導航:首頁 > 網路數據 > 大數據經典案例迪拜

大數據經典案例迪拜

發布時間:2023-11-04 13:11:31

Ⅰ 什麼是大數據,大數據的典型案例有哪些

隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:

「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。

Ⅱ 大數據那些神奇或哭笑不得的案例

大數據那些神奇或哭笑不得的案例

互聯網時代每天都有巨量的數據產生,信息技術也隨之飛速發展。大數據已經滲透進我們生活的方方面面,其實我們也時時刻刻在接觸這些大數據帶給我們的服務。接下來我們看看那些大數據挖掘出來的一些神奇或哭笑不得的案例。
1啤酒+尿布(神方案)
全球零售業巨頭沃爾瑪在對消費者購物行為分析時發現,男性顧客在購買嬰兒尿片時,常常會順便搭配幾瓶啤酒來犒勞自己,於是嘗試推出了將啤酒和尿布擺在一起的促銷手段。沒想到這個舉措居然使尿布和啤酒的銷量都大幅增加了。如今,「啤酒+尿布」的數據分析成果早已成了大數據技術應用的經典案例,被人津津樂道。
2數據新聞讓英國撤出伊拉克
2010年10月23日《衛報》利用維基解密的數據做了一篇「數據新聞」。將伊拉克戰爭中所有的人員傷亡情況均標注於地圖之上。地圖上一個紅點便代表一次死傷事件,滑鼠點擊紅點後彈出的窗口則有詳細的說明:傷亡人數、時間,造成傷亡的具體原因。密布的紅點多達39萬,顯得格外觸目驚心。一經刊出立即引起朝野震動,推動英國最終做出撤出駐伊拉克軍隊的決定。
3C罩杯都在新疆
淘寶數據平台顯示,購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好。其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。在文胸顏色中,黑色最為暢銷。以省市排名,胸部最大的是新疆妹子。
4QQ圈把前女友介紹給未婚妻
2012年3月騰訊推出QQ圈子,按共同好友的連鎖反應攤開用戶的人際關系網,把用戶的前女友推薦給未婚妻,把同學同事朋友圈子分門別類,利用大數據處理能力給人帶來「震撼」。
5首款「魔鏡」預知市場走向
在現在,「魔鏡」可以通過數據的整合分析可視化不僅可以得出誰是世界上最美的女人,還能通過價量關系得出市場的走向。在不久前,「魔鏡」幫助中石等企業分析數據,將數據可視化,使企業科學的判斷、決策,節約成本,合理配置資源,提高了收益。
6Google數字模型預測流感
2009年,Google通過分析5000萬條美國人最頻繁檢索的詞彙,將之和美國疾病中心在2003年到2008年間季節性流感傳播時期的數據進行比較,並建立一個特定的數學模型。最終google成功預測了2009冬季流感的傳播甚至可以具體到特定的地區和州。
7數據文檔幫喬布斯延長生命
喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。
8大數據讓奧巴馬連任成功
2012年11月奧巴馬大選連任成功的勝利果實也被歸功於大數據,因為他的競選團隊進行了大規模與深入的數據挖掘。時代雜志更是斷言,依靠直覺與經驗進行決策的優勢急劇下降,在政治領域,大數據的時代已經到來;各色媒體、論壇、專家鋪天蓋地的宣傳讓人們對大數據時代的來臨興奮不已,無數公司和創業者都紛紛跳進了這個狂歡隊伍。
9大數據成功預測21項大獎
2013年,微軟紐約研究院的經濟學家大衛?羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。
10購物數據預測高中生懷孕
明尼蘇達州一家塔吉特門店被客戶投訴,一位中年男子指控塔吉特將嬰兒產品優惠券寄給他的女兒——一個高中生。但沒多久他卻來電道歉,因為女兒經他逼問後坦承自己真的懷孕了。塔吉特百貨就是靠著分析用戶所有的購物數據,然後通過相關關系分析得出事情的真實狀況。
人類已進入大數據時代,國際數據公司的研究結果表明,近幾年全球產生的數據量高達數個ZB。基於這樣一個大數據的概念,我們會在各行各業,比如醫療行業,將迎來深度的行業變革,甚至顛覆性的變革。

以上是小編為大家分享的關於大數據那些神奇或哭笑不得的案例的相關內容,更多信息可以關注環球青藤分享更多干貨

Ⅲ 大數據人臉分析案例

大數據人臉分析案例

大數據人臉分析案例,隨著社會科技的不斷發展,人工技能,人臉識別技術也不斷普及到各個領域。人臉識別技術可以在大數據的環境下,極大發揮其強大的作用。下文分享有關大數據人臉分析的內容。

大數據人臉分析案例1

基於特徵的方法和基於圖像的方法

1、基於特徵的方法

技術:基於特徵的方法試圖找到人臉的不變特徵進行檢測。其基本思想是基於人類視覺可以毫不費力地檢測不同姿勢和光照條件下的人臉的觀察,因此必須有盡管存在這些變化的屬性或特徵是一致的。當前已經提出了廣泛的方法來檢測面部特徵,然後推斷面部的存在。

示例:邊緣檢測器通常會提取人臉特徵,例如眼睛、鼻子、嘴巴、眉毛、膚色和發際線。基於提取的特徵,建立統計模型來描述它們之間的關系並驗證人臉在圖像中的存在。

優點:易於實施,傳統方法

缺點:基於特徵的演算法的一個主要問題是圖像特徵可能會由於光照、雜訊和遮擋而嚴重損壞。此外,人臉的特徵邊界會被弱化,陰影會導致強邊緣,這使得感知分組演算法無用。

2、基於圖像的方法

技術:基於圖像的方法嘗試從圖像中的示例中學習模板。因此,基於外觀的方法依靠機器學習和統計分析技術來找到「人臉」和「非人臉」圖像的相關特徵。學習的特徵是以分布模型或判別函數的形式應用於人臉檢測任務。

示例:基於圖像的方法包括神經網路 (CNN)、支持向量機 (SVMi) 或 Adaboost。

優點:性能好,效率更高

缺點:難以實施。 為了計算效率和檢測效率,通常需要降維。這意味著通過獲得一組主要特徵來考慮降低特徵空間的維數,保留原始數據的有意義的屬性。

人臉檢測方法

已經引入了多種人臉檢測技術。

1、開始階段:人臉檢測自 90 年代出現以來一直是一個具有挑戰性的研究領域。

2000 年之前,盡管有很多研究,但直到 Viola 和 Jones 提出里程碑式的工作,人臉識別的實際性能還遠不能令人滿意。 從 Viola—Jones 的開創性工作(Viola and Jones 2004)開始,人臉檢測取得了長足的進步。

Viola and Jones 開創性地使用 Haar 特徵和 AdaBoost 來訓練一個有希望的准確度和效率的人臉檢測器(Viola and Jones 2004),這啟發了之後有幾種不同的方法。 然而,它有幾個嚴重的缺點。首先,它的特徵尺寸比較大。另外,它不能有效地處理非正面人臉和框外人臉。

2、早期階段——機器學習:早期的方法主要集中在與計算機視覺領域的專家一起提取不同類型的手工特徵,並訓練有效的分類器以使用傳統的機器學習演算法進行檢測。

這些方法的局限性在於它們通常需要計算機視覺專家來製作有效的特徵,並且每個單獨的組件都單獨優化,使得整個檢測流程往往不是最佳的。

為了解決第一個問題,人們付出了很多努力來提出更復雜的特徵,如 HOG(定向梯度直方圖)、SIFT(尺度不變特徵變換)、sURF(加速魯棒特徵)和 ACF(聚合通道特徵)。檢測的魯棒性,已經開發了針對不同視圖或姿勢分別訓練的多個檢測器的組合。然而,此類模型的訓練和測試通常更耗時,並且檢測性能的提升相對有限。3

3、最新技術 — 深度學習:近年來,使用深度學習方法,尤其是深度卷積神經網路 (CNN) 的人臉識別取得了顯著進展,在各種計算機視覺任務中取得了顯顯著的成功。

與傳統的計算機視覺方法相比,深度學習方法避免了手工設計的不足,並主導了許多著名的基準評估,例如 lmageNet大規模視覺識別挑戰 (ILSVRC)。

最近,研究人員應用了 Faster R—CNN,這是最先進的通用對象檢測器之一,並取得了可喜的成果。此外,CNN 級聯、區域提議網路(RPN)和 Faster R—CNN 聯合訓練實現了端到端的優化,以及人臉檢測基準,如 FDDB(人臉資料庫)等。

主要挑戰

人臉檢測面臨的困難是降低人臉識別准確率和檢測率的原因。

這些挑戰是復雜的背景、圖像中的人臉過多、奇怪的表情、光照、解析度較低、人臉遮擋、膚色、距離和方向等。

不尋常的面部表情:圖像中的人臉可能會顯示出意外或奇怪的面部表情。

照明度:某些圖像部分可能具有非常高或非常低的照明度或陰影。

皮膚類型:檢測不同人臉顏色的人臉檢測具有挑戰性,需要更廣泛的訓練圖像多樣性。

距離:如果到相機的距離太遠,物體尺寸(人臉尺寸)可能太小。

朝向:人臉方向和相機的角度會影響人臉檢測率。

復雜的背景: 場景中的大量對象會降低檢測的准確性和速度。

一張圖像中有很多人臉:一張包含大量人臉的圖像對於准確檢測率來說非常具有挑戰性。

人臉遮擋:人臉可能會被眼鏡、圍巾、手、頭發、帽子等物體部分遮擋,影響檢測率。

低解析度:低解析度圖像或圖像雜訊會對檢測率產生負面影響。

人臉檢測應用場景

人群監控:人臉檢測用於檢測經常光顧的公共或私人區域的人群。

人機交互: 多個基於人機交互的系統使用面部識別來檢測人類的存在。

攝影:最近的一些數碼相機使用面部檢測進行自動對焦等等。

面部特徵提取:可以從圖像中提取鼻子、眼睛、嘴巴、膚色等面部特徵。 、

性別分類: 通過人臉檢測方法檢測性別信息。

人臉識別:從數字圖像或視頻幀中識別和驗證一個人。

營銷:人臉檢測對於營銷、分析客戶行為或定向廣告變得越來越重要。

出勤:面部識別用於檢測人類的出勤情況, 它通常與生物識別檢測結合用於訪問管理,如智能門禁。

大數據人臉分析案例2

2014年前後,隨著大數據和深度學習的發展,神經網路備受矚目,深度學習的出現使人臉識別技術取得了突破性進展。深度學習是機器學習的一種,其概念源於人工神經網路的研究,通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。

區別於傳統的淺層學習,深度學習的不同在於一方面通常有5層以上的'多層隱層節點,模型結構深度大;另一方面利用大數據來學習特徵,明確了特徵學習的重要性。

隨著深度卷積神經網路和大規模數據集的最新發展,深度人臉識別取得了顯著進展,基於深度學習的人臉識別技術可以通過網路自動學習人臉面部特徵,從而提高人臉檢測效率。

從人臉表達模型來看,可細分為2D人臉識別和3D人臉識別。基於2D的人臉識別通過2D攝像頭拍攝平面成像,研究時間相對較長,在多個領域都有使用,但由於2D信息存在深度數據丟失的局限性,收集的信息有限,安全級別不夠高,在實際應用中存在不足。

早在2019年,就有小學生手舉照片「攻破」了快遞櫃的人臉識別系統。基於3D的人臉識別系統通過3D攝像頭立體成像,由兩個攝像頭、一個紅外線補光探頭和一個可見光探頭相互配合形成3D圖像,能夠准確分辨出照片、視頻、面具等逼真的攻擊手段。

根據使用攝像頭成像原理,目前3D人臉識別主要有三種主流方案,分別是3D結構光方案(Structured Light)、時差測距技術3D方案(Time Of Flight,TOF)和雙目立體成像方案(Stereo System)。基於3D結構光的人臉識別已在一些智能手機上實際應用,比如HUAWEI Mate 20 Pro、iPhone X。

2009年微軟推出的Kinect(Xbox 360體感周邊外設)則採用了TOF方式獲取3D數據,顛覆了游戲的單一操作,為人機體感交互提供了有益探索。雙目立體成像方案基於視差原理,通過多幅圖像恢復物體的三維信息,由於對相機焦距、兩個攝像頭平面位置等要求較高,應用范圍相對於3D結構光和TOF方案較窄。

除了能夠准確識人,精準判斷捕捉到的人臉是真實的也至關重要。活體檢測技術能夠在系統攝像頭正確識別人臉的同時,驗證用戶是本人而不是照片、視頻等常見攻擊手段。目前活體檢測分為三種,分別是配合式活體檢測、靜默活體檢測和雙目活體防偽檢測。

其中,配合式活體檢測最為常見,比如在銀行「刷臉」辦理業務、在手機端完成身份認證等應用場景,通常需要根據文字提示完成左看右看、點頭、眨眨眼等動作,通過人臉關鍵點定位和人臉追蹤等技術,驗證用戶是否為真實活體本人。

人臉與人體的其他生物特徵(如指紋、虹膜等)一樣與生俱來,它的唯一性和不易被復制的良好特性為身份鑒別提供了必要的前提。隨著大數據和深度學習的不斷發展,人臉識別效率顯著提升,為遠程辦理業務的身份認證環節提供了可靠保障。

但與此同時,人臉信息保護、隱私安全等問題也應引起重視。隨著《個人信息保護法》《數據安全法》及相關司法解釋的出台,國家相關部門以及各種機構對個人信息安全問題的重視,有利於引導人臉識別技術的發展方向,為促進行業高質量發展、創造高品質數字生活提供有力支撐。

大數據人臉分析案例3

人臉識別的應用場景在大范圍擴展:

金融領域:遠程銀行開戶、身份核驗、保險理賠和刷臉支付等。人臉識別技術的接入,能有效提高資金交易安全的保障,也提高了金融業務中的便捷性。

智慧安防領域則是為了視頻結構化、人物檢索、人臉布控、人群統計等軟硬體一體形態產品提供基礎支撐,重點應用於犯罪人員的識別追蹤、失蹤兒童尋找、反恐行動助力等場景。實現重點人員的識別及跟蹤,在公安應用場景中達到事前預警、事中跟蹤、事後快速處置的目的。

交通領域主要包括1:1人臉驗證和1:N人臉辨識,目前利用人臉核驗驗證技術的刷臉安檢已進入普遍應用階段,在高鐵站、普通火車站和機場皆已大面積推廣。

而應用1:N人臉比對技術的刷臉支付主要落地在地鐵公交等市內交通,這種技術能夠極大提高通勤人員的出行效率,釋放大量的人力資源,提升出行體驗。同時,人臉識別可以對交通站點進行人流監測,根據人員出行規律預測人流高峰,提前做好疏導預案。

民生政務方面,人臉識別在政務系統的落地,提升了民眾的辦事效率,公民可以不用窗口排隊,實現自助辦事,節省了因人工效率低下產生的耗時。部分政務還可以通過在線人臉識別驗證,在移動端線上辦理,減輕了「辦事來回跑、辦事地點遠、辦事點分散」的困擾。

智能家居方面,主要應用在安全解鎖和個性化家居服務兩個場景。

在線教育領域則是通過人臉識別查驗學員身份,避免一賬號多個人使用,給網校造成損失,另一用途是幫助在線課堂老師了解學生學習狀態,彌補網路授課相較於傳統授課在師生交流環節上的不足。

商業領域,利用人臉識別功能實現各種極具創意的互動營銷活動。

凡事都有兩面。即便擁有以上優勢,因人臉暴露度較高,相比對其他生物特徵數據更容易實現被動採集,這也意味著人臉信息的數據更容易被竊取,不僅可能侵犯個人隱私,還會帶來財產損失。大規模的資料庫泄露還會對一個族群或國家帶來安全風險。

在南方都市報個人信息保護研究中心發布的《人臉識別應用公眾調研報告(2020)》中,其對兩萬份調研報告進行統計,問卷中就「便捷性」與「安全性」設置了量表題,請受訪者分別依據前述10大類場景中的使用感受進行打分。

1分為最低分,5分為最高分。結果顯示,在安全性感受方面,受訪者給出的分數則明顯偏低,體現出他們對安全風險的憂慮態度。

Ⅳ 關於大數據應用有什麼例子

Ⅳ 有哪些大數據分析案例

如下:

1. 大數據應用案例之:醫療行業

1)Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。

在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。

它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。

2)大數據配合喬布斯癌症治療

喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。

2. 大數據應用案例之:能源行業

1)智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。

通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。

因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

2)丹麥的維斯塔斯風能系統(Vestas Wind Systems)運用大數據,系統依靠的是BigInsights軟體和IBM超級計算機,分析出應該在哪裡設置渦輪發電機,事實上這是風能領域的重大挑戰。在一個風電場20多年的運營過程中,准確的定位能幫助工廠實現能源產出的最大化。

為了鎖定最理想的位置,Vestas分析了來自各方面的信息:風力和天氣數據、湍流度、地形圖、公司遍及全球的2.5萬多個受控渦輪機組發回的感測器數據。這樣一套信息處理體系賦予了公司獨特的競爭優勢,幫助其客戶實現投資回報的最大化。

3. 大數據應用案例之:通信行業—通過大數據分析挽回核心客戶

法國電信-Orange集團旗下的波蘭電信公司Telekomunikacja Polska是波蘭最大的語音和寬頻固網供應商,希望有效的途徑來准確預測並解決客戶流失問題。

他們決定進行客戶細分,方法是構建一張「社交圖譜」- 分析客戶數百萬個電話的數據記錄,特別關注 「誰給誰打了電話」以及「打電話的頻率」兩個方面。「社交圖譜」把公司用戶分成幾大類,如:「聯網型」、「橋梁型」、「領導型」以及「跟隨型」。

這樣的關系數據有助電信服務供應商深入洞悉一系列問題,如:哪些人會對可能「棄用」公司服務的客戶產生較大的影響?挽留最有價值客戶的難度有多大?運用這一方法,公司客戶流失預測模型的准確率提升了47%。

4、大數據應用案例之:零售業—大數據幫零售企業制定促銷策略

北美零售商百思買在北美的銷售活動非常活躍,產品總數達到3萬多種,產品的價格也隨地區和市場條件而異。由於產品種類繁多,成本變化比較頻繁,一年之中,變化可達四次之多。

結果,每年的調價次數高達12萬次。最讓高管頭疼的是定價促銷策略。公司組成了一個11人的團隊,希望透過分析消費者的購買記錄和相關信息,提高定價的准確度和響應速度。

定價團隊的分析圍繞著三個關鍵維度:

1)數量:團隊需要分析海量信息。他們收集了上千萬的消費者的購買記錄,從客戶不同維度分析,了解客戶對每種產品種類的最高接受能力,從而為產品定出最佳價位。

2)多樣性:團隊除了分析了購買記錄這種結構化的數據外,他們也利用社交媒體發帖這種新型的非結構化數據。由於消費者需要在零售商專頁上點贊或留言以獲得優惠券,團隊利用情感分析公式來分析專頁上消費者的情緒,從而判斷他們對於公司的促銷活動是否滿意,並微調促銷策略。

3)速度:為了實現價值最大化,團隊對數據進行實時或近似實時的處理。他們成功地根據一個消費者既往的麥片購買記錄,為身處超市麥片專櫃的他/她即時發送優惠券,為客戶帶來便利性和驚喜。

透過這一系列的活動,團隊提高了定價的准確度和響應速度,為零售商新增銷售額和利潤數千萬美元。

5、大數據應用案例之:網路營銷行業(SEM)

很多企業在做SEM的過程中,都有這樣的感觸:每年都會花費大量的預算在SEM推廣中,但是因為關鍵詞投入產出無法可視化,常常花了很多錢卻不見具體的回報。

在競爭如此激烈的SEM市場中,企業需要一個高效的數據分析工具來盡可能地幫企業優化SEM推廣,例如BDP,來幫企業節省不必要的支出,提升整體的經營績效。

企業可藉助數據平台提供的網路營銷整合解決方案,打通各個搜索引擎營銷(SEM)、在線客服系統和CRM系統,營銷競價人員無需掌握復雜的編程技術,簡單拖拽即可生成報表,觀察每一個關鍵詞的投入和產出,分析每一個頁面的轉化,有效降低投放成本。

通過BDP實況分析數據,可以快速洞悉對手關鍵詞的投放時段、地域及排名,並對其進行可視化的分析,實時監控自己和競爭對手的投放情況,了解對手的投放策略,支持自定義設置數據更新的時間點、監控頻次和時段,及時調整策略。知已知彼,才能百戰不殆。

6、大數據應用案例之:電商行業

意料之外:胸部最大的是新疆妹子。曾經淘寶平台顯示,中國女性購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好,其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。

雖然淘寶數據平台不能代表一切,但是結合現實來看,這個也具有普遍的代表性,只能感慨中國女性普遍size。在文胸顏色中,黑色最為暢銷,黑色絕對是百搭,每個女性必備。

從省市排名,胸部最大的是新疆妹子。這些數據都對於文胸店鋪而言是很好的參考,為店鋪的庫存、定價、款式選擇等策略都有奠定數據基礎。

7、大數據應用案例之:娛樂行業

微軟大數據成功預測奧斯卡21項大獎。2013年,微軟紐約研究院的經濟學家大衛•羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。

今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。

總的來說,大數據的終極目標並不僅僅是改變競爭環境,而是徹底扭轉整個競爭環境,帶來新機遇,企業需要應勢而變。企業只有認識到這一點,使用合適的數據分析產品、聰明地使用和管理數據,才能在長期競爭中成為終極贏家。

閱讀全文

與大數據經典案例迪拜相關的資料

熱點內容
51虛擬機的文件管理在哪裡 瀏覽:13
win10系統有沒有便簽 瀏覽:722
java引用傳遞和值傳遞 瀏覽:109
oracle下載安裝教程 瀏覽:854
php篩選資料庫 瀏覽:830
怎麼用手機看wlan密碼 瀏覽:745
奧維地圖導入的文件在哪裡 瀏覽:364
sdltrados2014教程 瀏覽:43
培訓制度文件在哪裡找 瀏覽:601
勒索病毒防疫工具 瀏覽:861
win10c不能打開 瀏覽:375
xfplay影音先鋒蘋果版 瀏覽:597
兩個文件打開兩個word 瀏覽:921
蘋果6s桌面圖標輕微抖動 瀏覽:326
如何刪除手機中看不見的臨時文件 瀏覽:469
安卓412原生鎖屏apk 瀏覽:464
書加加緩存文件在哪裡 瀏覽:635
dock是word文件嗎 瀏覽:267
社保公司新辦去哪個網站下載資料 瀏覽:640
三維標注數據怎麼填寫 瀏覽:765

友情鏈接