爆炸式增長。「引爆點」到來之後,人們發現原有的零散的對數據的利用造成了巨大的浪費。移動互聯網浪潮下,數據產生速度前所未有地加快。人類達成共識開始系統性地對數據進行挖掘。這是大數據的初心。數據積累的同時,數據挖掘需要的計算理論、實時的數據收集和流通通道、數據挖掘過程需要使用的軟硬體環境都在成熟。
概念、模式、理論很重要,但在最具實干精神的互聯網領域,行動才是最好的答案。國內互聯網三巨頭BAT坐擁數據金礦,已陸續踏上了大數據掘金之路。
BAT都是大礦主,但礦山性質不同
數據如同蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。
網路擁有兩種類型的大數據:用戶搜索表徵的需求數據;爬蟲和阿拉丁獲取的公共web數據。
阿里巴巴擁有交易數據和信用數據。這兩種數據更容易變現,挖掘出商業價值。除此之外阿里巴巴還通過投資等方式掌握了部分社交數據、移動數據。如微博和高德。
騰訊擁有用戶關系數據和基於此產生的社交數據。這些數據可以分析人們的生活和行為,從裡面挖掘出政治、社會、文化、商業、健康等領域的信息,甚至預測未來。
下面,就將三家公司的情況一一掃描與分析。
一、網路:含著數據出生且擁有挖掘技術,研究和實用結合
搜索巨頭網路圍繞數據而生。它對網頁數據的爬取、網頁內容的組織和解析,通過語義分析對搜索需求的精準理解進而從海量數據中找准結果,以及精準的搜索引擎關鍵字廣告,實質上就是一個數據的獲取、組織、分析和挖掘的過程。
除了網頁外,網路還通過阿拉丁計劃吸收第三方數據,通過業務手段與葯監局等部門合作拿到封閉的數據。但是,盡管網路擁有核心技術和數據礦山,卻還沒有發揮出最大潛力。網路指數、網路統計等產品算是對數據挖掘的一些初級應用,與Google相比,網路在社交數據、實時數據的收集和由數據流通到數據挖掘轉換上有很大潛力,還有很多事情要做。
2月底在北京出差時,寫了一篇《搜索引擎的大數據時代》發在虎嗅。創造了零回復的記錄。盡管如此,仍然沒有打消我對搜索引擎在大數據時代深層次變革的思考。 搜索引擎在大數據時代面臨的挑戰有:更多的暗網數據;更多的WEB化但是沒有結構化的數據;更多的WEB化、結構化但是封閉的數據。這幾個挑戰使得數據正在遠離傳統搜索引擎。不過,搜索引擎在大數據上畢竟具備技術沉澱以及優勢。
接下來,網路會向企業提供更多的數據和數據服務。前期網路與寶潔、平安等公司合作,為其提供消費者行為分析和挖掘服務,通過數據結論指導企業推出產品,是一種典型的基於大數據的C2B模式。與此類似的還有Netflix的《紙牌屋》美劇,該劇的男主角凱文·史派西和導演大衛·芬奇都是通過對網路數據挖掘之後,根據受歡迎情況選中的。
網路還會利用大數據完成移動互聯網進化。核心攻關技術便是深度學習。基於大數據的機器學習將改善多媒體搜索效果和智能搜索,如語音搜索、視覺搜索和自然語言搜索。這將催生移動互聯網的革命性產品的出現。盡管網路已經出發,其在大數據上可做的事情還有很多。
在數據收集方面,網路需要聚合更多高價值的交易、社交和實時數據。例如加強自己貼吧知道的社交能力、盡快讓地圖服務與O2O結合進而掌握交易數據,以及推進移動App、穿戴式設備等數據收集系統。
在數據處理技術上,網路成立深度學習研究院加強自己在人工智慧領域的探索,在多媒體和中文自然語言處理領域已經有一些進展;雲存儲、雲計算的基礎設施建設也在逐步完善。但深度學習仍然是一個巨大的挑戰,網路等探索者還有很多待解問題,如:無監督式學習、立體圖像識別。
在數據變現方面,網路需將數據挖掘能力、數據內容聚合和提取等形成標准化的服務和產品,進而開拓大數據領域的企業和開發者市場。而不僅僅是頗為個性化、定製化地為大型企業提供解決。
網路的優勢體現在海量的數據、沉澱十多年的用戶行為數據、自然語言處理能力和深度學習領域的前沿研究。在技術人才方面網路是聚集國內最多大數據相關領域頂尖人才的公司。聽說網路前段時間花五千萬挖了數據挖掘、自然語言處理、深度學習領域的十來位大牛,包括一些學者和教授。例如Facebook科學家徐偉。
在挖人上,捨得花錢不夠,還得用心。對於真正的大牛來說,錢只是一個影響因素。能否實現自己的夢想,公司的資源能否幫助自己的研究至關重要。徐偉在回國前就曾問過其他從矽谷回國工程師的意見,得到答案是積極的,最終促成他作出決定。
總體來看,網路擁有大數據也具備大數據挖掘的能力,並且正在進行積極地准備和探索。在加強面向未來的研究和人才布局的同時,也注重實用性的技術產出。
二、騰訊:數據為產品所用,自產自銷
微創新提出者金錯刀有個關於騰訊的故事。 1999年騰訊公司剛剛成立不久,天使投資人劉曉松決定向其注資的一個主要原因就是因為他發現,「當時雖然他們的公司還很小,但已經有用戶運營的理念,後台對於用戶的每一個動作都有記錄和分析。」而另一個投資人卻因為馬化騰在公司很小時就花錢在數據上表示不滿。此後騰訊的產品生產及運營、騰訊游戲的崛起都離不開對數據的重視。
騰訊擁有社交大數據,在企鵝帝國完成數據的製造、流通、消費和挖掘。 騰訊大數據目前釋放價值更多是改進產品。據騰訊Q1財報,增值服務占總收入的78.7%;電子商務業務佔14.1%;網路廣告收入佔6.3%。從廣告收入比例可以看出騰訊的大數據在精準營銷領域暫時還未大量釋放出價值。與其產品線對應的GMAIL、Google+的Google以及社交巨頭Facebook則通過廣告賺得盆滿缽滿。
在筆者看來,騰訊的思路主要是補齊產品,注重QZONE、微信、電商等產品的後端數據打通。例如最近騰訊微博利用「大數據技術」實現好友關系自動分組、低質量信息自動過濾、優質信息分類閱讀等智能化功能。明顯的用數據改進產品的思路。 那麼如果騰訊要深入大數據挖掘缺少什麼呢?筆者認為其只需馬化騰「摁下啟動按鈕」。數據已經准備好了,就差模式,也就是找到需求或者能更深層次驅動大數據利用的產品,而不是用大數據改進自己的產品。騰訊還在觀望,等其他人去試錯驗證出一套模式或者產品後,自己可以「站在巨人肩上」。這是騰訊的典型思維。
在人才方面,騰訊很早便開始重金挖人。尤其是2010年在Google宣布退出中國後,Google圖片搜索創始人朱會燦、Google中國工程研究院副院長顏偉鵬、Google中日韓文搜索演算法的主要設計者,《浪潮之巔》及《數學之美》作者吳軍相繼加入騰訊。搜搜花了很多錢,但被認定為一款無法承載騰訊重託的產品,最後這些大牛都走了。大都回Google了。
騰訊在大數據領域也缺少技術帶頭人。其對公關也不重視。技術大牛很少出來做報告,更不會向網路、阿里那樣主動包裝宣傳技術大牛。其技術雖然低調,但執行力很強。據騰訊的程序員朋友說封閉開發、集體加班是常有的事情。但配套的重金激勵也能跟上。重金之下必有勇夫、騰訊用制度保障技術產出。另外騰訊在高校合作領先一步,在2010年便與清華大學合作成立了清華騰訊聯合實驗室。這么看騰訊的技術人才這塊似乎有短板。會不會到時候馬化騰按下啟動按鈕,發現沒數據挖掘能力呢?不會,騰訊搞不定數據挖掘,到時候依然可以挖到大牛,甚至讀論文來搞定這事兒。數據挖掘已較為成熟。數據挖掘實際是資料庫、統計學、機器學習三個領域的融合。在學術界已經發展多年。不過自然語言識別和深度學習等方面要趕上網路,就難了。除非將網路的數據和眾大牛一起倒騰過來。
總體來看,騰訊目前的大數據策略是先將產品補全,產品後台數據打通,形成穩定生態圈。本階段先利用大數據挖掘改進自己的產品。後期有成熟的模式合適的產品,則利用自家的社交及關系數據時,開展對大數據的進一步挖掘。
三、阿里巴巴:坐擁金數據,嘗試做面向未來的數據集市
阿里巴巴B2B出身,在外貿蓬勃的大環境下,依靠服務中小企業發家。淘寶、支付寶等toC的產品出生前,阿里並不依賴也不擅長技術。業界普遍認為阿里沒有技術基因。直到淘寶、支付寶以及天貓三個產品後,對海量用戶大並發量交易、海量貨架數據的管理、安全性等方面的嚴苛要求,阿里完成進化,在電商技術上取得不菲的成績。在一段時期阿里仍然浪費了手裡掌握的大量數據。這些數據還是「最值錢」的金數據。
數據挖掘無非是從原始數據提取價值。阿里現有的數據產品例如數據魔方、量詞統計、推薦系統、排行榜以及時光倒流相對來說是比較簡單的BI(商業智能),沒到大數據的階段。「大數據」浪潮襲來,阿里提出「數據、金融和平台」戰略。前所未有地重視起對數據的收集、挖掘和共享。馬雲在「退居」前動不動都對外提「數據」。有位阿里朋友甚至開玩笑說,馬雲英文名可以從Jack Ma改為Data Ma。阿里現CEO陸兆禧曾做過CDO,首席數據官。為了用數據來驅動阿里電商帝國,阿里還成立了橫跨各大事業部的「數據委員會」。
阿里的各項投資案也顯示其整合、利用和完善數據的野心:新浪微博的社交及媒體數據、高德的地圖數據和線下數據以及友盟的移動應用數據,都是其數據及平台戰略的一部分。數據戰略正在首席人工智慧官(CBO)車品覺領頭下逐步落地,王堅的雲為其提供基礎設施、基礎技術支撐。
就在馬雲退休之後,王堅對外透露其跟馬雲開玩笑說的一句話:阿里巴巴對數據的理解深度,不會超過蘇寧對電子商務的理解。估計馬雲不一定認同他這話。馬雲對大數據已經有著自己的理解和考量。馬雲曾經說過其對大數據的思考。大致意思是:現在從信息時代進入數據時代了。區別是信息時代更多的是精英玩的游戲。我比別人聰明,我能提取出信息出來;數據時代,別人比我聰明,將數據開放給更聰明的人處理,數據即資產,分析即服務。
計算機發展的過程是從象牙塔、到平民到草根。大數據也是這樣,一開始在象牙塔階段,少數精英公司才能玩;但到後面只要有數據就有價值。數據也有所有權,產生數據、流通數據、挖掘數據的都會獲得相應的價值。而阿里擅長的便是「建立市場」,建立一個數據交易市場。屆時任何個人和企業都可以將數據和挖掘服務拿上去,交易。初期阿里會將自己珍藏的電商和信用數據逐步放到上面。 有數據的人,拿上去賣,或者讓別人分析,分析即服務。沒有數據的人,即可以去買,也可以去幫別人挖掘,做礦工。
阿里並不是技術驅動,而是業務驅動的。因此在技術層面我們看到,基於前面提到的阿里大數據思路,其技術重心主要在系統層面。阿里擁有LVS(Linux Virtual Server,Linux虛擬伺服器)開源軟體創始人章文嵩,Linux Kernal、文件系統、大牛DBA等領域的大牛。從人才布局可以看到阿里擅長的技術領域,體現在對於並發訪問、電信級別的電商業務的支撐方面的得心應手。在去年雙十一期間,支撐了單日過億的訂單量。鐵道部奇葩網12306在日均40萬時已經不行了。
總體來看,阿里更多是在搭建數據的流通、收集和分享的底層架構。自己並不擅長似乎也不會著重來做數據挖掘的活兒。而是將自己擅長的「交易」生意擴展到數據。讓天下沒有難做的「數據生意」。
總結一下
移動互聯網浪潮下,現實世界正在加速數字化,每個人,每個物體、每件事情、每一個時間節點,都在向網上映射。空間和時間兩個維度的聯網,使得數字世界正在接近一步步模擬現實世界。歷史、現在和未來都會映射到網上。對大數據的挖掘正是對世界的二次發現和感知。BAT三巨頭已經出發。

閱讀全文

與阿里大數據排查相關的資料

熱點內容
js的隱藏div顯示 瀏覽:637
ps教程圖片轉換為粉筆字 瀏覽:816
下載網易雲音樂最新版本 瀏覽:165
原神的數據文件指什麼 瀏覽:725
解壓找不到合適文件夾什麼意思 瀏覽:461
iphone經營類 瀏覽:138
哪裡可以看到老齡化數據 瀏覽:644
小型門戶網站有哪些 瀏覽:563
簡書網站打不開怎麼辦 瀏覽:467
關於新能源汽車有哪些外文資料庫 瀏覽:271
word公式編輯器怎麼打開 瀏覽:419
為什麼電腦上的文件傳不了去 瀏覽:919
反詐騙app注冊日期怎麼查 瀏覽:159
周年店慶微信文章素材 瀏覽:154
網路語你是壞人怎麼說 瀏覽:788
龍龍網路電視 瀏覽:892
mongodb資料庫更新 瀏覽:188
微信朋友圈瀏覽痕跡嗎 瀏覽:672
視頻文件上面的標題怎麼弄上去的 瀏覽:434
今日頭條安卓21 瀏覽:464

友情鏈接