① 大數據分析的作用和影響
1、大數據分析對互聯網的作用。
隨著移動互聯網技術的發展,利用手機終端接收新聞、聽音樂、看電視是眾多消費者的第一選擇.營銷者想要在激烈的市場競爭中占據一席之地,就需要對海量用戶數據進行挖掘分析,發現用戶的個性喜好,從而對用戶的消費行為進行准確把握。
2、大數據分析對電商的作用。
對於電子商務行業來說,數據分析職位在企業內部是非常重要,營銷管理、客戶管理等環節都需要應用到數據分析的結果,利用數據分來來發現企業內部的不足,營銷手段的不足、客戶體驗的不足等等,利用數據挖掘來了解客戶的內在需求。
3、大數據分析對金融的作用。
數據技術對金融行業的影響巨大,金融業對信息系統的實際應用前景還是非常大的,金融業對信息系統的實用性要求很高,且積累了大量的客戶交易數據。目前金融業主要信息需求是客戶行為分析、防堵詐騙、金融分析等。
4、大數據分析對其他行業的作用。
大數據分析可以進行人流、車流量等統計,使旅遊行業得企業公司可以更好地了解用戶的的想法和需求;數據分析可以幫助電信行業進行增值業務推薦和新套餐科學定價分析;數據分析可以幫助房地產行業做出投資決策建議等等。
② 淺談計算機與大數據的相關論文
在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。下面是我給大家推薦的計算機與大數據的相關論文,希望大家喜歡!
計算機與大數據的相關論文篇一
淺談“大數據”時代的計算機信息處理技術
[摘 要]在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。本文重點分析大數據時代的計算機信息處理技術。
[關鍵詞]大數據時代;計算機;信息處理技術
在科學技術迅速發展的當前,大數據時代已經到來,大數據時代已經佔領了整個環境,它對計算機的信息處理技術產生了很大的影響。計算機在短短的幾年內,從稀少到普及,使人們的生活有了翻天覆地的變化,計算機的快速發展和應用使人們走進了大數據時代,這就要求對計算機信息處理技術應用時,則也就需要在之前基礎上對技術實施創新,優化結構處理,從而讓計算機數據更符合當前時代發展。
一、大數據時代信息及其傳播特點
自從“大數據”時代的到來,人們的信息接收量有明顯加大,在信息傳播中也出現傳播速度快、數據量大以及多樣化等特點。其中數據量大是目前信息最顯著的特點,隨著時間的不斷變化計算機信息處理量也有顯著加大,只能夠用海量還對當前信息數量之大形容;傳播速度快也是當前信息的主要特點,計算機在信息傳播中傳播途徑相當廣泛,傳播速度也相當驚人,1s內可以完成整個信息傳播任務,具有較高傳播效率。在傳播信息過程中,還需要實施一定的信息處理,在此過程中則需要應用相應的信息處理工具,實現對信息的專門處理,隨著目前信息處理任務的不斷加強,信息處理工具也有不斷的進行創新[1];信息多樣化,則也就是目前數據具有多種類型,在龐大的資料庫中,信息以不同的類型存在著,其中包括有文字、圖片、視頻等等。這些信息類型的格式也在不斷發生著變化,從而進一步提高了計算機信息處理難度。目前計算機的處理能力、列印能力等各項能力均有顯著提升,尤其是當前軟體技術的迅速發展,進一步提高了計算機應用便利性。微電子技術的發展促進了微型計算機的應用發展,進一步強化了計算機應用管理條件。
大數據信息不但具有較大容量,同時相對於傳統數據來講進一步增強了信息間關聯性,同時關聯結構也越來越復雜,導致在進行信息處理中需要面臨新的難度。在 網路技術 發展中重點集中在傳輸結構發展上,在這種情況下計算機必須要首先實現網路傳輸結構的開放性設定,從而打破之前計算機信息處理中,硬體所具有的限製作用。因為在當前計算機網路發展中還存在一定的不足,在完成雲計算機網路構建之後,才能夠在信息處理過程中,真正的實現收放自如[2]。
二、大數據時代的計算機信息處理技術
(一)數據收集和傳播技術
現在人們通過電腦也就可以接收到不同的信息類型,但是在進行信息發布之前,工作人員必須要根據需要採用信息處理技術實施相應的信息處理。計算機採用信息處理技術實施信息處理,此過程具有一定復雜性,首先需要進行數據收集,在將相關有效信息收集之後首先對這些信息實施初步分析,完成信息的初級操作處理,總體上來說信息處理主要包括:分類、分析以及整理。只有將這三步操作全部都完成之後,才能夠把這些信息完整的在計算機網路上進行傳播,讓用戶依照自己的實際需求篩選滿足自己需求的信息,藉助於計算機傳播特點將信息數據的閱讀價值有效的實現。
(二)信息存儲技術
在目前計算機網路中出現了很多視頻和虛擬網頁等內容,隨著人們信息接收量的不斷加大,對信息儲存空間也有較大需求,這也就是對計算機信息存儲技術提供了一個新的要求。在數據存儲過程中,已經出現一系列存儲空間無法滿足當前存儲要求,因此必須要對當前計算機存儲技術實施創新發展。一般來講計算機數據存儲空間可以對當前用戶關於不同信息的存儲需求滿足,但是也有一部分用戶對於計算機存儲具有較高要求,在這種情況下也就必須要提高計算機數據存儲性能[3],從而為計算機存儲效率提供有效保障。因此可以在大數據存儲特點上完成計算機信息新存儲方式,不但可以有效的滿足用戶信息存儲需求,同時還可以有效的保障普通儲存空間不會出現被大數據消耗問題。
(三)信息安全技術
大量數據信息在計算機技術發展過程中的出現,導致有一部分信息內容已經出現和之前信息形式的偏移,構建出一些新的計算機信息關聯結構,同時具有非常強大的數據關聯性,從而也就導致在計算機信息處理中出現了新的問題,一旦在信息處理過程中某個信息出現問題,也就會導致與之關聯緊密的數據出現問題。在實施相應的計算機信息管理的時候,也不像之前一樣直接在單一數據信息之上建立,必須要實現整個資料庫中所有將數據的統一安全管理。從一些角度分析,這種模式可以對計算機信息處理技術水平有顯著提升,並且也為計算機信息處理技術發展指明了方向,但是因為在計算機硬體中存在一定的性能不足,也就導致在大數據信息安全管理中具有一定難度。想要為數據安全提供有效保障,就必須要注重數據安全技術管理技術的發展。加強當前信息安全體系建設,另外也必須要對計算機信息管理人員專業水平進行培養,提高管理人員專業素質和專業能力,從而更好的滿足當前網路信息管理體系發展需求,同時也要加強關於安全技術的全面深入研究工作[4]。目前在大數據時代下計算機信息安全管理技術發展還不夠成熟,對於大量的信息還不能夠實施全面的安全性檢測,因此在未來計算機信息技術研究中安全管理屬於重點方向。但是因為目前還沒有構建完善的計算機安全信息管理體系,因此首先應該強化關於計算機重點信息的安全管理,這些信息一旦發生泄漏,就有可能會導致出現非常嚴重的損失。目前來看,這種 方法 具有一定可行性。
(四)信息加工、傳輸技術
在實施計算機信息數據處理和傳輸過程中,首先需要完成數據採集,同時還要實時監控數據信息源,在資料庫中將採集來的各種信息數據進行存儲,所有數據信息的第一步均是完成採集。其次才能夠對這些採集來的信息進行加工處理,通常來說也就是各種分類及加工。最後把已經處理好的信息,通過數據傳送系統完整的傳輸到客戶端,為用戶閱讀提供便利。
結語:
在大數據時代下,計算機信息處理技術也存在一定的發展難度,從目前專業方面來看,還存在一些問題無法解決,但是這些難題均蘊含著信息技術發展的重要機遇。在當前計算機硬體中,想要完成計算機更新也存在一定的難度,但是目前計算機未來的發展方向依舊是雲計算網路,把網路數據和計算機硬體數據兩者分開,也就有助於實現雲計算機網路的有效轉化。隨著科學技術的不斷發展相信在未來的某一天定能夠進入到計算機信息處理的高速發展階段。
參考文獻
[1] 馮瀟婧.“大數據”時代背景下計算機信息處理技術的分析[J].計算機光碟軟體與應用,2014,(05):105+107.
[2] 詹少強.基於“大數據”時代剖析計算機信息處理技術[J].網路安全技術與應用,2014,(08):49-50.
[3] 曹婷.在信息網路下計算機信息處理技術的安全性[J].民營科技,2014, (12):89CNKI
[4] 申鵬.“大數據”時代的計算機信息處理技術初探[J].計算機光碟軟體與應用,2014,(21):109-110
計算機與大數據的相關論文篇二
試談計算機軟體技術在大數據時代的應用
摘要:大數據的爆炸式增長在大容量、多樣性和高增速方面,全面考驗著現代企業的數據處理和分析能力;同時,也為企業帶來了獲取更豐富、更深入和更准確地洞察市場行為的大量機會。對企業而言,能夠從大數據中獲得全新價值的消息是令人振奮的。然而,如何從大數據中發掘出“真金白銀”則是一個現實的挑戰。這就要求採用一套全新的、對企業決策具有深遠影響的解決方案。
關鍵詞:計算機 大數據時代 容量 准確 價值 影響 方案
1 概述
自從計算機出現以後,傳統的計算工作已經逐步被淘汰出去,為了在新的競爭與挑戰中取得勝利,許多網路公司開始致力於數據存儲與資料庫的研究,為互聯網用戶提供各種服務。隨著雲時代的來臨,大數據已經開始被人們廣泛關注。一般來講,大數據指的是這樣的一種現象:互聯網在不斷運營過程中逐步壯大,產生的數據越來越多,甚至已經達到了10億T。大數據時代的到來給計算機信息處理技術帶來了更多的機遇和挑戰,隨著科技的發展,計算機信息處理技術一定會越來越完善,為我們提供更大的方便。
大數據是IT行業在雲計算和物聯網之後的又一次技術變革,在企業的管理、國家的治理和人們的生活方式等領域都造成了巨大的影響。大數據將網民與消費的界限和企業之間的界限變得模糊,在這里,數據才是最核心的資產,對於企業的運營模式、組織結構以及 文化 塑造中起著很大的作用。所有的企業在大數據時代都將面對戰略、組織、文化、公共關系和人才培養等許多方面的挑戰,但是也會迎來很大的機遇,因為只是作為一種共享的公共網路資源,其層次化和商業化不但會為其自身發展帶來新的契機,而且良好的服務品質更會讓其充分具有獨創性和專用性的鮮明特點。所以,知識層次化和商業化勢必會開啟知識創造的嶄新時代。可見,這是一個競爭與機遇並存的時代。
2 大數據時代的數據整合應用
自從2013年,大數據應用帶來令人矚目的成績,不僅國內外的產業界與科技界,還有各國政府部門都在積極布局、制定戰略規劃。更多的機構和企業都准備好了迎接大數據時代的到來,大數據的內涵應是數據的資產化和服務化,而挖掘數據的內在價值是研究大數據技術的最終目標。在應用數據快速增長的背景下,為了降低成本獲得更好的能效,越來越趨向專用化的系統架構和數據處理技術逐漸擺脫傳統的通用技術體系。如何解決“通用”和“專用”體系和技術的取捨,以及如何解決數據資產化和價值挖掘問題。
企業數據的應用內容涵蓋數據獲取與清理、傳輸、存儲、計算、挖掘、展現、開發平台與應用市場等方面,覆蓋了數據生產的全生命周期。除了Hadoop版本2.0系統YARN,以及Spark等新型系統架構介紹外,還將探討研究流式計算(Storm,Samza,Puma,S4等)、實時計算(Dremel,Impala,Drill)、圖計算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新進展。在大數據時代,借力計算機智能(MI)技術,通過更透明、更可用的數據,企業可以釋放更多蘊含在數據中的價值。實時、有效的一線質量數據可以更好地幫助企業提高產品品質、降低生產成本。企業領導者也可根據真實可靠的數據制訂正確戰略經營決策,讓企業真正實現高度的計算機智能決策辦公,下面我們從通信和商業運營兩個方面進行闡述。
2.1 通信行業:XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取 措施 ,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。中國移動通過大數據分析,對 企業運營 的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
2.2 商業運營:辛辛那提動物園使用了Cognos,為iPad提供了單一視圖查看管理即時訪問的遊客和商務信息的服務。藉此,動物園可以獲得新的收入來源和提高營收,並根據這些信息及時調整營銷政策。數據收集和分析工具能夠幫助銀行設立最佳網點,確定最好的網點位置,幫助這個銀行更好地運作業務,推動業務的成長。
3 企業信息解決方案在大數據時代的應用
企業信息管理軟體廣泛應用於解決欺詐偵測、雇員流動、客戶獲取與維持、網路銷售、市場細分、風險分析、親和性分析、客戶滿意度、破產預測和投資組合分析等多樣化問題。根據大數據時代的企業挖掘的特徵,提出了數據挖掘的SEMMA方法論――在SAS/EM環境中,數據挖掘過程被劃分為Sample、Explore、Modify、Model、Assess這五個階段,簡記為SEMMA:
3.1 Sample 抽取一些代表性的樣本數據集(通常為訓練集、驗證集和測試集)。樣本容量的選擇標准為:包含足夠的重要信息,同時也要便於分析操作。該步驟涉及的處理工具為:數據導入、合並、粘貼、過濾以及統計抽樣方法。
3.2 Explore 通過考察關聯性、趨勢性以及異常值的方式來探索數據,增進對於數據的認識。該步驟涉及的工具為:統計 報告 、視圖探索、變數選擇以及變數聚類等方法。
3.3 Modify 以模型選擇為目標,通過創建、選擇以及轉換變數的方式來修改數據集。該步驟涉及工具為:變數轉換、缺失處理、重新編碼以及數據分箱等。
3.4 Model 為了獲得可靠的預測結果,我們需要藉助於分析工具來訓練統計模型或者機器學習模型。該步驟涉及技術為:線性及邏輯回歸、決策樹、神經網路、偏最小二乘法、LARS及LASSO、K近鄰法以及其他用戶(包括非SAS用戶)的模型演算法。
3.5 Assess 評估數據挖掘結果的有效性和可靠性。涉及技術為:比較模型及計算新的擬合統計量、臨界分析、決策支持、報告生成、評分代碼管理等。數據挖掘者可能不會使用全部SEMMA分析步驟。然而,在獲得滿意結果之前,可能需要多次重復其中部分或者全部步驟。
在完成SEMMA步驟後,可將從優選模型中獲取的評分公式應用於(可能不含目標變數的)新數據。將優選公式應用於新數據,這是大多數數據挖掘問題的目標。此外,先進的可視化工具使得用戶能在多維直方圖中快速、輕松地查閱大量數據並以圖形化方式比較模擬結果。SAS/EM包括了一些非同尋常的工具,比如:能用來產生數據挖掘流程圖的完整評分代碼(SAS、C以及Java代碼)的工具,以及交換式進行新數據評分計算和考察執行結果的工具。
如果您將優選模型注冊進入SAS元數據伺服器,便可以讓SAS/EG和SAS/DI Studio的用戶分享您的模型,從而將優選模型的評分代碼整合進入 工作報告 和生產流程之中。SAS模型管理系統,通過提供了開發、測試和生產系列環境的項目管理結構,進一步補充了數據挖掘過程,實現了與SAS/EM的無縫聯接。
在SAS/EM環境中,您可以從SEMMA工具欄上拖放節點進入工作區的工藝流程圖中,這種流程圖驅動著整個數據挖掘過程。SAS/EM的圖形用戶界面(GUI)是按照這樣的思路來設計的:一方面,掌握少量統計知識的商務分析者可以瀏覽數據挖掘過程的技術方法;另一方面,具備數量分析技術的專家可以用微調方式深入探索每一個分析節點。
4 結束語
在近十年時間里,數據採集、存儲和數據分析技術飛速發展,大大降低了數據儲存和處理的成本,一個大數據時代逐漸展現在我們的面前。大數據革新性地將海量數據處理變為可能,並且大幅降低了成本,使得越來越多跨專業學科的人投入到大數據的開發應用中來。
參考文獻:
[1]薛志文.淺析計算機網路技術及其發展趨勢[J].信息與電腦,2009.
[2]張帆,朱國仲.計算機網路技術發展綜述[J].光碟技術,2007.
[3]孫雅珍.計算機網路技術及其應用[J].東北水利水電,1994.
[4]史萍.計算機網路技術的發展及展望[J].五邑大學學報,1999.
[5]桑新民.步入信息時代的學習理論與實踐[M].中央廣播大學出版社,2000.
[6]張浩,郭燦.數據可視化技術應用趨勢與分類研究[J].軟體導刊.
[7]王丹.數字城市與城市地理信息產業化――機遇與挑戰[J].遙感信息,2000(02).
[8]楊鳳霞.淺析 Excel 2000對數據的安全管理[J].湖北商業高等專科學校學報,2001(01).
計算機與大數據的相關論文篇三
淺談利用大數據推進計算機審計的策略
[摘要]社會發展以及時代更新,在該種環境背景下大數據風潮席捲全球,尤其是在進入新時期之後數據方面處理技術更加成熟,各領域行業對此也給予了較高的關注,針對當前計算機審計(英文簡稱CAT)而言要想加速其發展腳步並將其質量拔高就需要結合大數據,依託於大數據實現長足發展,本文基於此就大數據於CAT影響進行著手分析,之後探討依託於大數據良好推進CAT,以期為後續關於CAT方面研究提供理論上參考依據。
[關鍵詞]大數據 計算機審計 影響
前言:相較於網路時代而言大數據風潮一方面提供了共享化以及開放化、深層次性資源,另一方面也促使信息管理具備精準性以及高效性,走進新時期CAT應該融合於大數據風潮中,相應CAT人員也需要積極應對大數據帶了的機遇和挑戰,正面CAT工作,進而促使CAT緊跟時代腳步。
一、初探大數據於CAT影響
1.1影響之機遇
大數據於CAT影響體現在為CAT帶來了較大發展機遇,具體來講,信息技術的更新以及其質量的提升促使數據方面處理技術受到了眾多領域行業的喜愛,當前在數據技術推廣普及階段中呈現三大變化趨勢:其一是大眾工作生活中涉及的數據開始由以往的樣本數據實際轉化為全數據。其二是全數據產生促使不同數據間具備復雜內部關系,而該種復雜關系從很大程度上也推動工作效率以及數據精準性日漸提升,尤其是數據間轉化關系等更為清晰明了。其三是大眾在當前處理數據環節中更加關注數據之間關系研究,相較於以往僅僅關注數據因果有了較大進步。基於上述三大變化趨勢,也深刻的代表著大眾對於數據處理的態度改變,尤其是在當下海量數據生成背景下,人工審計具備較強滯後性,只有依託於大數據並發揮其優勢才能真正滿足大眾需求,而這也是大數據對CAT帶來的重要發展機遇,更是促進CAT在新時期得以穩定發展重要手段。
1.2影響之挑戰
大數據於CAT影響還體現在為CAT帶來一定挑戰,具體來講,審計評估實際工作質量優劣依託於其中數據質量,數據具備的高質量則集中在可靠真實以及內容詳細和相應信息准確三方面,而在CAT實際工作環節中常常由於外界環境以及人為因素導致數據質量較低,如數據方面人為隨意修改刪除等等,而這些均是大數據環境背景下需要嚴格把控的重點工作內容。
二、探析依託於大數據良好推進CAT措施
2.1數據質量的有效保障
依託於大數據良好推進CAT措施集中在數據質量有效保障上,對數據質量予以有效保障需要從兩方面入手,其一是把控電子數據有效存儲,簡單來講就是信息存儲,對電子信息進行定期檢查,監督數據實際傳輸,對信息系統予以有效確認以及評估和相應的測試等等,進而將不合理數據及時發現並找出信息系統不可靠不準確地方;其二是把控電子數據採集,通常電子數據具備多樣化採集方式,如將審計單位相應資料庫直接連接採集庫進而實現數據採集,該種直接採集需要備份初始傳輸數據,避免數據採集之後相關人員隨意修改,更加可以與審計單位進行數據採集真實性 承諾書 簽訂等等,最終通過電子數據方面採集以及存儲兩大內容把控促使數據質量更高,從而推動CAT發展。
2.2公共數據平台的建立
依託於大數據良好推進CAT措施還集中在公共數據平台的建立,建立公共化分析平台一方面能夠將所有採集的相關數據予以集中化管理存儲,更能夠予以多角度全方面有效分析;另一方面也能夠推動CAT作業相關標准予以良好執行。如果將分析模型看作是CAT作業標准以及相應的核心技術,則公共分析平台則是標准執行和相應技術實現關鍵載體。依託於公共數據平台不僅能夠將基礎的CAT工作實現便捷化以及統一化,而且深層次的實質研究有利於CAT數據處理的高速性以及高效性,最終為推動CAT發展起到重要影響作用。
2.3審計人員的強化培訓
依託於大數據良好推進CAT措施除了集中在上述兩方面之外,還集中在審計人員的強化培訓上,具體來講,培訓重點關注審計工作於計算機上的具 體操 作以及操作重點難點,可以構建統一培訓平台,在該培訓平台中予以多元化資料的分享,聘請高技能豐富 經驗 人士予以平台授課,提供專業技能知識溝通互動等等機會,最終通過強化培訓提升審計人員綜合素質,更加推動CAT未來發展。
三、結論
綜上分析可知,當前大數據環境背景下CAT需要將日常工作予以不斷調整,依託於大數據促使審計人員得以素質提升,並利用公共數據平台建立和相應的數據質量保障促使CAT工作更加高效,而本文對依託於大數據良好推進CAT進行研究旨在為未來CAT優化發展獻出自己的一份研究力量。
猜你喜歡:
1. 人工智慧與大數據論文
2. 大數據和人工智慧論文
3. 計算機大數據論文參考
4. 計算機有關大數據的應用論文
5. 有關大數據應用的論文
③ 怎樣理解互聯網行業「數據分析」的意義
互聯網企業擁有大量的線上數據,而且數據量還在快速增長,除了利用大數據提升自己的業務之外,互聯網企業已經開始實現數據業務化,利用大數據發現新的商業價值。
以阿里巴巴為例,它不僅在不斷加強個性化推薦、「千人千面」這種面向消費者的大數據應用,並且還在嘗試利用大數據進行智能客戶服務,這種應用場景會逐漸從內部應用延展到外部很多企業的呼叫中心之中。
在面向商家的大數據應用中,以「生意參謀」為例,超過 600 萬商家在利用「生意參謀」提升自己的電商店面運營水平。除了面向自己的生態之外,阿里巴巴數據業務化也在不斷加速,「芝麻信用」這種基於收集的個人數據進行個人信用評估的應用獲得了長足發展,應用場景從阿里巴巴的內部延展到越來越多的外部場景,如租車、酒店、簽證等。
因為客戶的所有行為都會在互聯網平台上留下痕跡,所以互聯網企業可以方便地獲取大量的客戶行為信息。由互聯網商務平台產生的信息一般具有真實性和確定性,通過運用大數據技術對這些數據進行分析,可以幫助企業制定出具有針對性的服務策略,從而獲取更大的效益。近年來的實踐證明,合理地運用大數據技術能夠將電子商務的營業效率提高 60% 以上。
大數據在過去幾年中已經改變了電子商務的面貌,具體來講,電子商務行業的大數據應用有以下幾個方面:精準營銷、個性化服務、商品個性化推薦。
1. 精準營銷
互聯網企業使用大數據技術採集有關客戶的各類數據,並通過大數據分析建立「用戶畫像」來抽象地描述一個用戶的信息全貌,從而可以對用戶進行個性化推薦、精準營銷和廣告投放等。
當用戶登錄網站的瞬間,系統就能預測出該用戶今天為何而來,然後從商品庫中把合適的商品找出來,並推薦給他。圖 1 顯示了用戶畫像會包括哪些用戶基本信息和特性。
圖 4 Netflix 電影推薦
YouTube 作為美國最大的視頻網站,擁有大量用戶上傳的視頻內容。為了解決視頻庫的信息過載問題,YouTube 在個性化推薦領域也進行了深入研究,現在使用的也是基於物品的推薦演算法。實驗證明,YouTube 個性化推薦的點擊率是熱門視頻點擊率的兩倍。
3)網路電台
個性化網路電台也很適合進行個性化推薦。首先,音樂很多,用戶不可能聽完所有的音樂再決定自己喜歡聽什麼,而且每年新的歌曲在以很快的速度增加,因此用戶無疑面臨著信息過載的問題。其次,人們聽音樂時,一般都是把音樂作為一種背景樂來聽,很少有人必須聽某首特定的歌。對於普通用戶來說,聽什麼歌都可以,只要能夠符合他們當時的心情就可以了。因此,個性化音樂網路電台是非常符合個性化推薦技術的產品。
目前有很多知名的個性化音樂網路電台。國際上著名的有 Pandora 和Last.fm | Play music, find songs, and discover artists,國內的代表則是豆瓣電台。這 3 個個性化網路電台都不允許用戶點歌,而是給用戶幾種反饋方式:喜歡、不喜歡和跳過。經過用戶一定時間的反饋,電台就可以從用戶的歷史行為中獲得用戶的興趣模型,從而使用戶的播放列表越來越符合用戶對歌曲的興趣。
Pandora 的演算法主要是基於內容的,其音樂家和研究人員親自聽了上萬首來自不同歌手的歌,然後對歌曲的不同特性(如旋律、節奏、編曲和歌詞等)進行標注,這些標注被稱為音樂的基因。然後,Pandora 會根據專家標注的基因計算歌曲的相似度,並給用戶推薦和他之前喜歡的音樂在基因上相似的其他音樂。
Last.fm | Play music, find songs, and discover artists記錄了所有用戶的聽歌記錄及用戶對歌曲的反饋,在這一基礎上計算出不同用戶在歌曲上的喜好相似度,從而給用戶推薦和他有相似聽歌愛好的其他用戶喜歡的歌曲。同時,Last.fm | Play music, find songs, and discover artists也建立了一個社交網路,來讓用戶能夠和其他用戶建立聯系,以及讓用戶給好友推薦自己喜歡的歌曲。Last.fm | Play music, find songs, and discover artists沒有使用專家標注,而是主要利用用戶行為計算歌曲的相似度。
4)社交網路
社交網路中的個性化推薦技術主要應用在 3 個方面:利用用戶的社交網路信息對用戶進行個性化的物品推薦,信息流的會話推薦和給用戶推薦好友。
Facebook 保存著兩類最寶貴的數據:一類是用戶之間的社交網路關系,另一類是用戶的偏好信息。
Facebook 推出了一個稱為 Instant Personalization 的推薦 API,它能根據用戶好友喜歡的信息,給用戶推薦他們的好友最喜歡的物品。很多網站都使用了 Facebook 的推薦 API 來實現網站的個性化。
著名的電視劇推薦網站 Clicker 使用 Instant Personalization 給用戶進行個性化視頻推薦。Clicker 現在可以利用 Facebook 的用戶行為數據來提供個性化的、用戶可能感興趣的內容「』流」了,而更重要的是,用戶無須在 Clicker 網站上輸入太多數據(通過評分、評論或觀看Clicker.com上的視頻等方式),Clicker 就能提供這樣的服務。
除了利用用戶在社交網站的社交網路信息給用戶推薦本站的各種物品外,社交網站本身也會利用社交網路給用戶推薦其他用戶在社交網站的會話。每個用戶在 Facebook 的個人首頁都能看到好友的各種分享,並且能對這些分享進行評論。每個分享和它的所有評論被稱為一個會話,Facebook 開發了 EdgeRank 演算法對這些會話排序,使用戶能夠盡量看到熟悉的好友的最新會話。
除了根據用戶的社交網路及用戶行為給用戶推薦內容,社交網站還通過個性化推薦服務給用戶推薦好友。
5)其他應用
因為電子商務企業基本上實現了業務流程的各個環節的數據化,所以可以充分利用大數據技術對這些數據進行挖掘分析來優化其業務流程,提高業務利潤。除了前面介紹的幾個應用之外,大數據在電子商務行業還可以應用在其他許多方面。
① 動態定價和特價優惠
電子商務企業可以通過使用數據構建客戶資料,並發現用戶喜歡花費多少費用和喜歡購買什麼產品,從而通過跟蹤客戶的消費行為,使用大數據分析來開發靈活的定價和折扣政策。例如,如果分析顯示用戶對特定類別商品的興趣飆升,則電子商務企業可以提供打折或買一送一優惠。
② 定製優惠
電子商務企業可以通過使用數據來確定客戶的購買習慣,並根據以前的購買方式向他們發送有針對性的特價優惠和折扣代碼。數據也可以用於在客戶中止購買或只看不買時重新吸引客戶,例如,通過發送電子郵件提醒客戶他們查看過的產品或邀請他們完成購買。
③ 供應鏈管理
電子商務企業可以使用大數據更有效地管理供應鏈。數據分析可以揭示供應鏈中的任何延遲或潛在的庫存問題。如果某個項目存在問題,則可以立即將其從銷售中刪除,以免破壞客戶服務問題。
④ 預測分析
預測分析是指利用大數據技術分析電子商務業務的各種渠道,幫助企業制定未來運營的業務計劃。數據分析可能會顯示電商企業在線商店部門的新購買趨勢或銷售減緩的商品。
使用這些信息就可以幫助規劃下一階段的庫存,並制定新的市場目標。隨時了解電子商務的最新趨勢具有一定的挑戰性,但是利用大數據技術可以大大提高企業的利潤,並幫助企業建立一個成功的前瞻性思維業務。如果不利用挖掘大數據的力量,就可能會錯過市場成功的機遇。
④ 大數據在跨境電商領域有什麼應用
在互聯網﹑物聯網﹑移動技術等新型應用與電子商務相結合的同時,產生﹑積累了大量的﹑形式多樣的用戶網路行為數據資源,被稱為電子商務大數據,並呈現出前所未有的"數據爆炸"狀態。這種狀態促使電子商務行業重新審視數據的重要性,並形成對數據的新型管理理念,即提煉大數據中的有效數據,與具體電子商務業務結合運用,深入挖掘數據資源的價值,進行精準化﹑個性化﹑智能化的客戶服務創新,以達到既降低成本,又提高效益的雙效效應。無論是國內電商還是跨境電商,大數據的作用不容忽視。
1)提升競爭優勢價值:現代電子商務數據的來源已經不局限於企業的Web站點,企業會更多的利用電子郵件﹑微博﹑Web日誌﹑互動社區等社交媒介多元化的收集相關數據,這些數據將從不同方面反映著企業自身業務的狀況﹑客戶的狀態﹑競爭對手的動向﹑社會環境的優劣,企業的決策行為是基於對數據的分析而做出的。因此,這方面的數據信息越全面,越趨於社會化,越具有實時性,以此制定出的企業發展與競爭策略就越准確﹑越有針對性﹑越貼近客戶,當然企業在市場上的競爭優勢的可持續性就隨之增強了。
2)挖掘數據驅動運營價值:大數據龐大的數據量為電子商務企業做好了鎖定並把握消費者的基礎保證,電商企業通過不斷的整合數據資源,使得所屬供應鏈上下游參與方能更方便的共享信息與資源,並模糊業務節點的界限,從而優化電子商務全程業務流程,提高各業務節點的流暢度,進而提高的業務效率。同時,大數據模式下電子商務交易帶來的互動數據,不僅為電商企業,也為網路交易平台提供了全方位的市場信息,為以電子商務交易為核心的新興產業鏈打造了活性數據平台。
3)重塑多重商機價值:對於電子商務企業來說"低成本﹑高效率"是其取勝市場的法寶,而致勝的戰術就是基於對大數據的分析和優化。通過收集消費者帶來的海量數據,進一步挖掘用戶需求,便於企業准確預測潛在客戶市場,提高交易的成功率。另一個方面,在大數據狀態推動下,消費者獲取﹑濾選﹑分析數據信息的能力也在不斷的提高,對數據信息准確識別能力的增強有利於消費者將注意力反應在其網路行為中,繼而利於電商企業智能業務和服務的開發與推廣,為企業節約成本﹑佔領市場帶來巨大的多重商機。
4)改善物流服務質量價值:電子商務與物流業的合作隨著雲計算﹑物聯網和數據應用等技術的突破越來越密切,電商企業與物流企業因一筆交易帶來了共同的服務對象,對於客戶數據的分析也就不僅局限於電商企業單向操作。大數據改變了物流業的服務方向和服務內容,物流企業通過對客戶數據的分析能夠更合理的選擇派送方式,優選路徑,提供差異化服務,提高物流服務的質量,提升電商物流業的品牌形象。
5)創造消費者感知價值:消費者作為互聯網技術應用的主力軍,最大限度的搶佔了大數據中的消費數據,這些數據在企業進行數據信息分析時轉化為極有價值的商業數據。大數據環境下互聯網消費體系創造了全開放的數據系統,網路消費者在網路應用上投入的資金更多的是要獲得個人滿足感的體驗與感受,網路消費對象得以拓展的同時,智能化﹑人性化﹑差異化﹑互動性的網路服務爭先呈現在消費者面前,讓消費者最大限度的感受消費的歸屬感﹑滿足感和幸福感,實現商家與消費者雙贏的深度價值創造。
⑤ 在電商行業如何進行大數據分析的
電商行業相對於傳來統零售業自來說,最大的特點就是一切都可以通過數據化來監控和改進。通過數據可以看到用戶從哪裡來、如何組織產品可以實現很好的轉化率、你投放廣告的效率如何等等問題。
當用戶在電商網站上有了購買行為之後,就從潛在客戶變成了價值客戶。
我們一般都會將用戶的交易信息,包括購買時間、購買商品、購買數量、支付金額等信息保存在自己的資料庫里,所以對於這些客戶,我們可以基於網站的運營數據對他們的交易行為進行分析,以估計每位客戶的價值,及針對每位客戶擴展營銷的可能性。
⑥ 大數據處理對電子商務影響有哪些
大數據處理對電子商務主要有以下影響:
(一)信息檢索能力
電子商務平台雖然很大程度上改變了消費者的購物方式,但是就營銷方式來說,商品數量和種類依然是影響消費者選擇商家的主要因素。在電子商務領域內,商品數量和種類呈現出結構的繁雜化發展甚至是非結構化發展趨勢。這些都為
IT基礎設施以及信息處理技術提出了挑戰,大數據處理技術由於其具備的靈活性和功能強大的檢索服務使其能夠引領電子商務信息處理技術的新方向。
(二)彈性處理能力
電子商務信息處理系統的工作性質使其必須具有強大的彈性處理能力,並能夠在極短的時間內做出反映以應對在系統運行中出現的各種問題。這些問題的出現並不是偶然的,而是隨著用戶的並發訪問以及商家集體營銷活動造成的大量訂單信息所導致的,這些情況在當前的電商系統運行中是比較常見的,這就需要系統在面臨突然增長的業務量時具有強大的擴容能力和數據的存儲能力。
(三)信息處理安全性能
網路系統面臨的最大難題是信息安全問題,保證交易安全和用戶信息安全更是電商企業應時刻關注的話題。信息時代的一大特徵是將信息轉化為可利用的資源,甚至是直接創造經濟價值的信息資本。電子商務領域內,大數據就是企業生存發展的重要資本,對於大數據的掌控能力將成為衡量企業核心競爭力的主要標志。
⑦ 大數據時代的電子商務模式發展分析
大數據時代的電子商務模式發展分析
商務的復雜性和不斷變化發展決定了電子商務沒有一個或幾個固定模式,各種各樣的電子商務模式充分反映了市場變化的需要,贏利空間是判斷電子商務模式好壞的基本依據。
一、電子商務
電子商務是利用微電腦技術和網路通訊技術進行的商務活動;以信息網路技術為手段,以商品交換為中心的商務活動;電子商務分為:ABC、B2B、B2C、C2C、B2M、M2C、B2A(即B2G)、C2A(即C2G)、O2O 等。
廣義的電子商務是指利用各種信息技術所進行的經營管理活動,即利用整個工廠技術對整個商務活動實現電子化。
狹義的電子商務是指利用網際網路開展的交易活動。
電子商務的目的是高效率、高效益、低成本地進行產品生產和服務,提高企業的整體競爭能力。
二、電子商務模式
電子商務模式,就是指在網路環境中基於一定技術基礎的商務運作方式和盈利模式。研究和分析電子商務模式的分類體系,有助於挖掘新的電子商務模式,為電子商務模式創新提供途徑,也有助於企業制定特定的電子商務策略和實施步驟。
電子商務在其發展的過程中,出現了各種各樣的電子商務模式。電子商務模式可以從多個角度建立不同的分類框架,最簡單的分類莫過於BtoB、BtoC、CtoC、OtoO、新型的BOB模式,這樣的分類,但就各模式還可以再次細分。
二、電子商務模式的基本類型
1.企業與消費者之間的電子商務(Business to Consumer,即B2C)。B2C就是企業通過網路銷售產品或服務給個人消費者。這是消費者利用網際網路直接參與經濟活動的形式,類同於商業電子化的零售商務。
2.企業與企業之間的電子商務(Business to Business,即B2B)。企業可以使用Internet或其他網路對每筆交易尋找最佳合作夥伴,完成從定購到結算的全部交易行為。
3.消費者與消費者之間的電子商務(Consumer to Consumer 即C2C)。C2C商務平台就是通過為買賣雙方提供一個在線交易平台,使賣方可以主動提供商品上網拍賣,而買方可以自行選擇商品進行競價。
4.線下商務與互聯網之間的電子商務(Online To Offline即O2O)。這樣線下服務就可以用線上來攬客,消費者可以用線上來篩選服務,還有成交可以在線結算,很快達到規模。這種模式的關鍵是:在網上尋找消費者,然後將他們帶到現實的商店中。
5.所謂BOB 是 Business-Operator-Business的縮寫,意指供應方(Business)與采購方(Business)之間通過運營者(Operator)達成產品或服務交易的一種新型電子商務模式。
四、大數據時代電子商務模式分析
電子商務的發展經歷了用戶數量為王、銷售量為王、數據為王的三大時代,大數據時代給電子商務發展帶來的機遇和挑戰,未來電子商務的競爭是數據的競爭。
(1)數據服務的變革
大數據背景下,把消費者分成很多群體,對每個群體甚至每個人提供針對性的服務。消費行為等數據量的增加為電商提供了精準把握用戶群體和個體消費行為模式的基礎。電商通過大數據應用,可以探索個性化、精準化和智能化廣告推送和推廣服務,創立比現有推廣形式更好的全新商業模式。另外,電商也可以通過運用大數據,尋找更多更好地增加用戶粘性、開發新產品和新服務、降低運營成本的途徑和方法。
(2)數據化運營
電商運營更多地轉變為數據驅動的運營,在企業內部所有環節都利用數據進行分析、評價、利用數據視圖進行管理。以阿里為例,其對旗下的淘寶、天貓、阿里雲、支付寶、萬網等業務平台進行資源整合,形成了強大的電子商務客戶群及消費者行為的全產業鏈信息。可進行運營分析、商品分析、營銷效果分析、買家行為分析、訂單分析、供應鏈分析、行業分析、財務分析和預測分析等。
(3)數據資產化
大數據背景下,「 數據即資產」成為最核心的產業趨勢。未來企業的競爭,將是規模和活性的競爭,數據的經濟效益和作用將日漸引起企業重視,因而催生出許多關於數據的業務。「 數據成為資產」是互聯網泛在化的一種資本體現,他讓互聯網的作用不僅僅局限於應用和服務本身,而且具有了內在的「 金融」價值。數據的功能不再只是體現於「 使用價值」方面的產品,而成為實實在在的「 價值」。
(4)個性化導購服務
在互聯網普及的時代,為解決消費者信息超載的問題,引導消費者更便捷地購買商品,導購系統便成為眾多電子商務企業提供的一種服務模式。所謂導購系統,就是一種根據消費者的需求、偏好、個人資料及歷史消費行為,為消費者提供決策建議的軟體系統,如推薦他們想要的商品或從哪裡獲得想要的商品。傳統電子商務導購服務,或是基於消費者歷史數據來抽取和推薦他們共同偏好的商品如熱銷商品推薦等,或是根據企業促銷意圖將其主打產品推送給顧客,如新品推薦、特價推薦等,能夠為顧客提供較好的決策支持服務。
(5)數據產品服務
在大數據背景下,數據成為資產,所有電商企業都想獲得並充分了解它們在運營中所獲得的消費者的信息數據,但往往由於技術等原因無法對大數據進行分析、挖掘,因此對於具有平台以及技術等優勢的電商企業可以利用這樣優勢,將獲得的海量數據進行產品化的包裝營銷給需要的企業,從而開辟出一種新的電子商務服務模式。由於大數據背景下企業對數據有更深層次的需求,因此搭建數據構建需要與銷售之間的橋梁,將為產生數據服務型的電子商務新模式。
(6)垂直細分領域服務
目前,淘寶等占據了國內的絕大部分電商市場份額。中小規模電商企業崛起難度很大。因此,在大數據時代下,把握每一個垂直細分領域,然後做得更精更專,這樣才能贏得自己的一席之地。而且行為垂直細分類的電商平台規模較小、成本較低,能更好地挖掘分析消費者的信息數據,從而能更專注於專業特定的客戶群體提供專業的產品和服務,更能了解產業鏈上客戶的需求,也能容易完善自身的服務。
大數據背景下,爆發式的信息資源給電商企業帶來了機遇和挑戰,通過對數據的挖掘、分析運用必將帶來更多的服務模式的革新,給消費者更好的服務體驗。隨著大數據的技術和運作的成熟,必將涌現出更多、更好的新的服務模式,從而促進電子商務的發展。
以上是小編為大家分享的關於大數據時代的電子商務模式發展分析的相關內容,更多信息可以關注環球青藤分享更多干貨
⑧ 大數據處理對電子商務的影響有哪些
電子商務:通俗來說就是企業通過網路,把線下的業務移到線上去開展,完成商品或者服務的銷售交易。x0dx0a大數據:指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。x0dx0a近幾年來,互聯網產業高速發展,很多傳統企業通過電子商務,開展網路營銷,線上產生交易的數據量是線下無法比的,因而就產生了處理巨量資料,也就是大數據的急迫需求,解決不好,就成為電子商務發展的瓶頸。反之,大數據處理的成功發展,也促進了企業加速開展電子商務,為互聯網產業的發展注入新動力。x0dx0a一、大數據處理模式x0dx0a在電子商務領域內,信息的大批量處理如果是以PB、EB、ZB為計量單位,則這些信息就構成了大數據。以往的計算機處理模式已經很難對這些大數據進行高效率的處理,勢必會影響電子商務的總體發展。因此對大數據時代的計算機處理模式進行革新是獲得電商行業整體突破的基本保證。傳統的數據處理模式是資料庫集群模式,大數據處理模式的基本要求是建構雲計算MapRece處理體系,使信息的分解處理和結果合並成為可能。x0dx0a(一)資料庫集群模式x0dx0a集群模式的基本運行原理是將同一種應用程序通過不同的工作方法相互協調共同完成,在面對客戶端的數據請求時,為其提供單一映像,並將這些映像通過一定的連接技術和方法與硬體系統進行連接,整體上建構一個鬆散耦合的集合。簡單來說,資料庫集群模式實現了資料庫技術和集群技術的結合。資料庫集群模式的運行較為平穩,具有多方面的技術優勢,例如強大的靠擴展性、整體的可靠性等等。x0dx0a但是在面對大數據處理時,資料庫集群也表現出了一定的缺陷。這些缺陷主要包含以下方面:第一是可擴展性補不強。如果系統功能節點的硬體基礎設施選擇的是Pc伺服器,那麼將會出現系統線纜繁雜、硬體高度復雜化和架設安裝難度大等問題,對其擴展性造成了一定的限制;第二是數據通信受限。目前運行高速互聯網的必備條件是將PCI插槽與主機進行連接。但是PCI的數據傳送能力有限,不能滿足節點間的數據通信要求;第三是提升空間小。這種空間主要是指資料庫數據集的可擴展空間,在進行數據處理時如何解決系統的安全性、運算速度和可擴展性是資料庫集群模式要面對的重要問題。此外,資料庫集群模式還存在兼容性、可靠性、容錯性、對異質條件支持能力等方面的局限性。x0dx0a(二)MapRece框架x0dx0a雲計算構架主要是由低端伺服器進行大規模集群構成的數據處理技術,在數據存儲容量和數據處理能力上具有絕對的優勢。由於雲計算平台在運行中的可靠性和可擴展性等功能,目前眾多的大型企業或單位都將其作為web搜索和大數據分析的主要平台,如中國移動、淘寶、網易、網路等等。MapRece框架主要包含三個方面的內容,即並行編程模型MapRece、分布式文件系統(HDFs)、並行執行引擎。x0dx0aMapRece的設計是由google完成的,主要是進行大數據集的計算處理工作,代表了分析技術的整體發展狀態。MapRece在進行數據處理時,先將對象進行抽象化處理,使其以映射和化簡操作對的形式呈現出來,其中映射部分進行數據的過濾,化簡部分進行數據的聚集工作,在工作中均以良好的界面進行管理工作。對MapRece計算過程進行分解,可以將其工作原理理解為將大數據集進行解構,解構之後的結果是形成了數量眾多的小數據集,通過集群節點對這些小數據集進行分別處理,由此得出中間結果,將這些結果通過節點進行合並,就可以得出對整個大數據集的處理結果。x0dx0a二、大數據時代電子商務IT技術設施的革新x0dx0aIT基礎設施是保證電子商務系統運行的前提,對其進行技術革新能夠使其快速適應電子商務大數據時代。在後互聯網技術時代,電子商務企業廣泛採用的IT基礎設施一般是PC伺服器。隨著數據信息處理規模的擴大和處理能力的要求不斷增強,電子商務企業對於IT基礎設施的革新正朝著小型化和集群化方向發展,與此同時,電商企業還需要不斷地投入大量的人力和技術實現IT基礎設施的維護、升級和更新。x0dx0a(一)數據倉庫的發展x0dx0a從近期對電子商務信息處理數據的研究可以發現,在系統運行中出現的大數據仍在以驚人的速度發展和增長,其特點也表現為明顯的分布式發展和異構性趨勢。傳統的資料庫如具備一般數據處理功能和信息分析技術的資料庫以及BI技術已經很大程度上不能滿足PB級的數據量處理要求。這種大規模數據的發展促使電子商務數據倉庫系統出現了非常明顯的變革,也即是數據量數量級不斷上調,目前已經實現了由TB向PB的邁進,並且仍呈現出爆炸性的增長態勢。x0dx0a根據對現今電商數據量發展狀況及趨勢的研究,可以發現電子商務數據倉庫將會呈現以下特點:第一,未來兩年電商數據倉庫的最大數據量將會達到甚至超過1OOPB,並且其增長速度也將呈現出前所未有的變化,遠遠超過摩爾定律;第二,對數據的分析方式實現質的變化,將從常規化分析向深度化分析轉變;第三,中低端硬體組成的大規模集群硬體平台將會代替高端伺服器構成的基礎設施硬體支持平台,基礎設施進一步向集群化發展;由於硬體系統的革新將會對並行資料庫產生了重要影響,使其規模不斷擴大,由此帶來的成本也將逐漸增長。總體來講,目前電子商務將會出現大規模革新的直接因素是數據量的大規模增長和深度分析的現實要求。x0dx0a(二)雲計算構架x0dx0a雲計算構架是一種針對分布式網路計算而設計的新型數據處理模式,在應用中已經表現出了良好的適應性。在網路環境中進行計算、存儲、軟體等在線服務時較傳統構架有顯著的性能提升。在目前應用於電子商務領域內的雲計算構架來講,其具備了以下特徵:按需自助服務(onDemandself-service)、可度量服務(measuredservice)、池化資源(resourcepooling)、泛化網路訪問((broadnetworkaccess)以及快速彈性(rapidelasticity)。x0dx0a三、大數據處理對電子商務的影響x0dx0a雲計算的發展歷史並不長,首次引入雲計算技術的是淘寶網,其所有交易都是基於自建系統完成的,而阿里雲也成為我國首家開展雲計算供應的公司。雲計算對於大數據的超強處理能力使其對電子商務的發展起到了推波助瀾的作用,主要影響表現在以下方面。x0dx0a(一)信息檢索能力x0dx0a電子商務平台雖然很大程度上改變了消費者的購物方式,但是就營銷方式來說,商品數量和種類依然是影響消費者選擇商家的主要因素。在電子商務領域內,商品數量和種類呈現出結構的繁雜化發展甚至是非結構化發展趨勢。這些都為IT基礎設施以及信息處理技術提出了挑戰,大數據處理技術由於其具備的靈活性和功能強大的檢索服務使其能夠引領電子商務信息處理技術的新方向。x0dx0a雲計算的檢索服務可以根據客戶的實際需求和交易習慣對大量的信息進行篩選和顯示,其智能性和高效性也是傳統IT基礎設施多不能比擬的。此外,雲平台還具有信息推薦功能,根據網上交易整體情況篩選熱點商品予以展示,提高了交易的針對性和檢索效率。雲計算性能的優勢還體現在對人類部分思維進行描述的功能上,解決了長期以來計算機信息處理不能夠准確把握人類語言和知識應用的難題,使數據的處理實現了功能的深度發掘。這種技術優勢表現在實際交易中就是電商平台能夠對用戶輸入的語言進行迅速的反映,並能准確地提供用戶所需耍的商品信息。這種處理過程極大地提高了信息服務的效率和質量,使用戶滿意度得到了很大的提升。x0dx0a(二)彈性處理能力x0dx0a電子商務信息處理系統的工作性質使其必須具有強大的彈性處理能力,並能夠在極短的時間內做出反映以應對在系統運行中出現的各種問題。這些問題的出現並不是偶然的,而是隨著用戶的並發訪問以及商家集體營銷活動造成的大量訂單信息所導致的,這些情況在當前的電商系統運行中是比較常見的,這就需要系統在面臨突然增長的業務量時具有強大的擴容能力和數據的存儲能力。x0dx0a雲計算技術的出現在理論上實現了信息的無上限存儲能力以及超大規模信息處理能力,使其能夠輕松地應對TB數量級的信息乃至PB數量級的信息處理。而這一功能的實施並不需要企業對硬體系統進行更換,而且能夠以比較低的成本享用雲計算存儲處理信息服務,在此基礎上對應用系統機型全方位的布局並保證了彈性處理能力的實現,使資源達到了最優化配置。x0dx0a(三)信息處理安全性能x0dx0a網路系統面臨的最大難題是信息安全問題,保證交易安全和用戶信息安全更是電商企業應時刻關注的話題。信息時代的一大特徵是將信息轉化為可利用的資源,甚至是直接創造經濟價值的信息資本。電子商務領域內,大數據就是企業生存發展的重要資本,對於大數據的掌控能力將成為衡量企業核心競爭力的主要標志。但是大數據的出現同樣給信息資源的安全帶來了極大的挑戰,由於其結構復雜,數量巨多,並且大多是具有敏感性的信息,很容易成為網路攻擊的目標。x0dx0a大數據處理技術在應對信息安全是進行了性能的全面評估,使其能夠及時、精確地定位各類網路攻擊或非正常現象,並將這些異常數據收集整理通過分析實施預防措施。雲計算技術的安全性還體現在將安全可靠的信息轉化為雲服務,並將這些信息託管在雲端,為用戶的信息提供了專業化的信息防護措施和保密方案。x0dx0a四、大數據處理的發展趨勢x0dx0a信息技術的發展歷史並不長遠,但是在每個發展階段都會出現具有標志性的技術類型和產品。在目前,信息技術的熱點以及將會對信息產業產生重大影響的無疑是雲計算技術和大數據處理f司題。在電子商務環境中大數據處理將會發展出更多強大和多元的功能,具體發展趨勢有以下幾點。x0dx0a(一)大數據處理服務和產品的多樣化x0dx0a目前電子商務平台的服務和產品正在向著多元化的方向發展,除了電商企業之外,政府機構、大型集團企業、行政事業單位等都加入或正在加入構建雲環境下的數據處理服務平台,並且可以實現對沒有充足IT能力的小型電子商務企業進行服務和產品的輸出。x0dx0a(二)新型的電子商務運營模式x0dx0a雲計算的出現不僅對IT技術設施進行了大規模和深度的革新,同時其帶來的眾多產品如長尾效應、經濟效應、眾包、個性化服務等對於經濟學概念的再認知也產生了重大的影響。這些變革有助於盈利性企業的經營模式做出重大的調整,進而加快了向服務經濟社會發展的步伐。隨著信息技術的進一步發展和現有技術的逐步完善,傳統經濟模式必將會受到嚴重的沖擊,商業模式也會隨之產生整體性的變動甚至是根本性的改變,並且在變化中不斷進行新技術、新方法和新思路的探索。x0dx0a(三)IT設施將成為企業核心競爭力的重要組成部分x0dx0a企業的核心競爭力包含多方面的內容,但可以確定的是都是對企業發展具有重大影響的因素。隨著現代信息化時代的發展和信息技術在各個領域內的廣泛使用,企業成產、管理、經營等模塊的信息化將會對企業能否適應社會的發展以及在日益激烈的市場中保持其競爭力產生舉足輕重的作用。通過對IT基礎設施進行引進和革新,能在最大限度內實現資源的最佳配置,提高生產質量和效率,降低企業運營成本,提升企業的整體管理水平。特別是對於信息技術依賴程度高的電子商務企業,雲計算構架和大數據處理技術的可擴展性相當可觀,為海量信息的存儲、整合和管理提供了安全可靠的環境,通過IT基礎設施的技術優勢,為突破電子商務行業的發展上限提供了可能。
⑨ 大數據對電商行業的影響
大數據對電子商務能起到促進的作用,比方說電子商務企業現在可以用從大數據收集的信息增加收入從而獲得更多的消費者,並簡化店鋪的運營,甚至可以說,大數據在過去幾年中,已經改變了電子商務的面貌,其影響作用主要體現在以下幾點:
1、購物行為
大數據在開發消費者的個人資料是必不可少的。可以根據消費者的網上購買的行為數據,查看哪些產品最受歡迎,利用這些數據來制定營銷策略。
2、客戶服務
提供良好的客戶服務,是電子商務企業的關鍵。電子商務企業需要盡可能容易地讓客戶與其聯系以解決問題或提出問題。電子商務客戶由於客戶服務差而放棄了品牌或網站,所以68%的客戶都可以通過提高用戶體驗來促進銷售。
3、動態定價和特價優惠
電子商務零售商應該使大數據成為其客戶保留策略的關鍵部分。可以使用數據構建客戶資料,並找出他們喜歡花費多少費用以及什麼產品。通過跟蹤客戶的行為,與電子商務企業的在線商店互動。使用分析來幫助其開發靈活的定價和折扣。
4、定製優惠
同樣的原則適用於定製優惠。使用數據來確定客戶的購買習慣,並根據以前的購買方式向他們發送有針對性的特價優惠和折扣代碼。
5、供應鏈管理
使用大數據更有效地管理供應鏈。
6、預測分析
分析電子商務業務的各種渠道,幫助電子商務企業制定未來運營的業務計劃。電子商務企業的數據可能會顯示其在線商店部門的新購買趨勢或減緩銷售。使用這些信息來規劃下一個階段的庫存,並制定新的市場目標。