導航:首頁 > 網路數據 > 大數據如何聚合

大數據如何聚合

發布時間:2023-10-23 13:31:11

大數據的數據分析方法有哪些如何學習

  1. 漏斗分析法

    漏斗分析模型是業務分析中的重要方法,最常見的是應用於營銷分析中,由於營銷過程中的每個關鍵節點都會影響到最終的結果,所以在精細化運營應用廣泛的今天,漏斗分析方法可以幫助我們把握每個轉化節點的效率,從而優化整個業務流程。

  2. 對比分析法

    對比分析法不管是從生活中還是工作中,都會經常用到,對比分析法也稱比較分析法,是將兩個或兩個以上相互聯系的指標數據進行比較,分析其變化情況,了解事物的本質特徵和發展規律。

    在數據分析中,常用到的分3類:時間對比、空間對比以及標准對比。

  3. 用戶分析法

    用戶分析是互聯網運營的核心,常用的分析方法包括:活躍分析,留存分析,用戶分群,用戶畫像等。在剛剛說到的RARRA模型中,用戶活躍和留存是非常重要的環節,通過對用戶行為數據的分析,對產品或網頁設計進行優化,對用戶進行適當引導等。

    通常我們會日常監控「日活」、「月活」等用戶活躍數據,來了解新增的活躍用戶數據,了解產品或網頁是否得到了更多人的關注,但是同時,也需要做留存分析,關注新增的用戶是否真正的留存下來成為固定用戶,留存數據才是真正的用戶增長數據,才能反映一段時間產品的使用情況,關於活躍率、留存率的計算。

  4. 細分分析法

    在數據分析概念被廣泛重視的今天,粗略的數據分析很難真正發現問題,精細化數據分析成為真正有效的方法,所以細分分析法是在本來的數據分析上做的更為深入和精細化。

  5. 指標分析法

在實際工作中,這個方法應用的最為廣泛,也是在使用其他方法進行分析的同時搭配使用突出問題關鍵點的方法,指直接運用統計學中的一些基礎指標來做數據分析,比如平均數、眾數、中位數、最大值、最小值等。在選擇具體使用哪個基礎指標時,需要考慮結果的取向性。

⑵ 如何為大數據處理構建高性能Hadoop集群

越來越多的企業開始使用Hadoop來對大數據進行處理分析,但Hadoop集群的整體性能卻取決於CPU、內存、網路以及存儲之間的性能平衡。而在這篇文章中,我們將探討如何為Hadoop集群構建高性能網路,這是對大數據進行處理分析的關鍵所在。

關於Hadoop

「大數據」是鬆散的數據集合,海量數據的不斷增長迫使企業需要通過一種新的方式去管理。大數據是結構化或非結構化的多種數據類型的大集合。而 Hadoop則是Apache發布的軟體架構,用以分析PB級的非結構化數據,並將其轉換成其他應用程序可管理處理的形式。Hadoop使得對大數據處理成為可能,並能夠幫助企業可從客戶數據之中發掘新的商機。如果能夠進行實時處理或者接近實時處理,那麼其將為許多行業的用戶提供強大的優勢。

Hadoop是基於谷歌的MapRece和分布式文件系統原理而專門設計的,其可在通用的網路和伺服器硬體上進行部署,並使之成為計算集群。

Hadoop模型

Hadoop的工作原理是將一個非常大的數據集切割成一個較小的單元,以能夠被查詢處理。同一個節點的計算資源用於並行查詢處理。當任務處理結束後,其處理結果將被匯總並向用戶報告,或者通過業務分析應用程序處理以進行進一步分析或儀表盤顯示。

為了最大限度地減少處理時間,在此並行架構中,Hadoop「moves jobs to data」,而非像傳統模式那樣「moving data to jobs」。這就意味著,一旦數據存儲在分布式系統之中,在實時搜索、查詢或數據挖掘等操作時,如訪問本地數據,在數據處理過程中,各節點之間將只有一個本地查詢結果,這樣可降低運營開支。

Hadoop的最大特點在於其內置的並行處理和線性擴展能力,提供對大型數據集查詢並生成結果。在結構上,Hadoop主要有兩個部分:

Hadoop分布式文件系統(HDFS)將數據文件切割成數據塊,並將其存儲在多個節點之內,以提供容錯性和高性能。除了大量的多個節點的聚合I/O,性能通常取決於數據塊的大小——如128MB。而傳統的Linux系統下的較為典型的數據塊大小可能是4KB。

MapRece引擎通過JobTracker節點接受來自客戶端的分析工作,採用「分而治之」的方式來將一個較大的任務分解成多個較小的任務,然後分配給各個TaskTrack節點,並採用主站/從站的分布方式(具體如下圖所示):

Hadoop系統有三個主要的功能節點:客戶機、主機和從機。客戶機將數據文件注入到系統之中,從系統中檢索結果,以及通過系統的主機節點提交分析工作等。主機節點有兩個基本作用:管理分布式文件系統中各節點以及從機節點的數據存儲,以及管理Map/Rece從機節點的任務跟蹤分配和任務處理。數據存儲和分析處理的實際性能取決於運行數據節點和任務跟蹤器的從機節點性能,而這些從機節點則由各自的主機節點負責溝通和控制。從節點通常有多個數據塊,並在作業期間被分配處理多個任務。

部署實施Hadoop

各個節點硬體的主要要求是市縣計算、內存、網路以及存儲等四個資源的平衡。目前常用的並被譽為「最佳」的解決方案是採用相對較低成本的舊有硬體,部署足夠多的伺服器以應對任何可能的故障,並部署一個完整機架的系統。

Hadoop模式要求伺服器與SAN或者NAS進行直接連接存儲(DAS)。採用DAS主要有三個原因,在標准化配置的集群中,節點的縮放數以千計,隨著存儲系統的成本、低延遲性以及存儲容量需求不斷提高,簡單配置和部署個主要的考慮因素。隨著極具成本效益的1TB磁碟的普及,可使大型集群的TB級數據存儲在DAS之上。這解決了傳統方法利用SAN進行部署極其昂貴的困境,如此多的存儲將使得Hadoop和數據存儲出現一個令人望而卻步的起始成本。有相當大一部分用戶的Hadoop部署構建都是採用大容量的DAS伺服器,其中數據節點大約1-2TB,名稱控制節點大約在1-5TB之間,具體如下圖所示:

來源:Brad Hedlund, DELL公司

對於大多數的Hadoop部署來說,基礎設施的其他影響因素可能還取決於配件,如伺服器內置的千兆乙太網卡或千兆乙太網交換機。上一代的CPU和內存等硬體的選擇,可根據符合成本模型的需求,採用匹配數據傳輸速率要求的千兆乙太網介面來構建低成本的解決方案。採用萬兆乙太網來部署Hadoop也是相當不錯的選擇。

萬兆乙太網對Hadoop集群的作用

千兆乙太網的性能是制約Hadoop系統整體性能的一個主要因素。使用較大的數據塊大小,例如,如果一個節點發生故障(甚至更糟,整個機架宕機),那麼整個集群就需要對TB級的數據進行恢復,這就有可能會超過千兆乙太網所能提供的網路帶寬,進而使得整個集群性能下降。在擁有成千上萬個節點的大型集群中,當運行某些需要數據節點之間需要進行中間結果再分配的工作負載時,在系統正常運行過程中,某個千兆乙太網設備可能會遭遇網路擁堵。

每一個Hadoop數據節點的目標都必須實現CPU、內存、存儲和網路資源的平衡。如果四者之中的任意一個性能相對較差的話,那麼系統的潛在處理能力都有可能遭遇瓶頸。添加更多的CPU和內存組建,將影響存儲和網路的平衡,如何使Hadoop集群節點在處理數據時更有效率,減少結果,並在Hadoop集群內添加更多的HDFS存儲節點。

幸運的是,影響CPU和內存發展的摩爾定律,同樣也正影響著存儲技術(TB級容量的磁碟)和乙太網技術(從千兆向萬兆甚至更高)的發展。預先升級系統組件(如多核處理器、每節點5-20TB容量的磁碟,64-128GB內存),萬兆乙太網卡和交換機等網路組件是重新平衡資源最合理的選擇。萬兆乙太網將在Hadoop集群證明其價值,高水平的網路利用率將帶來效益更高的帶寬。下圖展示了Hadoop集群與萬兆乙太網的連接:

許多企業級數據中心已經遷移到10GbE網路,以實現伺服器整合和伺服器虛擬化。隨著越來越多企業開始部署Hadoop,他們發現他們完全不必要大批量部署1U的機架伺服器,而是部署更少,但性能更高的伺服器,以方便擴展每個數據節點所能運行的任務數量。很多企業選擇部署2U或4U的伺服器(如戴爾 PowerEdge C2100),每個節點大約12-16個核心以及24TB存儲容量。在這種環境下的合理選擇是充分利用已經部署的10GbE設備和Hadoop集群中的 10GbE網卡。

在日常的IT環境中構建一個簡單的Hadoop集群。可以肯定的是,盡管有很多細節需要微調,但其基礎是非常簡單的。構建一個計算、存儲和網路資源平衡的系統,對項目的成功至關重要。對於擁有密集節點的Hadoop集群而言,萬兆乙太網能夠為計算和存儲資源擴展提供與之相匹配的能力,且不會導致系統整體性能下降。

⑶ 教你如何利用大數據思維

教你如何利用大數據思維 在和一些企業家交流時,有幾個問題會被常常問到,"沒有多少數據怎麼辦?","大數據都是大公司的事情,我們小公司怎麼辦?""能不能告訴我,哪些軟體或者工具可以解決大數據的問題?"一般情況下,我都會說,首先要有大數據思維!大家紛紛點頭稱是,這詞兒聽起來非常高大上,甚至給人一種不明覺厲的趕腳!但啥是大數據思維,我一直沒有空來整理提煉。
前陣子一個內部的論壇,要求大家必須講干貨,趁此機會,系統的梳理一遍,概括起來,也就三條:第一認識大數據飛輪,第二理解數據資產評估,第三運用泛互聯範式。

圖1:大數據思維
干貨肯定是經過濃縮的,甚至把案例都作為水分擠掉了,所以這篇文章讀起來不是那麼有趣。但我可以保證,掌握這三條給上市公司做大數據戰略咨詢肯定沒有問題。因為我已經靠這三板斧,搞定了十幾家上市公司。連國內最大咨詢公司的董事長都認為有料,要走了PPT。
每條都用一幅圖來表達,每個圖中的圓圈都有許多案例來佐證。大家如果對案例更感興趣,讀拙作《大數據時代的歷史機遇》好了。其實圖1就涵蓋了大數據思維的全部思想。這幅圖里外三層、上下結構,看起來比較復雜,所以後面拆成三幅圖來講。思維的過程是自上而下、自外而里的。圖的上半部分講得是大數據的商業功用,就是說有了大數據我們能幹什麼?怎麼賺錢?有哪些好玩的商業模式?以前常說"羊毛出在羊身上",搞懂這些模式你會發現原來可以"羊毛出在狗身上"。書里詳細寫了六種,圖上只畫出五種。
補充:六種商業模式簡述
圍繞數據資產,筆者曾考察不同行業的盈利方式和經營策略,歸納總結了六種商業模式(詳見《大數據時代的歷史機遇》一書)。
租售數據模式:簡單來說,就是售賣或者出租廣泛收集、精心過濾、時效性強的數據。這也是數據就是資產的最經典的詮釋。按照銷售對象的不同,又分為兩種類型。第一是作為客戶增值服務。譬如銷售導航儀的公司,同時為客戶提供即時交通信息服務。廣聯達公司為他的客戶提供包年的建築材料價格數據。僅此一項業務,年收入超過1億元人民幣。第二是把客戶數據,有償提供給第三方。典型的如證券交易所,把股票交易行情數據授權給一些做行情軟體的公司。
租售信息模式:一般聚焦某個行業,廣泛收集相關數據、深度整合萃取信息,以龐大的數據中心加上專用傳播渠道,也可成一方霸主。信息指的是經過加工處理,承載一定行業特徵數據集合。
數字媒體模式:這個模式最性感,因為全球廣告市場空間是5000億美元。具備培育千億級公司的土壤和成長空間。這類公司的核心資源是獲得實時、海量、有效的數據,立身之本是大數據分析技術,盈利來源多是精準營銷和信息聚合服務。
數據使能模式:這類業務令人著迷之處在於,如果沒有大量的數據,缺乏有效的數據分析技術,這些公司的業務其實難以開展。譬如阿里金融為代表的小額信貸公司。通過在線分析小微企業的交易數據、財務數據,甚至可以計算出應提供多少貸款,多長時間可以收回等關鍵問題。把壞賬風險降到最低。
數據空間運營模式:從歷史上,傳統的IDC就是這種模式,互聯網巨頭都在提供此類服務。但近期網盤勢頭強勁,從大數據角度來看,各家紛紛嗅到大數據商機,開始搶占個人、企業的數據資源。海外的Dropbox,國內微盤都是此類公司的代表。這類公司的發展空間在於可以成長為數據聚合平台,盈利模式將趨於多元化。
大數據技術提供商:從數據量上來看,非結構化數據是結構化數據的5倍以上,任何一個種類的非結構化數據處理,都可以重現現有結構化數據的輝煌。語音數據處理領域、視頻數據處理領域、語義識別領域、圖像數據處理領域都可能出現大型的、高速成長的公司。
明白大數據的功用後,大家自然而然地關心,數據這么值錢,理所當然應構成新型的資產。圖1的中間部分描述了這塊內容。"數據成為資產"這一原創論斷成為大數據思維的中心理論。圖2數據資產評估模型給出一個完整的思維框架來描述數據資產的價值(完整描述評估模型,非本文主旨。讀者若有興趣,移步閱讀拙著吧)。但是這方面的工作遠遠不夠,無法定量的給出評估。在「諾獎級別的學術難題」一文(回復b10獲取該文)中,我曾經說,學術界如果在數據資產的定量評估上取得進展,是可以獲得諾貝爾獎的。因為這和公司的估值緊密相關。產業界在信用定量計算方面己經走在前列,並付諸商用,但是離一般意義上的數據資產估值還相去甚遠。

圖2:數據資產評估模型
既然數據成為資產,資產間的交易也會提上日程。聯盟特別任命兩位副秘書長推進這個事情,從而傳播開放、共享的理念。藉此呼籲所有願意開放數據資源的企業,卻可以藉助聯盟的力量,來共同推進。
數據成為資產是在了解大數據功用基礎上的抽象認知。接下來看圖1的下半部分,泛互聯範式。這個範式給出了不斷的採集數據並且發揮數據價值的行動指南。許多公司的轉型,都要從這幅圖開始。見圖3。終端+平台+應用+大數據四位一體,構成大數據思維的行動指南。最近和一些公司聊,他們己經了解了數據的重要性,開始想些損招去「劫掠」客戶的數據。這不免誤入歧圖。還是認真研究一下這個範式,從應用、終端上動動腦筋,真正的為用戶提供靠譜的服務,才是上策。

圖3:泛互聯範式
回顧圖1,我們在講大數據思維時,利用自上而下的次序,從大數據的功用入手,深入到理論內核,再到可供操作的範式。但真正上手實踐,需要腳踏實地,自下而上的行動。回到德魯克的經典問題上來,你的客戶是誰?
大數據產業聯盟願意為所有有志於從事大數據戰略咨詢的顧問們服務,掌握這套方法論並切實幫到企業的顧問,聯盟會在官方網站上列出您的大名,並向成員企業推薦。
所以, 這次,我們來點兒作業吧:大家可以用上面的大數據思維分析框架來分析一下自己所在的公司自己感興趣的公司,看看大數據於公司有什麼功效, 公司可操作的泛互聯範式是什麼。
在此,也先拋幾個小例子:
1)樂視網的野心

⑷ 大數據與移動聚合支付的關系是什麼

真實的交易數據為平台提供完善的客戶畫像,輔助實時更新調整布局及通過營回銷聚焦到更多真實的答客戶。
聚合支付不僅是有支付場景的聚合、支付方式的聚合還有金融服務的聚合。支付場景比如掃碼啦、H5喚醒啦、PC、移動等;支付方式包括支付寶、微信、快捷支付、各銀行支付的聚合;金融服務比如後台賬單、流水、服務報告還有收入投資等。匯付天下有一個全自助的聚合支付解決方案 自由選擇需要的支付通道,有交易量才會有費率支出問題。 針對自己的已交易客戶和潛在交易客戶支付習慣的了解,開通聚合支付里相關支付渠道,這樣更有針對性。

⑸ 如何把大數據工具和原有數據倉庫集成

大數據工具不應該破壞現有的數據倉庫環境。雖然大量低成本,甚至零成本的工具降低了准入門檻,它們構成了Hadoop的生態系統,支持其存儲和管理大量數據集的能力。很多原本居於商務智能和分析系統中心地位的企業數據倉庫收到沖擊。但是企業在數據倉庫中投入了很多資金、資源和時間,建立並完善數據倉庫的查詢、報表和分析功能。企業不願意這一切都付之東流。即便企業已經選擇在Hadoop或NoSQL資料庫上搭建新的商務智能和大數據分析架構,這也不是一朝一夕能夠完成的。通常,這種轉變還要以犧牲服務質量,甚至業務中斷為代價。

因此,大多數企業都會選擇集成的方式,讓新舊系統技術協同工作。比如把基於Hadoop的客戶分析應用和現存客戶數據倉庫結合起來。來自於數據倉庫的客戶數據可以放到Hadoop應用程序里進行分析,分析結果在返回數據倉庫。

大數據關聯

集成的第一步是在數據倉庫和大數據平台間設置關聯。目前,大數據系統主要用於增強數據倉庫的能力,其數據存儲的成本要低於傳統數據倉庫。很多早期用戶還會在數據倉庫分析數據之前,採用Hadoop集群和NoSQL資料庫存儲數據。這些應用使用起來都很簡單,就像用Hadoop分布式文件系統(HDFS)存儲數據一樣,也可以通過Hive,HBase,Cassandra和其他NoSQL技術建立更復雜的關聯。

將這些工具和數據倉庫與商務智能框架結合起來需要關聯性和說明。可以使用應用程序界面為數據倉庫提供Hadoop和NoSQL系統的介面。另外,不少供應商都提供連接SQL資料庫和大數據系統的封閉的連接器,包括基於集成標準的ODBC(開放資料庫連接)和JDBC(Java資料庫連接)。對於不能適用於傳統關系模型的系統,可以用一個集成層將半結構化數據從原格式(比如YAML或jsON)轉到可被商務智能應用讀取的格式。

如果要集成更加緊密,還有其他的方法。例如,數據倉庫系統逐漸對MapRece功能開放,從而增強SQL語言,將Hadoop集群的分析處理和商務智能查詢結果結合起來。更一個例子是將Hadoop分析結果和數據倉庫結合起來,用來生成報表和分析。

大數據阻力

隨著大數據的不斷發展,對很多IT和數據倉庫團隊來說,集成不同的應用迫在眉睫。一種高度靈活的集成方案至關重要。

脫節的體系結構。一種典型的方法是試點項目或驗證概念,或測試早期產品應用,包括在自己孤立的環境中部署Hadoop或NoSQL系統。一個結構完整的集成方案必須把IT和數據架構與業務洞察力和設計結合起來,在混合型資料庫、商務智能和分析架構中部署多種層。

管理缺陷。大數據工具的開源本質往往會導致企業只重功能不重管理。隨著商業話大數據軟體的成熟,這種狀況會得以緩解。但現在仍要重視管理能力的提升。

技術短缺。擴大大數據集成面臨的最大的挑戰就在於使用Hadoop和NoSQL技術過程中產生的陡峭的學習曲線。畢竟在IT圈內,平行和分布式處理技術還很難懂,真正有開發和升級大數據應用經驗的人就更少了。內部培訓也許是速度最快、成本最低的方法。

在把Hadoop和NoSQL與數據倉庫環境集成的問題上,很多公司關心的不是可行性,而是時間。早作準備,可以對面臨的阻礙有一個良好的把握。對於不同的集成需求,企業需要構建可重復的解決流程,這才是項目的最終目標。

⑹ 如何有效整合和應用大數據

隨著大數據的應用越來越廣泛,應用的行業也越來越低,我們每天都可以看到大數據的一些新奇的應用,從而幫助人們從中獲取到真正有用的價值。很多組織或者個人都會受到大數據的分析影響,但是大數據是如何幫助人們挖掘出有價值的信息呢?下面就讓我們一起來看看九個價值非常高的大數據的應用,這些都是大數據在分析應用上的關鍵領域:

1.理解客戶、滿足客戶服務需求

大數據的應用目前在這領域是最廣為人知的。重點是如何應用大數據更好的了解客戶以及他們的愛好和行為。企業非常喜歡搜集社交方面的數據、瀏覽器的日誌、分析出文本和感測器的數據,為了更加全面的了解客戶。在一般情況下,建立出數據模型進行預測。比如美國的著名零售商Target就是通過大數據的分析,得到有價值的信息,精準得預測到客戶在什麼時候想要小孩。另外,通過大數據的應用,電信公司可以更好預測出流失的客戶,沃爾瑪則更加精準的預測哪個產品會大賣,汽車保險行業會了解客戶的需求和駕駛水平,政府也能了解到選民的偏好。

2.業務流程優化

大數據也更多的幫助業務流程的優化。可以通過利用社交媒體數據、網路搜索以及天氣預報挖掘出有價值的數據,其中大數據的應用最廣泛的就是供應鏈以及配送路線的優化。在這2個方面,地理定位和無線電頻率的識別追蹤貨物和送貨車,利用實時交通路線數據制定更加優化的路線。人力資源業務也通過大數據的分析來進行改進,這其中就包括了人才招聘的優化。

3.大數據正在改善我們的生活

大數據不單單只是應用於企業和政府,同樣也適用我們生活當中的每個人。我們可以利用穿戴的裝備(如智能手錶或者智能手環)生成最新的數據,這讓我們可以根據我們熱量的消耗以及睡眠模式來進行追蹤。而且還利用利用大數據分析來尋找屬於我們的愛情,大多數時候交友網站就是大數據應用工具來幫助需要的人匹配合適的對象。

4.提高醫療和研發

大數據分析應用的計算能力可以讓我們能夠在幾分鍾內就可以解碼整個DNA。並且讓我們可以制定出最新的治療方案。同時可以更好的去理解和預測疾病。就好像人們戴上智能手錶等可以產生的數據一樣,大數據同樣可以幫助病人對於病情進行更好的治療。大數據技術目前已經在醫院應用監視早產嬰兒和患病嬰兒的情況,通過記錄和分析嬰兒的心跳,醫生針對嬰兒的身體可能會出現不適症狀做出預測。這樣可以幫助醫生更好的救助嬰兒。

5.提高體育成績

現在很多運動員在訓練的時候應用大數據分析技術了。比如例如用於網球鼻塞的IBM SlamTracker工具,我們使用視頻分析來追蹤足球或棒球比賽中每個球員的表現,而運動器材中的感測器技術(例如籃球或高爾夫俱樂部)讓我們可以獲得對比賽的數據以及如何改進。很多精英運動隊還追蹤比賽環境外運動員的活動-通過使用智能技術來追蹤其營養狀況以及睡眠,以及社交對話來監控其情感狀況。

6.優化機器和設備性能

大數據分析還可以讓積極和設備在應用上更加智能化和自主化。例如,大數據工具曾經就被谷歌公司利用研發谷歌自駕汽車。豐田的普瑞就配有相機、GPS以及感測器,在交通上能夠安全的駕駛,不需要人類的敢於。大數據工具還可以應用優化智能電話。

7.改善安全和執法

大數據現在已經廣泛應用到安全執法的過程當中。想必大家都知道美國安全局利用大數據進行恐怖主義打擊,甚至監控人們的日常生活。而企業則應用大數據技術進行防禦網路攻擊。警察應用大數據工具進行捕捉罪犯,信用卡公司應用大數據工具來檻車欺詐性交易。

8.改善我們的城市

大數據還被應用改善我們日常生活的城市。例如基於城市實時交通信息、利用社交網路和天氣數據來優化最新的交通情況。目前很多城市都在進行大數據的分析和試點。

9.金融交易

大數據在金融行業主要是應用金融交易。高頻交易(HFT)是大數據應用比較多的領域。其中大數據演算法應用於交易決定。現在很多股權的交易都是利用大數據演算法進行,這些演算法現在越來越多的考慮了社交媒體和網站新聞來決定在未來幾秒內是買出還是賣出。

以上九個是大數據應用最多的九個領域,當然隨著大數據的應用越來越普及,還有很多新的大數據的應用領域,以及新的大數據應用。

⑺ 如何優化大數據,大流量的網站

我的經驗是,大量的相關文章+合理的站內鏈接+穩定的更新頻率。

如何做好seo優化策略可參考如下方法搭罩:

在搜索引擎優化中,SEO策略影響到最終的優化效果。SEO策略不管對中小網站還是大型網站都是重要的,而對於大型網站,制定一個好的SEO策略尤為重要。

第一部分:關鍵詞分析

關鍵詞分析是所有SEO必須掌握的一門功課,大型網站雖然有海量的數據,但是每個頁面都需要進行關鍵詞分析,除了SEO之外,策劃、編輯也需要具備一定的關鍵詞分析能力。

關鍵詞分析的基本原則:

1、調查用戶的搜索習慣:這是一個重要的方面,只有了解用戶的搜索習慣,才能把我用戶的搜索需求,用戶喜歡搜索什麼?用什麼搜索引擎?等等

2、關鍵詞不能過於寬泛:關鍵詞過於寬泛會導致競爭激烈,耗費大量時間卻不一定得到想要的效果,並且可能降低了關鍵詞的相關性。

3、關鍵詞不能過冷:想想,沒有用戶搜索的關鍵詞,還值得去優化嗎?

4、關鍵詞要與頁面內容保持高度的相關性:這樣既有利於優化又有利於用戶。

關鍵詞挑選的步驟:

1、確定核心關鍵詞:我們應該考慮的是哪一個詞或者兩個詞能夠最准確的描述網頁的內容?哪一個詞用戶搜索次數最多?

2、核心關鍵詞定義上的擴展:例如核心關鍵詞的別名、僅次於核心關鍵詞的組合等、核心關鍵詞的輔助等。

3、模擬用戶思維設計關鍵詞:把自己假想為用戶,那麼我會去搜索什麼關鍵詞呢?

4、研究競爭者的關鍵詞:分析一下排名佔有優勢的競爭對手的網頁,他們都使用了什麼關鍵詞?

第二部分:頁面逆向優化

為什麼要做逆向優化?因為在大型網站中,頁面的優化價值一般不同於中小網站。考慮到各種綜合因素(例如品牌、頁面內容、用戶體驗等),大型網站的頁面優化價值大多數呈現逆向順序,即:最終頁>專題頁>欄目頁>頻道頁>首頁。

如何針對各頁面進行關鍵詞分配呢?通常情況是這樣的:

1、最終頁:針對長尾關鍵詞;

2、專題頁:針對熱門關鍵詞,例如"周傑倫";

3、欄目頁:針對固定關鍵詞,例如"音樂試聽";

4、頻道頁:針對核心關鍵詞,例如"音樂";

5、首頁:不分配關鍵詞,而是以品牌為主。

在進行關鍵詞分配後,我們可以在最終頁中添加匹配的內鏈作為輔助,這是大型網站內鏈的優勢。

第三部分:前端搜索引擎友好,包括UI設計的搜索友好和前端代碼的搜索友好兩點

1、首先來看UI設計的搜索引擎友好:主要是做到導航清晰,以及flash和圖片等的使用,一般來說,導航以及帶有關鍵詞的部分不適合使用flash及圖片,因為大多數搜索引擎無法抓取flash及圖片中的文字。

2、然後是前端代碼的搜索引擎友好:

a、代碼的簡潔性:搜索引擎喜歡簡潔的html代碼,這樣更有利於分析。

b、重要信息靠前:指帶關鍵詞的及經常更新的信息盡量選擇出現在html的靠前位置。

c、過濾干擾信息:大型網站的頁面一般比較復雜,各種廣告、合作、交換內容以及其他沒有相關性的信息比較多,我們應該選擇使用js、iframe等搜索引擎無法識別的代碼過濾掉這一部分信息。

d、代碼的基礎SEO:這是基礎的SEO工作,避免html錯誤以及語義化標簽。

第四部分:內部鏈接策略

為什麼要強調內部鏈接策略?因為內鏈具有以下優勢:

1、大型網站海量的數據使內鏈的優勢遠遠大於外鏈。外鏈的數量可能幾千幾萬幾十萬,但是大型網站擁有成百萬上千萬甚至上億的海量網頁內容,如果用這些海量的網頁做內鏈的建設,優勢是很明顯的。

2、網站內的網頁間導出鏈接是一件很容易的事知兆鬧情。

3、提高搜索引擎對網站的爬行索引效率,增強收錄,也有利於PR的傳遞。

4、集中主題,使該主題的關鍵詞在搜索引擎中具有排名優勢。

第五部分:外部鏈接策略

在強調大型網站的內鏈建猜搜設的同時也不能太忽視了外鏈的建設。外鏈的建設雖然沒有中小網站那麼重要,但是也具有很高的價值。通常可以通過交換鏈接、製造鏈接誘餌、投放帶鏈接的軟文等方法來建設外鏈。

1、來看交換鏈接應該要遵循哪些原則:

a、鏈接文字中包含關鍵詞;b、盡量與相關性高的站點、頻道交換鏈接;c、對方網站導出鏈接數量不能過多,過多的話沒有太大的價值;d、避免與未被收錄以及被搜索引擎懲罰的網站交換鏈接

2、製造鏈接誘餌:製造鏈接誘餌是一件省力的工作,這使得對方網站主動的為我們添加鏈接。製造鏈接誘餌的技巧很多,但是可以用兩個字來概括:創意。

3、帶鏈接的軟文投放。指的是在商務推廣或者為專門為了得到外鏈而進行的帶鏈接的軟文投放。

第六部分:網站地圖策略

有很多大型網站不重視網站地圖的建設,不少大型網站的網站地圖只是敷衍了事,做一個擺設。其實網站對於大型網站是很重要的,大型網站海量的數據、復雜的網站導航結構、極快的更新頻率使得搜索引擎並不能完全抓取所有的網頁。這就是為什麼有的大型網站擁有百萬千萬甚至上億級的數據量,但是卻只被搜索引擎收錄了網站數據量的一半、三分之一甚至更少的一個重要原因。連收錄都保證不了,怎麼去做排名?

Html地圖:

1、為搜索引擎建立一個良好的導航結構。

2、Html地圖中可以分為橫向和縱向導航,橫向導航主要是頻道、欄目、專題等鏈接,縱向導航主要是針對關鍵詞。

3、每個頁面都有指向網站地圖的鏈接。

Xml網站地圖:主要針對Google、yahoo、live等搜索引擎。因為大型網站數據量太大,單個的sitemap會導致sitemap.xml文件太大,超過搜索引擎的容忍度。所以我們要將sitemap.xml拆分為數個,每個拆分後的sitemap.xml則保持在搜索引擎建議的范圍內。

第七部分:搜索引擎友好寫作策略

搜索引擎友好寫作是創造海量數據對取得好的搜索引擎排名的很關鍵的一部分。而SEO人員不可能針對每個網頁都提出SEO建議或者方案,所以對寫作人員的培訓尤為重要。如果所有寫作人員都按照搜索引擎友好的原則去寫作,則產生的效果是很恐怖的。

1、對寫作人員要進行反復培訓:寫作人員不是SEO,沒有經驗,不可能一遍就領悟SEO的寫作技巧。所以要對寫作人員進行反復的培訓才能達到效果。

2、創造內容先思考用戶會去搜索什麼,針對用戶的搜索需求而寫作。

3、重視title、meta寫作:例如Meta雖然在搜索引擎的權重已經很低,但是不好的meta寫作例如堆積關鍵詞、關鍵詞與內容不相關等行為反而會產生負作用。而Title的權重較高,盡量在Title中融入關鍵詞。

4、內容與關鍵詞的融合:在內容中要適當的融入關鍵詞,使關鍵詞出現在適當的位置,並保持適當的關鍵詞密度。

5、為關鍵詞加入鏈接很重要:為相關關鍵詞加入鏈接,或者為本網頁出現的其他網頁的關鍵詞加入鏈接,可以很好的利用內鏈優勢。

6、為關鍵詞使用語義化標簽:

第八部分:日誌分析與數據挖掘

日誌分析與數據挖掘常常被我們所忽視,其實不管是大型網站還是中小網站,都是一件很有意義的工作。只是大型網站的日誌分析和數據挖掘工作難度要更高一些,因為數據量實在太大,所以我們要具備足夠的耐心來做該項工作,並且要有的放矢。

1、網站日誌分析:網站日誌分析的的種類有很多,如訪問來源、瀏覽器、客戶端屏幕大小、入口、跳出率、PV等。跟SEO工作最相關的主要有以下三種:a、搜索引擎流量導入;b、搜索引擎關鍵詞分析;c、用戶搜索行為統計分析

2、熱點數據挖掘:我們可以通過自身的網站日誌分析以及一些外在的工具和SEO自己對熱點的把握能力來進行熱點數據的挖掘。熱點數據的挖掘主要有以下手段:a、把握行業熱點,可以由編輯與SEO共同完成;b、預測潛在熱點,對信息的敏感度要求較高,能夠預測潛在的熱門信息。c、自己創造熱點,如炒作等;d、為熱點製作專題

第九部分:為關鍵詞創作專題

除了最終頁面,各種針對熱門的關鍵詞所製作的專題應該作為網站的第二大搜索引擎流量來源。我們在對熱點數據進行挖掘後,就可以針對這些熱門關鍵詞製作專題了。製作的專題頁的內容從何而來?我們一般通過程序實現對應關鍵詞相關的信息進行篩選聚合,這樣就使得內容與關鍵詞高度匹配,為用戶、為搜索引擎都提供了所需要的內容。

當然,僅僅建立一個專題而沒有輔助手段是很難保證專題的搜索引擎排名的,我們可以通過文章內鏈、頻道頁推薦、或者最終頁的專題推薦來獲得鏈接達到效果。

1、為熱點關鍵詞製作專題

2、關鍵詞相關信息的聚合

3、輔以文章內鏈導入鏈接

⑻ 如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

閱讀全文

與大數據如何聚合相關的資料

熱點內容
win7網路鄰居如何保存ftp 瀏覽:186
安卓客戶端代理伺服器 瀏覽:572
編程用蘋果 瀏覽:659
51虛擬機的文件管理在哪裡 瀏覽:13
win10系統有沒有便簽 瀏覽:722
java引用傳遞和值傳遞 瀏覽:109
oracle下載安裝教程 瀏覽:854
php篩選資料庫 瀏覽:830
怎麼用手機看wlan密碼 瀏覽:745
奧維地圖導入的文件在哪裡 瀏覽:364
sdltrados2014教程 瀏覽:43
培訓制度文件在哪裡找 瀏覽:601
勒索病毒防疫工具 瀏覽:861
win10c不能打開 瀏覽:375
xfplay影音先鋒蘋果版 瀏覽:597
兩個文件打開兩個word 瀏覽:921
蘋果6s桌面圖標輕微抖動 瀏覽:326
如何刪除手機中看不見的臨時文件 瀏覽:469
安卓412原生鎖屏apk 瀏覽:464
書加加緩存文件在哪裡 瀏覽:635

友情鏈接