導航:首頁 > 網路數據 > 大數據學習路徑

大數據學習路徑

發布時間:2023-10-25 22:05:52

1. 大數據有什麼學習路線

大數據開發工復程師學習路線制

第一階段:Java設計與編程思想

第二階段: Web前端開發

第三階段: JavaEE進階

第四階段: 大數據基礎

第五階段: HDFS分布式文件系統

第六階段:MapRece分布式計算模型

第七階段: Yarn分布式資源管理器

第八階段: Zookeeper分布式協調服務

第九階段: Hbase分布式資料庫

第十階段: Hive分布式數據倉庫

第十一階段: FlumeNG分布式數據採集系統

第十二階段: Sqoop大數據遷移系統

第十三階段: Scala大數據黃金語言

第十四階段: kafka分布式匯流排系統

第十五階段: SparkCore大數據計算基石

第十六階段: SparkSQL數據挖掘利器

第十七階段: SparkStreaming流失計算平台

第十八階段: SparkMllib機器學習平台

第十九階段:SparkGraphx圖計算平台

第二十階段: 大數據項目實戰

2. 新手如何學習大數據

新手學習大數據可以通過自學或是培訓兩種方式。

想要自學那麼個人的學歷不能低於本科,若是計算機行業的話比較好。非本專業也可以,只要學歷夠,個人的邏輯思維能力以及個人的約束能力較好,就可以去網上找找免費的教程,選擇適合自己的自學試試看。

自學大數據路線圖👇👇

嘗試自學若覺得自己的約束能力一般,但是能學到進去也想盡快掌握技術,那可以考慮參加大數據培訓班,老師指導效率也會比較高。

無論是自學還是參加培訓班都需要自己付出較多的努力哦。

3. 如何進入大數據領域,學習路線是什麼

給你一個大數據學習的路線,你可以按照順序學習
第一階段專
JavaSE基礎核心
第二階段屬
資料庫關鍵技術
第三階段
大數據基礎核心
第四階段
Spark生態體系框架&大數據高薪精選項目
第五階段
Spark生態體系框架&企業無縫對接項目
第六階段
Flink流式數據處理框架

4. 大數據學習路線是什麼

主要分為 7 個階段:入門知識 → Java 基礎 → Scala 基礎 → Hadoop 技術模塊 → Hadoop 項目實戰 → Spark 技術模塊 → 大數據項目實戰。

階段一:學習入門知識

這一部分主要針對的是新手,在學習之前需要先掌握基本的資料庫知識。MySQL 是一個 DBMS(資料庫管理系統),是最流行的關系型資料庫管理系統(關系資料庫,是建立在關系資料庫模型基礎上的資料庫,藉助於集合代數等概念和方法來處理資料庫中的數據)。

MongoDB 是 IT 行業非常流行的一種非關系型資料庫(NoSQL),其靈活的數據存儲方式備受當前 IT 從業人員的青睞。

而 Redis 是一個開源、支持網路、基於內存、鍵值對存儲資料庫。兩者都非常有必要了解。

1、Linux 基礎入門(新版)

2、Vim編輯器

3、Git 實戰教程

4、MySQL 基礎課程

5、MongoDB 基礎教程

6、Redis基礎教程

階段二:Java基礎

Java 是目前使用最為廣泛的編程語言,它具有的眾多特性,特別適合作為大數據應用的開發語言。

Java 語言具有功能強大和簡單易用兩個特徵,跨平台應用能力比 C、C++ 更易用,更容易上手。同時還具有簡單性、面向對象、分布式、健壯性、安全性、平台獨立與可移植性、多線程、動態性等特點。最重要的一點是 Hadoop 是用 Java 編寫的。

1、Java編程語言(新版)

2、Java進階之設計模式

3、J2SE核心開發實戰

4、JDK 核心 API

5、JDBC 入門教程

6、Java 8 新特性指南

階段三:Scala基礎

Scala 是一種多範式的編程語言,其設計的初衷是要集成面向對象編程和函數式編程的各種特性。由於 Scala 運行於 Java 平台(Java 虛擬機),並兼容現有的Java 程序,所以 Scala 可以和大數據相關的基於 JVM 的系統很好的集成。

1、Scala 開發教程

2、Scala 專題教程 - Case Class和模式匹配

3、Scala 專題教程 - 隱式變換和隱式參數

4、Scala 專題教程 - 抽象成員

5、Scala 專題教程 - Extractor

6、Scala 開發二十四點游戲

階段四:Hadoop技術模塊

Hadoop 是一款支持數據密集型分布式應用並以 Apache 2.0 許可協議發布的開源軟體框架,它能搭建大型數據倉庫,PB 級別數據的存儲、處理、分析、統計等業務。編程語言你可以選,但 Hadoop 一定是大數據必學內容。

1、Hadoop入門進階課程

2、Hadoop部署及管理

3、HBASE 教程

4、Hadoop 分布式文件系統--導入和導出數據

5、使用 Flume 收集數據

階段五:Hadoop項目實戰

當然,學完理論就要進行動手實戰了,Hadoop 項目實戰可以幫助加深對內容的理解,並鍛煉動手能力。

1、Hadoop 圖處理--《hadoop應用框架》

階段六:Spark技術模塊

Spark 和 Hadoop 都是大數據框架。Hadoop 提供了 Spark 所沒有的功能特性,比如分布式文件系統,而 Spark 為需要它的那些數據集提供了實時內存處理。所以學習 Spark 也非常必要。

1、Spark

2、x 快速入門教程

2、Spark 大數據動手實驗

3、Spark 基礎之 GraphX 圖計算框架學習

4、Spark 基礎之 DataFrame 基本概念學習

5、Spark 基礎之 DataFrame 高階應用技巧

6、Spark 基礎之 Streaming 快速上手

7、Spark 基礎之 SQL 快速上手

8、Spark 基礎之使用機器學習庫 MLlib

9、Spark 基礎之 SparkR 快速上手

10、流式實時日誌分析系統--《Spark 最佳實踐》

11、使用 Spark 和 D3.js 分析航班大數據

階段七:大數據項目實戰

最後階段提供了大數據實戰項目,這是對常用技能的系統運用,例如使用常用的機器學習進行建模、分析和運算,這是成為大數據工程師過程中的重要一步。

1、Ebay 在線拍賣數據分析

2、流式實時日誌分析系統--《Spark 最佳實踐》

3、大數據帶你挖掘打車的秘籍

4、Twitter數據情感分析

5、使用 Spark 進行流量日誌分析

6、Spark流式計算電商商品關注度

7、Spark的模式挖掘-FPGrowth演算法

(4)大數據學習路徑擴展閱讀:

大數據技術的具體內容:

分布式存儲計算架構(強烈推薦:Hadoop)

分布式程序設計(包含:Apache Pig或者Hive)

分布式文件系統(比如:Google GFS)

多種存儲模型,主要包含文檔,圖,鍵值,時間序列這幾種存儲模型(比如:BigTable,Apollo,DynamoDB等)

數據收集架構(比如:Kinesis,Kafla)

集成開發環境(比如:R-Studio)

程序開發輔助工具(比如:大量的第三方開發輔助工具)

調度協調架構工具(比如:Apache Aurora)

機器學習(常用的有Apache Mahout 或 H2O)

託管管理(比如:Apache Hadoop Benchmarking)

安全管理(常用的有Gateway)

大數據系統部署(可以看下Apache Ambari)

搜索引擎架構(學習或者企業都建議使用Lucene搜索引擎)

多種資料庫的演變(MySQL/Memcached)

商業智能(大力推薦:Jaspersoft)

數據可視化(這個工具就很多了,可以根據實際需要來選擇)

大數據處理演算法(10大經典演算法)



閱讀全文

與大數據學習路徑相關的資料

熱點內容
wps表格如何恢復數據 瀏覽:264
linuxc靜態庫創建 瀏覽:838
u盤有微信文件但微信恢復不了 瀏覽:585
蘋果的網站數據是什麼 瀏覽:22
ps滾字教程 瀏覽:237
win7網路鄰居如何保存ftp 瀏覽:186
安卓客戶端代理伺服器 瀏覽:572
編程用蘋果 瀏覽:659
51虛擬機的文件管理在哪裡 瀏覽:13
win10系統有沒有便簽 瀏覽:722
java引用傳遞和值傳遞 瀏覽:109
oracle下載安裝教程 瀏覽:854
php篩選資料庫 瀏覽:830
怎麼用手機看wlan密碼 瀏覽:745
奧維地圖導入的文件在哪裡 瀏覽:364
sdltrados2014教程 瀏覽:43
培訓制度文件在哪裡找 瀏覽:601
勒索病毒防疫工具 瀏覽:861
win10c不能打開 瀏覽:375
xfplay影音先鋒蘋果版 瀏覽:597

友情鏈接