① 中國大數據中心在哪裡
中心基地-北京、北方基地-烏蘭察布、南方基地-貴州。
2015年1月16日,由藍汛與北京市供銷總社共同投資的藍訊首鳴國際數據中心項目啟動儀式在北京天竺綜合保稅區舉行。據了解,該數據中心是北京首個國家級、超大規模雲數據中心,產業園佔地面積8萬平方米,包含9棟數據中心機房和1棟感知體驗中心。
2015年以來,200餘個大數據信息產業項目簽約落戶貴州,富士康、阿里巴巴、騰訊、華為等大型企業搶灘貴州發展。中國電信雲計算貴州信息園1.1期、中國移螞旦動(貴州)大數據中心、中國聯通貴安雲數據中心一期建成運營。中電樂觸、高新翼雲、翔明科技等第三方數據中心已建成並投運,目前數據中心伺服器達到2.2萬台;北京供銷社數據中心、惠普數據中心等一批項目已經啟動,預計2016年將達5萬台伺服器規模。烏蘭察布國家大數據災備中心啟動大會於2016年07月08日早上八點正式啟動,內蒙古自治區主席布小林出席會議。烏蘭察布市委市政府依據自身地理位置優越,地質板塊穩敏物陵定,電力資源豐橋戚富,氣候冷涼適宜,臨近京津冀經濟圈核心市場等優勢,將信息產業作為戰略性新興產業來發展,致力於將烏蘭察布市打造成面向華北、服務京津的國家級雲計算產業基地,為承接高科技產業、加快產業轉型升級提供強有力的支撐。市委市政府將為該建設國家大數據災備中心項目提供充足的土地與極具競爭力的投資政策吸引廣大企業參與建設。
② 大數據中心是做啥的接收一般什麼層次的畢業生呢
以國家電網大數據中心為例,大數據中心是國家電網數據管理的專業機構和數據共享、數據服務、數字創新平台,主要負責公司數據管理、運營、服務等方面工作,致力實現數據資產統一運營,推進數據資源高效使用,為公司建設「三型兩網」世界一流能源互聯網企業提供數字化支撐。
國家電網總經理、黨組副書記辛保安在此次揭牌儀式中表示,大數據中心掛牌成立,標志著公司數字化建設進入新發展階段。
大數據中心要緊緊圍繞「三型兩網、世界一流」戰略部署,以打造能源領域國際一流大數據中心為目標,統籌做好機構建設、技術創新、人才培養等各方面工作,加強與上下游、客戶、政府和社會各界的合作,構建共建共享共治共贏的能源大數據生態體系,以數字化推動公司高質量發展。
(2)大數據實戰中心擴展閱讀
從大數據的價值鏈條來分析,存在三種模式:
1、手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。
2、沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。
3、既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。
未來在大數據領域最具有價值的是兩種事物:擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。
③ 華為大數據中心是干什麼的
華為大數據中心是用來搜集整理大數據,提供解決方案的數據中心。華為大數據解決方案是華為公司推出的一種綜合性雲解決方案,主要針對廣告營銷、電商、車聯網等大數據應用場景的雲計算大數據方案,幫助企業用戶構建大數據平台,解決企業的海量數據存儲和分析需求。
華為技術有限公司成立於1987年,總部位於中國廣東省深圳市龍崗區。華為是全球領先的信息與通信技豎段術(ICT)解決方案供應商,專注於ICT領域,堅持穩健經營、持續創新、開放合作,在電信運營商、企業、終端和雲計算等領域構築了端到端的解決方案優勢,為運營商客戶、企業客戶和消費者提供有競爭力的ICT解悔纖碧決方案、產品和服務,並致力於實現未來信息社會、構建更美好的全聯接世界。
2013年,華為首超全球第一大電信設備商愛立信,排名《財富》世界500強第315位。截至2016年底,華為有17多萬名員工,華為的產品和解決方案已經應用於全球170多個國家,服務全碧舉球運營商50強中的45家及全球1/3的人口。
④ 大數據中心是什麼
問題一:大數據中心是什麼?中國最大的大數據中心在哪裡? 你好!大數據中心,是指服務於大數據存儲、挖掘、分析和應用的數據中心。大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
目前,國內新建了許多大數據中心,規模不一。其中,網路和阿里巴巴的大數據中心名氣較大,此外,羅克佳華在鄂爾多斯和太原建設的大數據中心憑借北部省份的能源優勢,建成5萬平方米的全國單體面積最大的大數據中心,是目前亞洲最大的雲計算中心。
問題二:大數據是什麼意思?目前具體有些什麼應用? 大數據的意思就是數據要在線,這樣你的數據才能有價值,用於分析或者處理。大量的數據在線後的分析才有意義。可能得到你想要的數據,電影里好多這種素材,比如人臉的搜索,人員的定位,人流的分析,運行的狀態等等都有使用。現在做這些應用的也很多,只是落地的還稍微少一點。還是為了創造價值。
問題三:什麼是大數據和大數據平台 大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據平台是為了計算,現今社會所產生的越來越大的數據量。以存儲、運算、展現作為目的的平台。
問題四:中國的大數據中心有哪些 沒什麼不同,只能說應用的領域和接觸的長短不同吧。如果還想知道更多的大數據問題,ITjob網有大數據的相關介紹,博客和論壇也有大數據的討論和觀點,你可以去看看。下面給你粘貼下大數據在中國和美國的應用時間和領域。希望能幫到你。
大數據在中國的發展相對比較年輕。2012年,中國 *** 在美國提出《大數據研究和發展計劃》並且批復了「十二五國家政務信息化建設工程規劃」,總投資額估計在幾百億,專門有人口、法人、空間、宏觀經濟和文化等五大資源庫的五大建設工程。我國的開放、共享和智能的大數據的時代才真正大面積的開始。
而美國 *** 將大數據視為強化美國競爭力的關鍵因素之一,把大數據研究和生產計劃提高到國家戰略層面。2012年3月,美國奧巴馬 *** 宣布投資2億美元啟動「大數據研究和發展計劃」,這是繼1993年美國宣布「信息高速公路」計劃後的又一次重大科技發展部署。美國 *** 認為大數據是「未來的新石油與礦產」,將「大數據研究」上升為國家意志,對未來的科技與經濟發展必將帶來深遠影響。
Marketsand Markets公布的最新報告顯示,2013年至2018年,全球大數據市場的年復合增長率將為26%,從2013年的148.7億美元增長至463.4億美元。
問題五:什麼是大數據服務中心? 我認為大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
大數據幫助 *** 實現市場經濟調控、公共衛生安全防範、災難預警、社會輿論監督;
大數據幫助城市預防犯罪,實現智慧交通,提升緊急應急能力;
大數據幫助醫療機構建立患者的疾病風險跟蹤機制,幫助醫葯企業提升葯品的臨床使用效果,幫助艾滋病研究機構為患者提供定製的葯物;
大數據幫助航空公司節省運營成本,幫助電信企業實現售後服務質量提升,幫助保險企業識別欺詐騙保行為,幫助快遞公司監測分析運輸車輛的故障險情以提前預警維修,幫助電力公司有效識別預警即將發生故障的設備;
大數據幫助電商公司向用戶推薦商品和服務,幫助旅遊網站為旅遊者提供心儀的旅遊路線,幫助二手市場的買賣雙方找到最合適的交易目標,幫助用戶找到最合適的商品購買時期、商家和最優惠價格;
大數據幫助企業提升營銷的針對性,降低物流和庫存的成本,減少投資的風險,以及幫助企業提升廣告投放精準度;
大數據幫助娛樂行業預測歌手,歌曲,電影,電視劇的受歡迎程度,並為投資者分析評估拍一部電影需要投入多少錢才最合適,否則就有可能收不回成本;
大數據幫助社交網站提供更准確的好友推薦,為用戶提供更精準的企業招聘信息,向用戶推薦可能喜歡的游戲以及適合購買的商品。
其實,這些還遠遠不夠,未來大數據的身影應該無處不在,就算無法准確預測大數據終會將人類社會帶往到哪種最終形態,但我相信只要發展腳步在繼續,因大數據而產生的變革浪潮將很快淹沒地球的每一個角落。
未來的大數據除了將更好的解決社會問題,商業營銷問題,科學技術問題,還有一個可預見的趨勢是以人為本的大數據方針。人才是地球的主宰,大部分的數據都與人類有關,要通過大數據解決人的問題。
比如,建立個人的數據中心,將每個人的日常生活習慣,身體體征,社會網路,知識能力,愛好性情,疾病嗜好,情緒波動……換言之就是記錄人從出生那一刻起的每一分每一秒,將除了思維外的一切都儲存下來,這些數據可以被充分的利用:
醫療機構將實時的監測用戶的身體健康狀況;
教育機構更有針對的制定用戶喜歡的教育培訓計劃;
服務行業為用戶提供即時健康的符合用戶生活習慣的食物和其它服務;
社交網路能為你提供合適的交友對象,並為志同道合的人群組織各種聚會活動;
*** 能在用戶的心理健康出現問題時有效的干預,防範自殺,刑事案件的發生;
金融機構能幫助用戶進行有效的理財管理,為用戶的資金提供更有效的使用建議和規劃;
道路交通、汽車租賃及運輸行業可以為用戶提供更合適的出行線路和路途服務安排;
……
目前做大數據分析的產品有多瑞科輿情數據分析站系統,主要是側重對數據搜集和分析整理出報告。
問題六:數據中心,雲計算,大數據這三個詞之間有什麼區別和聯系 數據中心,簡稱機房,就是防止伺服器用的,其中雲計算的母伺服器(物理伺服器)也需要放置到機房。
雲計算,就是虛擬伺服器,也就是在物理伺服器上通過技術手段虛擬出若乾颱伺服器。
大數據,是指手上擁有的海量的數據信息,比如用戶購買記錄,用戶注冊記錄等等。
問題七:現在說的大數據是什麼意思 大數據指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。可以被現代先進媒體記錄、採集和開發利用的數據集、數據流和數據體。
數聯網是大數據時代信息技術發展的重要產物,數聯網依託大數據,是大數據的應用模型,通過數聯網,用戶可以通過數聯網獲得全網數據融合的數據價值。
問題八:中國大數據中心在哪個城市 你好,中國數據中心有八大節點:北京、武漢、成都、廣州、上海、沈陽、西安、南京。
這幾個都是大數據中心,其中成都數據中心是中國電信全國8大節點之一,可支配帶寬資源豐富,與Chinanet骨幹網節點帶寬60G,CN2節點帶寬10G。機房內部網路全部採用千兆連接核心層與匯聚層,雙百兆冗餘到接入層的無瓶頸交換式結構,區域網採用千兆與百兆混合交換式可監控網路,中心網路設備確保高可靠性架構,做到無單點故障,分支網路提供冗餘設備及線路,可針對客戶數據傳輸,維護的需求提供XDSL,DDN,ISDN等多種接入手段,並能提供與國內Chinanet主要節點城市連接的長途專線。
聽說西普網路有這幾個節點的一手資源,希望能夠幫到你
問題九:大數據中心配幾個交換機 一般情況下有兩個核心交換機,然後看你數據中心的規模再添加多台接入交換機 ,接入交換機的數量不確定,對於接入交換機就不需要做主備了。我們一般一排機櫃有一個列頭,裡面放接入交換機。
問題十:國內大數據公司有哪些? 大數據包涵很廣泛,涉及到很多方方面面,技術難度也很大,國內能做的公司不太多,我知道的有網路、華為、聯想、浪潮、電科華雲、騰訊、阿里巴巴、中科曙光等。
⑤ 企業大數據實戰案例
企業大數據實戰案例
一、家電行業
以某家電公司為例,它除了做大家熟知的空調、冰箱、電飯煲外,還做智能家居,產品有成百上千種。在其集團架構中,IT部門與HR、財務等部門並列以事業部形式運作。
目前家電及消費電子行業正值「內憂外患」,產能過剩,價格戰和同質化現象嚴重;互聯網企業涉足,顛覆競爭模式,小米的「粉絲經濟」,樂視的「平台+內容+終端+應用」,核心都是經營「用戶」而不是生產。該公司希望打造極致產品和個性化的服務,將合適的產品通過合適的渠道推薦給合適的客戶,但在CPC模型中當前只具備CP匹配(產品渠道),缺乏用戶全景視圖支持,無法打通「CP(客戶產品)」以及「CC(客戶渠道)」的匹配。
基於上述內外環境及業務驅動,該公司希望將大數據做成所有業務解決方案的樞紐。以大數據DMP作為企業數據核心,充分利用內部數據源、外部數據源,按照不同域組織企業數據,形成一個完整的企業數據資產。然後,利用此系統服務整個企業價值鏈中的各種應用。
那麼問題來了,該公司的數據分散在不同的系統中,更多的互聯網電商數據分散在各大電商平台,無法有效利用,怎麼解決?該公司的應對策略是:1)先從外部互聯網數據入手,引入大數據處理技術,一方面解決外部互聯網電商數據利用短板,另一方面可以試水大數據技術,由於互聯網數據不存在大量需要內部協調的問題,更容易快速出效果;2)建設DMP作為企業統一數據管理平台,整合內外部數據,進行用戶畫像構建用戶全景視圖。
一期建設內容:技術實現上通過定製Spark爬蟲每天抓取互聯網數據(主要是天貓、京東、國美、蘇寧、淘寶上的用戶評論等數據),利用Hadoop平台進行存儲和語義分析處理,最後實現「行業分析」、「競品分析」、「單品分析」 三大模塊。
該家電公司大數據系統一期建設效果,迅速在市場洞察、品牌診斷、產品分析、用戶反饋等方面得到體現。
二期建設目標:建設統一數據管理平台,整合公司內部系統數據、外部互聯網數據(如電商數據)、第三方數據(如外部合作、塔布提供的第三方消費者數據等)。
該公司大數據項目對企業的最大價值是將沉澱的數據資產轉化成生產力。IT部門,通過建設企業統一的數據管理平台,融合企業內外部數據,對於新應用快速支持,起到敏捷IT的作用;業務部門,通過產品、品牌、行業的洞察,輔助企業在產品設計、廣告營銷、服務優化等方面進行優化改進,幫助企業進行精細化運營,基於用戶畫像的精準營銷和個性化推薦,幫助企業給用戶打造極致服務體驗,提升客戶粘性和滿意度;戰略部門,通過市場和行業分析,幫助企業進行產品布局和戰略部署。
二、快消行業
以寶潔為例,在與寶潔中國市場部的合作中發現,並不是一定要先整合內外部數據才能做用戶畫像和客戶洞察。寶潔抓取了主流網站上所有與寶潔評價相關的數據,利用語義分析和建模,掌握不同消費群體的購物喜好和習慣,僅僅利用外部公開數據,快速實現了客戶洞察。
此外,寶潔還在渠道管理上進行創新。利用互聯網用戶評論數據進行社群聆聽,監控與寶潔合作的50個零售商店相關的用戶評論,通過線上數據進行渠道/購物者研究並指導渠道管理優化。
實現過程:
1、鎖定微博、大眾點評等互聯網數據源,採集百萬級別消費者談及的與寶潔購物相關內容;
2、利用自然語言處理技術,對用戶評論進行多維建模,包括購物環境、服務、價值等10多個一級維度和50個二級維度,實現對用戶評論的量化;
3、對沃爾瑪、屈臣氏、京東等50個零售渠道進行持續監控,結果通過DashBoard和周期性分析報告呈現。
因此,寶潔能夠關聯企業內部數據,更有效掌握KA渠道整體情況,甚至進一步掌握KA渠道的關鍵細節、優勢與劣勢,指導渠道評級體系調整,幫助制定產品促銷規劃。
三、金融行業
對於消費金融來說,家電、快消的案例也是適用的,尤其是精準營銷、產品推薦等方面。這里主要分享徵信風控方面的應用。顯然,互聯網金融如果對小額貸款都像銀行一樣做實地考察,並投入大量人力進行分析評判的話,成本是很高的,所以就有了基於大數據的批量的信用評分模型。最終目的也是實現企業畫像和企業中的關鍵人物畫像,再利用數據挖掘、數據建模的方法建立授信模型。宜信的宜人貸、芝麻信用等本質上就是這個架構。
在與金融客戶的接觸中發現,不論銀行還是金融公司,對外部數據的需求都越發迫切,尤其是外部強特徵數據,比如失信記錄、第三方授權後的記錄、網路行為等。
以上是小編為大家分享的關於企業大數據實戰案例的相關內容,更多信息可以關注環球青藤分享更多干貨
⑥ 大數據如何與零售業結合 在實戰中應用
大數據如何與零售業結合 在實戰中應用
一、「大數據」的商業價值
1、對顧客群體細分
「大數據」可以對顧客群體細分,然後對每個群體量體裁衣般的採取獨特的行動。瞄準特定的顧客群體來進行營銷和服務是商家一直以來的追求。雲存儲的海量數據和「大數據」的分析技術使得對消費者的實時和極端的細分有了成本效率極高的可能。
2、模擬實境
運用「大數據」模擬實境,發掘新的需求和提高投入的回報率。現在越來越多的產品中都裝有感測器,汽車和智能手機的普及使得可收集數據呈現爆炸性增長。Blog、Twitter、Facebook和微博等社交網路也在產生著海量的數據。
雲計算和「大數據」分析技術使得商家可以在成本效率較高的情況下,實時地把這些數據連同交易行為的數據進行儲存和分析。交易過程、產品使用和人類行為都可以數據化。「大數據」技術可以把這些數據整合起來進行數據挖掘,從而在某些情況下通過模型模擬來判斷不同變數(比如不同地區不同促銷方案)的情況下何種方案投入回報最高。
3、提高投入回報率
提高「大數據」成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。「大數據」能力強的部門可以通過雲計算、互聯網和內部搜索引擎把」大數據」成果和「大數據」能力比較薄弱的部門分享,幫助他們利用「大數據」創造商業價值。
4、數據存儲空間出租
企業和個人有著海量信息存儲的需求,只有將數據妥善存儲,才有可能進一步挖掘其潛在價值。具體而言,這塊業務模式又可以細分為針對個人文件存儲和針對企業用戶兩大類。主要是通過易於使用的API,用戶可以方便地將各種數據對象放在雲端,然後再像使用水、電一樣按用量收費。目前已有多個公司推出相應服務,如亞馬遜、網易、諾基亞等。運營商也推出了相應的服務,如中國移動的彩雲業務。
5、管理客戶關系
客戶管理應用的目的是根據客戶的屬性(包括自然屬性和行為屬性),從不同角度深層次分析客戶、了解客戶,以此增加新的客戶、提高客戶的忠誠度、降低客戶流失率、提高客戶消費等。 對中小客戶來說,專門的CRM顯然大而貴。不少中小商家將飛信作為初級CRM來使用。比如把老客戶加到飛信群里,在群朋友圈裡發布新產品預告、特價銷售通知,完成售前售後服務等。
6、個性化精準推薦
在運營商內部,根據用戶喜好推薦各類業務或應用是常見的,比如應用商店軟體推薦、IPTV視頻節目推薦等,而通過關聯演算法、文本摘要抽取、情感分析等智能分析演算法後,可以將之延伸到商用化服務,利用數據挖掘技術幫助客戶進行精準營銷,今後盈利可以來自於客戶增值部分的分成。
以日常的「垃圾簡訊」為例,信息並不都是「垃圾」,因為收到的人並不需要而被視為垃圾。通過用戶行為數據進行分析後,可以給需要的人發送需要的信息,這樣「垃圾簡訊」就成了有價值的信息。在日本的麥當勞,用戶在手機上下載優惠券,再去餐廳用運營商DoCoMo的手機錢包優惠支付。運營商和麥當勞搜集相關消費信息,例如經常買什麼漢堡,去哪個店消費,消費頻次多少,然後精準推送優惠券給用戶。
7、數據搜索
數據搜索是一個並不新鮮的應用,隨著「大數據」時代的到來,實時性、全范圍搜索的需求也就變得越來越強烈。我們需要能搜索各種社交網路、用戶行為等數據。其商業應用價值是將實時的數據處理與分析和廣告聯系起來,即實時廣告業務和應用內移動廣告的社交服務。
運營商掌握的用戶網上行為信息,使得所獲取的數據「具備更全面維度」,更具商業價值。典型應用如中國移動的「盤古搜索」。
二、「大數據」與零售業的結合運用
對於數據的使用,許多實體零售商同樣表示非常重視,他們對企業積累的數據進行了各種預測和分析。然而,對具體的銷售業務來說,往往存在理想與現實的糾結,前不久市場中一家知名的服裝零售企業一方面在宣傳盈利上市的同時,一方面曝出有近10億元的庫存。國內很多零售企業都知道「大數據」應用的好處,但他們一旦將「大數據」的應用結合到自己的企業經營中時,便會出現與目前經營有非常大的不適應問題,如此導致許多企業對此都持非常謹慎的態度。
1、將零售策略與「大數據」技術進行結合
零售企業談的「大數據」的最大價值,是在零售策略上與「大數據」技術進行結合,最大程度地編制前置性的零售策略,確保銷售計劃的實現。「大數據」講究四個「V」:一是數據體量大(Volume);二是數據類型復雜(Variety),多涉及到各種結構性與非結構性的;三是價值密度低(Value),這和體量大是相對應的;四是數據更新與處理速度快(Velocity)。
根據這些特性主動地在業務數據產生的同時做出相應的策略應對,會為企業贏得更多的時間和市場策略調整空間。這類似於大江大河的洪峰預警,上游的洪峰出現什麼狀況,下游要做什麼樣的應對。數據用到這一層面上,才具有直接的業務價值,這不是那種銷量同期比、環比、銷售計劃比數據能指導業務的價值能相比的。例如一家涉足線上業務的實體零售商,在一組貨品的15分鍾促銷時間內,往往准備著3套應變策略,以確保貨品能夠按計劃賣出。
在實體商業領域,有許多關於數據與營銷的案例。一個較早的版本就是美國沃爾瑪啤酒和尿布的數據關系。原來,美國的婦女在家照顧孩子,所以她們會囑咐丈夫在下班回家的路上為孩子買尿布,而丈夫在買尿布的同時又會順手購買自己愛喝的啤酒。
當分析師了解到啤酒和尿布銷量存在正相關關系、並進一步分析的時候,發現了這樣的購買情境,於是將這兩種屬於不同門類的商品擺在一起。這個發現為商家帶來了新的銷售組合。當然,即使再多的零售連鎖企業知道這個故事,也極少從平時銷售中能發現這樣的組合,哪怕是牽強附會的。
所以,零售策略設計是零售業「大數據」價值最大的地方,也是「大數據」可以直接為其提供支持的業務。
2、零售企業對「大數據」應保持正確態度
企業的領導者首先要重視「大數據」的發展、重視企業的數據中心,把收集顧客數據作為企業營銷運營的第一目標;第二,對企業內部人員進行培訓及建立收集數據的軟硬體機制;第三,以業務需求為准則,確定哪些數據是需要收集的;第四,確認在企業已有的數據基礎上或者未來方向前提下,如何達成前三項目標的基礎建設方案。
在這些IT基礎工作需要企業有實實在在的投入和建設規范的信息化團隊,作為中國商業最大的一分子——中小微型零售企業似乎是不可能也沒有足夠的能力來面對這樣一場變化的。
大中型零售商因為本身業務及利潤的積淀,已經能夠承擔這樣一場需求趨勢的需要成本。中小微型企業還處於快速發展過程中,如果也如同大中型企業進行全方面的投入,將很快會被新型的IT工具拖垮或者遭受重創。
但這並不意味著中小零售企業沒有機會,實際上IT的發展為所有的企業都提供了平等的選擇,雲計算的廣泛應用即是對這樣一場變革帶來的臨時禮物。
作為中小微型零售企業,完全不必考慮自己建設一套「大數據」的IT系統,他們從精力、成本、能力上來說都不適合,因此此類企業可以將企業的IT建設外包給適合的服務商,企業本身的所有精力可以投入到對商圈的開發上。
目前,一些IT軟體開發運營商也已經針對傳統零售企業推出了雲服務的基礎平台,為中小微型商業企業提供了大型企業和超大型企業同樣的基礎環境及系統架構,小企業只需清晰地規劃出自己的目標和適合的步驟,使用雲平台按需付費即可,大可不必進行巨大的初始投入和不可預測的運行成本。
三、「大數據」在零售企業實戰中的應用
1、Target
最早關於「大數據」的故事發生在美國第二大的超市塔吉特百貨(Target)。孕婦對於零售商來說是個含金量很高的顧客群體。但是他們一般會去專門的孕婦商店而不是在Target購買孕期用品。人們一提起Target,往往想到的都是清潔用品、襪子和手紙之類的日常生活用品,卻忽視了Target有孕婦需要的一切。為此,Target的市場營銷人員求助於Target的顧客數據分析部要求建立一個模型,在孕婦第2個妊娠期就把她們給確認出來。在美國出生記錄是公開的,等孩子出生了,新生兒母親就會被鋪天蓋地的產品優惠廣告包圍,因此必須趕在孕婦第2個妊娠期行動起來。如果Target能夠趕在所有零售商之前知道哪位顧客懷孕了,市場營銷部門就可以早早的給他們發出量身定製的孕婦優惠廣告,早早圈定寶貴的顧客資源。
如何能夠准確地判斷哪位顧客懷孕? Target想到公司有一個迎嬰聚會(baby shower)的登記表,開始對這些登記表裡的顧客的消費數據進行建模分析,不久就發現了許多非常有用的數據模式。比如模型發現,許多孕婦在第2個妊娠期的開始會買許多大包裝的無香味護手霜;在懷孕的最初20周大量購買補充鈣、鎂、鋅的善存片之類的保健品。最後Target選出了25種典型商品的消費數據構建了「懷孕預測指數」,通過這個指數,Target能夠在很小的誤差范圍內預測到顧客的懷孕情況,因此Target就能早早地把孕婦優惠廣告寄發給顧客。
為了不讓顧客覺得商家侵犯了自己的隱私,Target把孕婦用品的優惠廣告夾雜在其他一大堆與懷孕不相關的商品優惠廣告當中。
根據這個「大數據」模型,Target制訂了全新的廣告營銷方案,結果Target的孕期用品銷售呈現了爆炸性的增長。Target的「大數據」分析技術從孕婦這個細分顧客群開始向其他各種細分客戶群推廣,從Target使用「大數據」的2002年到2010年間,Target的銷售額從440億美元增長到了670億美元。
2、ZARA
ZARA平均每件服裝價格只有LVHM四分之一,但是,回看兩家公司的財務年報,ZARA稅前毛利率比LVHM集團還高23、6%。
(1)分析顧客的需求
在ZARA的門店裡,櫃台和店內各角落都裝有攝影機,店經理隨身帶著PDA。目的是記錄其顧客的每個意見,如顧客對衣服圖案的偏好,扣子的大小,拉鏈的款式之類的微小舉動。店員會向分店經理匯報,經理上傳到ZARA內部全球資訊網路中,每天至少兩次傳遞資訊給總部設計人員,由總部作出決策後立即傳送到生產線,改變產品樣式。
關店後,銷售人員結帳、盤點每天貨品上下架情況,並對客人購買與退貨率做出統計。再結合櫃台現金資料,交易系統做出當日成交分析報告,分析當日產品熱銷排名,然後,數據直達ZARA倉儲系統 。
收集海量的顧客意見,以此做出生產銷售決策,這樣的作法大大降低了存貨率。同時,根據這些電話和電腦數據,ZARA分析出相似的「區域流行」,在顏色、版型的生產中,做出最靠近客戶需求的市場區隔。
(2)結合線上店數據
2010年,ZARA同時在六個歐洲國家成立網路商店,增加了網路巨量資料的串連性。2011年,分別在美國、日本推出網路平台,除了增加營收,線上商店強化了雙向搜尋引擎、資料分析的功能。不僅回收意見給生產端,讓決策者精準找出目標市場;也對消費者提供更准確的時尚訊息,雙方都能享受「大數據」帶來的好處。分析師預估,網路商店為ZARA至少提升了10%營收。
此外,線上商店除了交易行為,也是活動產品上市前的營銷試金石。ZARA通常先在網路上舉辦消費者意見調查,再從網路回饋中,擷取顧客意見,以此改善實際出貨的產品。
ZARA將網路上的海量資料看作實體店面的前測指標。因為會在網路上搜尋時尚資訊的人,對服飾的喜好、資訊的掌握,催生潮流的能力,比一般大眾更前衛。再者,會在網路上搶先得知ZARA資訊的消費者,進實體店面消費的比率也很高。
這些顧客資料,除了應用在生產端,同時被整個ZARA所屬的英德斯(Inditex)集團各部門運用:包含客服中心、行銷部、設計團隊、生產線和通路等。根據這些巨量資料,形成各部門的KPI,完成ZARA內部的垂直整合主軸。
ZARA推行的海量資料整合,後來被ZARA所屬英德斯集團底下八個品牌學習應用。可以預見未來的時尚圈,除了檯面上的設計能力,檯面下的資訊/數據大戰,將是更重要的隱形戰場。
(3)對數據快速處理、修正、執行
H&M一直想跟上ZARA的腳步,積極利用「大數據」改善產品流程,成效卻不彰,兩者差距愈拉愈大,這是為什麼?
主要的原因是,「大數據」最重要功能是縮短生產時間,讓生產端依照顧客意見,能於第一時間迅速修正。但是,H&M內部的管理流程,卻無法支撐「大數據」供應的龐大資訊。H&M的供應鏈中,從打版到出貨,需要三個月左右,完全不能與ZARA兩周的時間相比。
因為H&M不像ZARA,後者設計生產近半維持在西班牙國內,而H&M產地分散到亞洲、中南美洲各地。跨國溝通的時間,拉長了生產的時間成本。如此一來,「大數據」即使當天反映了各區顧客意見,無法立即改善,資訊和生產分離的結果,讓H&M內部的「大數據」系統功效受到限制。
「大數據」運營要成功的關鍵,是資訊系統要能與決策流程緊密結合,迅速對消費者的需求作出回應、修正,並且立刻執行決策。
3、亞馬遜
此前亞馬遜並未大張旗鼓推展廣告業務,直至2012年年底,有報道指出,亞馬遜即將推出實時廣告交易平台,從而向Facebook和谷歌發起挑戰。這個實時廣告交易平台又稱「需求方平台」(Demand Side Platform,DSP),可以讓廣告與目標消費者相遇。廣告商可以在「需求方平台」上競標網站的閑置廣告空間,而競標標的包括廣告版位,以及符合特定條件的消費者。
亞馬遜開發的「需求方平台」可以「協助廣告商接觸網路上的眾多用戶,同時也幫助客戶迅速找到想購買產品的相關資訊」,「需求方平台」概念雖非亞馬遜首創,但以豐富資料為後盾。
亞馬遜與廣告商分享的資訊有兩類,一是依用戶網路行為所做的通用分類,例如熱衷時尚、喜愛電子產品、身份為母親、愛喝咖啡等,二是用戶的商品搜尋記錄。至於消費者的實際購物資料,亞馬遜似乎尚未列入分享。廣告商即使無法得知實際消費記錄,能了解潛在顧客的商品搜尋記錄;亞馬遜如果全力進軍網路廣告市場,仍可能大大改變產業生態。
亞馬遜2012年的廣告收入約為5億美元, 2013年的廣告收入將達10億美元。這會成為亞馬遜未來幾年內營收增長的新動力,更重要的是,它可能是亞馬遜各項業務中利潤率最高的業務之一。
4、沃爾瑪
2011年,沃爾瑪電子商務的營收僅是亞馬遜的五分之一,且差距年年擴大,讓沃爾瑪不得不設法奮起直追,找出各種提升數字營收的模式。最終,沃爾瑪選擇在社交網站的移動商務上放手一搏,讓更大量、迅速的資訊,進入沃爾瑪內部銷售決策。沃爾瑪的每張購買建議清單,都是大量資料運算而出的結果。
2011年4月,沃爾瑪以3億美元高價收購了一家專長分類社群網站Kosmix。Kosmix不僅能收集、分析網路上的海量資料(大數據)給企業,還能將這些資訊個人化,提供采購建議給終端消費者(若不是追蹤結帳資料,這些細微的消費者習慣,很難從賣場巡邏中發現)。這意味著,沃爾瑪使用的「大數據」模式,已經從「挖掘」顧客需求進展到要能夠「創造」消費需求。
沃爾瑪本身就是一個海量資料系統,適用各種商業上的分析行為,它的綜合功能,作為世界最大的零售業(專題閱讀)巨人,沃爾瑪在全球超過200萬名員工,總共有110個超大型配送中心,每天處理的資料量超過10億筆。由於資料量過於龐大,沃爾瑪的「大數據」系統最重要的任務,就是在做出每一筆決定前,將執行成本降到最低,並且創造新的消費機會。
Kosmix為沃爾瑪打造的「大數據」系統稱做「社交基因組(Social Genome)」,連結到Twitter、Facebook等社交媒體。工程師從每天熱門消息中,推出與社會時事呼應的商品,創造消費需求。分類范圍包含消費者、新聞事件、產品、地區、組織和新聞議題等。同時,針對社交網路快消息流的性質,沃爾瑪內部的「大數據」實驗室專門發展出一套追蹤系統,結合手機上網,專門管理追蹤龐大的社交動態,每天能處理的資訊量超過10億筆。
「社交基因組」的應用方式五花八門。舉例來說,沃爾瑪實驗室內部軟體能從Foursquare平台上的打卡記錄,分析出在黑色星期五,不同地區消費者最常購買的品項,然後,針對不同地區送出購買建議。
以上是小編為大家分享的關於大數據如何與零售業結合 在實戰中應用的相關內容,更多信息可以關注環球青藤分享更多干貨