㈠ 秒懂,什麼是大數據
從海量的數據①里獲取信息②。
①比如購物網站有著全國的購物記錄
②大量數據進行統計分析得出購物的新趨勢
大數據其實還包括數據獲取,存儲,讀取處理等一系列操作及其效率效果的優化
㈡ 學大數據專業能從事什麼工作
可以從事的工作范圍很廣泛,崗位介紹如下:
大數據系統研發工程師
負責大數據系統研發,包括大規模非結構化數據業務模型構建、大數據存儲、資料庫構設、優化資料庫構架、解決資料庫中心設計等,同時,還要負責數據集群的日常運作和系統的監測等。大數據系統研發工程師是任何構設大數據系統的企業都必須的,因而這類崗位需求比較大。
大數據應用開發工程師
負責搭建大數據應用平台以及開發分析應用程序,他們必須熟悉工具或演算法、編程、優化以及部署不同的MapRece,他們研發各種基於大數據技術的應用程序及行業解決方案。
大數據分析師
主要從事數據挖掘工作,運用演算法來解決和分析問題,讓數據顯露出真相,同時,他們還推動數據解決方案的不斷更新。隨著數據集規模不斷增大,企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapRece、Pig等的需求將持續增長,具備Hadoop框架經驗的技術人員是最搶手的大數據人才,他們所從事的是熱門的分析師工作。
數據可視化工程師
數據可視化的開發和大部分項目開發一樣,也是根據需求來根據數據維度或屬性進行篩選,根據目的和用戶群選用表現方式。同一份數據可以可視化成多種看起來截然不同的形式。數據可視化工程師負責在收集到的高質量數據中,利用圖形化的工具及手段的應用,清楚地揭示數據中的復雜信息,幫助用戶更好地進行大數據應用開發,如果能使用新型數據可視化工具如Spotifre,Qlikview和Tableau,那麼,就成為很受歡迎的人才。
數據安全研發人才
數據安全研發人才主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施,而對於數據安全方面的具體技術的人才就更需要了,如果數據安全技術,同時又具有較強的管理經驗,能有效地保證大數據構設和應用單位的數據安全,那就是搶手的人才。
數據科學研究人才
數據科學研究是一個全新的工作,夠將單位、企業的數據和技術轉化為有用的商業價值,隨著大數據時代的到來,越來越多的工作、事務直接涉及或針對數據,這就需要有數據科學方面的研究專家來進行研究,通過研究,他們能將數據分析結果解釋給IT部門和業務部門管理者聽,數據科學專家是聯通海量數據和管理者之間的橋梁,需要有數據專業、分析師能力和管理者的知識,這也是搶手的人才。
大數據發展前景非常好,南京課工場祝大家都能高薪就業。
㈢ 大數據包括哪些專業
1、大數據專業,一般是指大數據採集與管理專業;
2、課程設置,大數據專業將從大數據應用的三個主要層面(即數據管理、系統開發、海量數據分析與挖掘)系統地幫助企業掌握大數據應用中的各種典型問題的解決辦法,包括實現和分析協同過濾演算法、運行和學習分類演算法、分布式Hadoop集群的搭建和基準測試、分布式Hbase集群的搭建和基準測試、實現一個基於、Maprece的並行演算法、部署Hive並實現一個的數據操作等等,實際提升企業解決實際問題的能力。
3、核心技術,
(1)大數據與Hadoop生態系統。詳細介紹分析分布式文件系統HDFS、集群文件系統ClusterFS和NoSQL Database技術的原理與應用;分布式計算框架Maprece、分布式資料庫HBase、分布式數據倉庫Hive。
(2)關系型資料庫技術。詳細介紹關系型資料庫的原理,掌握典型企業級資料庫的構建、管理、開發及應用。
(3)分布式數據處理。詳細介紹分析Map/Rece計算模型和Hadoop Map/Rece技術的原理與應用。
(4)海量數據分析與數據挖掘。詳細介紹數據挖掘技術、數據挖掘演算法–Minhash, Jaccard and Cosine similarity,TF-IDF數據挖掘演算法–聚類演算法;以及數據挖掘技術在行業中的具體應用。
(5)物聯網與大數據。詳細介紹物聯網中的大數據應用、遙感圖像的自動解譯、時間序列數據的查詢、分析和挖掘。
(6)文件系統(HDFS)。詳細介紹HDFS部署,基於HDFS的高性能提供高吞吐量的數據訪問。
(7)NoSQL。詳細介紹NoSQL非關系型資料庫系統的原理、架構及典型應用。
4、行業現狀,
今天,越來越多的行業對大數據應用持樂觀的態度,大數據或者相關數據分析解決方案的使用在互聯網行業,比如網路、騰訊、淘寶、新浪等公司已經成為標准。而像電信、金融、能源這些傳統行業,越來越多的用戶開始嘗試或者考慮怎麼樣使用大數據解決方案,來提升自己的業務水平。
在「大數據」背景之下,精通「大數據」的專業人才將成為企業最重要的業務角色,「大數據」從業人員薪酬持續增長,人才缺口巨大。
㈣ 大數據哪個專業好
大數據專業是一個抄非常新的專業,早期有的學校開設了數據科學專業,後來隨著條件逐步成熟,一部分高校開設了大數據專業。
大數據專業的教學內容主要集中在三個方面,一個方面是數學,因為大數據需要用到大量的演算法,所以數學基礎對大數據研發人員來說還是非常重要的。一方面是統計學,大數據的很多內容是統計學的延伸,尤其是大數據分析領域。還有一方面是計算機技術,大數據是物聯網和雲計算發展的必然產物,所以大數據的基礎就是計算機網路技術。
大部分大數據專業的畢業生都在從事大數據平台工程師的崗位,主要任務是搭建企業的大數據平台以及開發一些平台上的具體功能。大數據崗位涉及到演算法分析師、演算法實現工程師、數據分析師、BI工程師(還有很多細分崗位)、數據工程師(採集、整理等)、程序員等。
㈤ 大數據專業好嗎、
大數據、雲計算、人工智慧都是目前互聯網行業的香回餑餑答。發展潛力大,人才需求多,薪資待遇高。
①JavaSE核心技術;
②Hadoop平台核心技術、Hive開發、HBase開發;
③Spark相關技術、Scala基本編程;
④掌握Python基本使用、核心庫的使用、Python爬蟲、簡單數據分析;理解Python機器學習;
⑤大數據項目開發實戰,大數據系統管理優化等。
你可以考察對比一下南京課工場、北大青鳥、中博軟體學院等開設有大數據專業的學校。祝你學有所成,望採納。
課工場爆滿的大數據班級
㈥ 大數據開發專業主要學什麼
大數據技術專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。
此外還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等,知識結構是二專多能復合的跨界人才(有專業知識、有數據思維)。
以中國人民大學為例:
基礎課程:數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐。
必修課:離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系統概論、計算機系統基礎、並行體系結構與編程、非結構化大數據分析。
選修課:數據科學演算法導論、數據科學專題、數據科學實踐、互聯網實用開發技術、抽樣技術、統計學習、回歸分析、隨機過程。
(6)秒懂大數據擴展閱讀:
大數據崗位:
1、大數據系統架構師
大數據平台搭建、系統設計、基礎設施。
技能:計算機體系結構、網路架構、編程範式、文件系統、分布並行處理等。
2、大數據系統分析師
面向實際行業領域,利用大數據技術進行數據安全生命周期管理、分析和應用。
技能:人工智慧、機器學習、數理統計、矩陣計算、優化方法。
3、hadoop開發工程師。
解決大數據存儲問題。
4、數據分析師
不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。在工作中通過運用工具,提取、分析、呈現數據,實現數據的商業意義。
5、數據挖掘工程師
做數據挖掘要從海量數據中發現規律,這就需要一定的數學知識,最基本的比如線性代數、高等代數、凸優化、概率論等。經常會用到的語言包括Python、Java、C或者C++,我自己用Python或者Java比較多。有時用MapRece寫程序,再用Hadoop或者Hyp來處理數據,如果用Python的話會和Spark相結合。
㈦ 大數據屬於什麼專業請詳細介紹
大數據現在屬於一個獨立專業了,可能我們覺得它應該屬於計算機,但現在教回育部已經設立了。
專業答背景是人類現在進入數據時代,數據正在成為一種生產資料,數據處理技術成為新興產業。任何一個領域都能產生數據,需要我們對數據進行統計分析挖掘加工,創造意想不到的價值和財富。目前國內外高校開展培養大數據人才的時間還不長,市場上掌握大數據處理和應用開發技術的人才短缺,大數據專業就是為了培養市場需要技術人才的專業。
目前這個專業在許多高校還是以校企合作方式展開,也就是企業派駐工程師負責教學,雖然有課綱了,但面對技術日新月異,很多專業課知識點教學方式還在摸索和調整階段。