導航:首頁 > 網路數據 > 銀行大數據客戶畫像

銀行大數據客戶畫像

發布時間:2023-10-19 08:19:14

大數據能為銀行做什麼

隨著移動互聯網、雲計算、物聯網和社交網路的廣泛應用,人類社會已經邁入一個全新的「大數據」信息化時代。而銀行信貸的未來,也離不開大數據。
國內不少銀行已經開始嘗試通過大數據來驅動業務運營,如中信銀行信用卡中心使用大數據技術實現了實時營銷,光大銀行建立了社交網路信息資料庫,招商銀行則利用大數據發展小微貸款。從發展趨勢來看,銀行大數據應用總的可以分為四大方面:
第一方面:客戶畫像應用。
客戶畫像應用主要分為個人客戶畫像和企業客戶畫像。個人客戶畫像包括人口統計學特徵、消費能力數據、興趣數據、風險偏好等;企業客戶畫像包括企業的生產、流通、運營、財務、銷售和客戶數據、相關產業鏈上下游等數據。值得注意的是,銀行擁有的客戶信息並不全面,基於自身擁有的數據有時難以得出理想的結果甚至可能得出錯誤的結論。
比如,如果某位信用卡客戶月均刷卡8次,平均每年打4次客服電話,從未有過投訴,按照傳統的數據分析,該客戶是一位滿意度較高流失風險較低的客戶。但如果看到該客戶的微博,真實情況是:工資卡和信用卡不在同一家銀行,還款不方便,好幾次打客服電話沒接通,客戶多次在微博上抱怨,該客戶流失風險較高。所以銀行不僅僅要考慮銀行自身業務所採集到的數據,更應考慮整合外部更多的數據,以擴展對客戶的了解。包括:
(1)客戶在社交媒體上的行為數據(如光大銀行建立了社交網路信息資料庫)。通過打通銀行內部數據和外部社會化的數據可以獲得更為完整的客戶拼圖,從而進行更為精準的營銷和管理;
(2)客戶在電商網站的交易數據,如建設銀行則將自己的電子商務平台和信貸業務結合起來,阿里金融為阿里巴巴用戶提供無抵押貸款,用戶只需要憑借過去的信用即可;
(3)企業客戶的產業鏈上下游數據。如果銀行掌握了企業所在的產業鏈上下游的數據,可以更好掌握企業的外部環境發展情況,從而可以預測企業未來的狀況;
(4)其他有利於擴展銀行對客戶興趣愛好的數據,如網路廣告界目前正在興起的DMP數據平台的互聯網用戶行為數據。
第二方面:精準營銷
在客戶畫像的基礎上銀行可以有效的開展精準營銷,包括:
(1)實時營銷。實時營銷是根據客戶的實時狀態來進行營銷,比如客戶當時的所在地、客戶最近一次消費等信息來有針對地進行營銷(某客戶採用信用卡采購孕婦用品,可以通過建模推測懷孕的概率並推薦孕婦類喜歡的業務);或者將改變生活狀態的事件(換工作、改變婚姻狀況、置居等)視為營銷機會;
(2)交叉營銷。即不同業務或產品的交叉推薦,如招商銀行可以根據客戶交易記錄分析,有效地識別小微企業客戶,然後用遠程銀行來實施交叉銷售;
(3)個性化推薦。銀行可以根據客戶的喜歡進行服務或者銀行產品的個性化推薦,如根據客戶的年齡、資產規模、理財偏好等,對客戶群進行精準定位,分析出其潛在金融服務需求,進而有針對性的營銷推廣;
(4)客戶生命周期管理。客戶生命周期管理包括新客戶獲取、客戶防流失和客戶贏回等。如招商銀行通過構建客戶流失預警模型,對流失率等級前20%的客戶發售高收益理財產品予以挽留,使得金卡和金葵花卡客戶流失率分別降低了15個和7個百分點。
第三方面:風險管控
包括中小企業貸款風險評估和欺詐交易識別等手段。
(1)中小企業貸款風險評估。銀行可通過企業的產、流通、銷售、財務等相關信息結合大數據挖掘方法進行貸款風險分析,量化企業的信用額度,更有效的開展中小企業貸款。
(2)實時欺詐交易識別和反洗錢分析。銀行可以利用持卡人基本信息、卡基本信息、交易歷史、客戶歷史行為模式、正在發生行為模式(如轉賬)等,結合智能規則引擎進行實時的交易反欺詐分析。如IBM金融犯罪管理解決方案幫助銀行利用大數據有效地預防與管理金融犯罪,摩根大通銀行則利用大數據技術追蹤盜取客戶賬號或侵入自動櫃員機(ATM)系統的罪犯。
第四方面:運營優化。
(1)市場和渠道分析優化。通過大數據,銀行可以監控不同市場推廣渠道尤其是網路渠道推廣的質量,從而進行合作渠道的調整和優化。同時,也可以分析哪些渠道更適合推廣哪類銀行產品或者服務,從而進行渠道推廣策略的優化。
(2)產品和服務優化:銀行可以將客戶行為轉化為信息流,並從中分析客戶的個性特徵和風險偏好,更深層次地理解客戶的習慣,智能化分析和預測客戶需求,從而進行產品創新和服務優化。如興業銀行目前對大數據進行初步分析,通過對還款數據挖掘比較區分優質客戶,根據客戶還款數額的差別,提供差異化的金融產品和服務方式。
(3)輿情分析:銀行可以通過爬蟲技術,抓取社區、論壇和微博上關於銀行以及銀行產品和服務的相關信息,並通過自然語言處理技術進行正負面判斷,尤其是及時掌握銀行以及銀行產品和服務的負面信息,及時發現和處理問題;對於正面信息,可以加以總結並繼續強化。同時,銀行也可以抓取同行業的銀行正負面信息,及時了解同行做的好的方面,以作為自身業務優化的借鑒。
銀行是經營信用的企業,數據的力量尤為關鍵和重要。在「大數據」時代,以互聯網為代表的現代信息科技,特別是門戶網站、社區論壇、微博、微信等新型傳播方式的蓬勃發展,移動支付、搜索引擎和雲計算的廣泛應用,構建起了全新的虛擬客戶信息體系,並將改變現代金融運營模式。
大數據海量化、多樣化、傳輸快速化和價值化等特徵,將給商業銀行市場競爭帶來全新的挑戰和機遇。數據時代,智者生存,未來的銀行信貸,是從數據中贏得未來,是從風控中獲得安穩。

② 什麼是大數據畫像

大數據畫像是指,在大數據時代,企業通過對海量數據信息進行清洗、聚類、分析,將數據抽象成標簽,再利用這些標簽將用戶形象具體化的過程。

用戶畫像的建立能夠幫助企業更好地為用戶提供針對性的服務。與之相應,越來越多的第三方大數據公司,也開始依託自身的數據積累,為客戶提供用戶畫像的服務。

比如個推旗下的用戶畫像產品,能夠對用戶線上和線下行為進行大數據分析,幫助APP開發者和運營者構建全面、精準、多維的用戶畫像體系。用戶畫像的形成需要經歷四個過程,數據積累、數據清洗、數據建模分析、數據產出。

其中,數據清洗和數據建模統稱數據處理。在經過數據處理之後,個推產出獨特的冷、熱、溫數據維度,並分析用戶的線上興趣偏好和線下行為場景,形成用戶畫像。

為什麼需要用戶畫像

用戶畫像的核心工作是為用戶打標簽,打標簽的重要目的之一是為了讓人能夠理解並且方便計算機處理,如,可以做分類統計:喜歡紅酒的用戶有多少?喜歡紅酒的人群中,男、女比例是多少?

也可以做數據挖掘工作:利用關聯規則計算,喜歡紅酒的人通常喜歡什麼運動品牌?利用聚類演算法分析,喜歡紅酒的人年齡段分布情況?

大數據處理,離不開計算機的運算,標簽提供了一種便捷的方式,使得計算機能夠程序化處理與人相關的信息,甚至通過演算法、模型能夠「理解」 人。

③ 金融行業如何用大數據構建精準用戶畫像

用戶畫像的焦點工作就是為用戶打「標簽」,而一個標簽通常是人為規定的高度精煉的特徵標識,如年齡、性別、地域、用戶偏好等,最後將用戶的所有標簽綜合來看,就可以勾勒出該用戶的立體「畫像」了。

為了精準地描述用戶特徵,可以參考下面的思路,從用戶微觀畫像的建立→用戶畫像的標簽建模→用戶畫像的數據架構,我們由微觀到宏觀,逐層分析。

首先我們從微觀來看,如何給用戶的微觀畫像進行分級呢?如下圖所示

總原則:基於一級分類上述分類逐級進行細分。

第一分類:人口屬性、資產特徵、營銷特性、興趣愛好、購物愛好、需求特徵

市場上用戶畫像的方法很多,許多企業也提供用戶畫像服務,將用戶畫像提升到很有逼格一件事。金融企業是最早開始用戶畫像的行業,由於擁有豐富的數據,金融企業在進行用戶畫像時,對眾多緯度的數據無從下手,總是認為用戶畫像數據緯度越多越好,畫像數據越豐富越好,某些輸入的數據還設定了權重甚至建立了模型,搞的用戶畫像是一個巨大而復雜的工程。但是費力很大力氣進行了畫像之後,卻發現只剩下了用戶畫像,和業務相聚甚遠,沒有辦法直接支持業務運營,投入精力巨大但是回報微小,可以說是得不償失,無法向領導交代。

    事實上, 用戶畫像涉及數據的緯度需要業務場景結合 ,既要簡單干練又要和業務強相關,既要篩選便捷又要方便進一步操作。用戶畫像需要堅持三個原則,分別是人口屬性和信用信息為主,強相關信息為主,定性數據為主。下面就分別展開進行解釋和分析。

描述一個用戶的信息很多,信用信息是用戶畫像中重要的信息,信用信息是描述一個人在社會中的消費能力信息。任何企業進行用戶畫像的目的是尋找目標客戶,其必須是具有潛在消費能力的用戶。 信用信息可以直接證明客戶的消費能力,是用戶畫像中最重要和基礎的信息 。一句戲言,所有的信息都是信用信息就是這個道理。其包含消費者工作、收入、學歷、財產等信息。

我們需要介紹一下強相關信息和弱相關信息。 強相關信息就是同場景需求直接相關的信息,其可以是因果信息 ,也可以是相關程度很高的信息。

如果定義採用0到1作為相關系數取值范圍的化,0.6以上的相關系數就應該定義為強相關信息。例如在其他條件相同的前提下,35歲左右人的平均工資高於平均年齡為30歲的人,計算機專業畢業的學生平均工資高於哲學專業學生,從事金融行業工作的平均工資高於從事紡織行業的平均工資,上海的平均工資超過海南省平均工資。從這些信息可以看出來人的年齡、學歷、職業、地點對收入的影響較大,同收入高低是強相關關系。簡單的將,對信用信息影響較大的信息就是強相關信息,反之則是弱相關信息。

用戶其他的信息,例如用戶的身高、體重、姓名、星座等信息,很難從概率上分析出其對消費能力的影響,這些弱相關信息,這些信息就不應該放到用戶畫像中進行分析,對用戶的信用消費能力影響很小,不具有較大的商業價值。

用戶畫像和用戶分析時,需要考慮強相關信息,不要考慮弱相關信息,這是用戶畫像的一個原則。

例如可以將年齡段對客戶進行劃分,18歲-25歲定義為年輕人,25歲-35歲定義為中青年,36-45定義為中年人等。可以參考個人收入信息,將人群定義為高收入人群,中等收入人群,低收入人群。參考資產信息也可以將客戶定義為高、中、低級別。定性信息的類別和方式方法,金融可以從自身業務出發,沒有固定的模式。

將金融企業各類定量信息,集中在一起,對定性信息進行分類,並進行定性化,有利與對用戶進行篩選,快速定位目標客戶,是用戶畫像的另外一個原則。

下面內容將詳細介紹,如何根據用戶行為,構建模型產出標簽、權重。一個事件模型包括:時間、地點、人物三個要素。每一次用戶行為本質上是一次隨機事件,可以詳細描述為:什麼用戶,在什麼時間,什麼地點,做了什麼事。

什麼用戶 :關鍵在於對用戶的標識,用戶標識的目的是為了區分用戶、單點定位。

以上列舉了互聯網主要的用戶標識方法,獲取方式由易到難。視企業的用戶粘性,可以獲取的標識信息有所差異。

什麼時間 :時間包括兩個重要信息,時間戳+時間長度。時間戳,為了標識用戶行為的時間點,如,1395121950(精度到秒),1395121950.083612(精度到微秒),通常採用精度到秒的時間戳即可。因為微秒的時間戳精度並不可靠。瀏覽器時間精度,准確度最多也只能到毫秒。時間長度,為了標識用戶在某一頁面的停留時間。

什麼地點 :用戶接觸點,Touch Point。對於每個用戶接觸點。潛在包含了兩層信息:網址 + 內容。網址:每一個url鏈接(頁面/屏幕),即定位了一個互聯網頁面地址,或者某個產品的特定頁面。可以是PC上某電商網站的頁面url,也可以是手機上的微博,微信等應用某個功能頁面,某款產品應用的特定畫面。如,長城紅酒單品頁,微信訂閱號頁面,某游戲的過關頁。

內容 :每個url網址(頁面/屏幕)中的內容。可以是單品的相關信息:類別、品牌、描述、屬性、網站信息等等。如,紅酒,長城,干紅,對於每個互聯網接觸點,其中網址決定了權重;內容決定了標簽。

註:接觸點可以是網址,也可以是某個產品的特定功能界面。如,同樣一瓶礦泉水,超市賣1元,火車上賣3元,景區賣5元。 商品的售賣價值,不在於成本,更在於售賣地點。 標簽均是礦泉水,但接觸點的不同體現出了權重差異。這里的權重可以理解為用戶對於礦泉水的需求程度不同。即願意支付的價值不同。

標簽 權重

礦泉水 1 // 超市

礦泉水 3 // 火車

礦泉水 5 // 景區

類似的,用戶在京東商城瀏覽紅酒信息,與在品尚紅酒網瀏覽紅酒信息,表現出對紅酒喜好度也是有差異的。這里的關注點是不同的網址,存在權重差異,權重模型的構建,需要根據各自的業務需求構建。

所以,網址本身表徵了用戶的標簽偏好權重。網址對應的內容體現了標簽信息。

什麼事 :用戶行為類型,對於電商有如下典型行為:瀏覽、添加購物車、搜索、評論、購買、點擊贊、收藏 等等。

不同的行為類型,對於接觸點的內容產生的標簽信息,具有不同的權重。如,購買權重計為5,瀏覽計為1

紅酒 1 // 瀏覽紅酒

紅酒 5 // 購買紅酒

綜合上述分析,用戶畫像的數據模型,可以概括為下面的公式: 用戶標識 + 時間 + 行為類型 + 接觸點(網址+內容) ,某用戶因為在什麼時間、地點、做了什麼事。所以會打上**標簽。

如:用戶A,昨天在品尚紅酒網瀏覽一瓶價值238元的長城干紅葡萄酒信息。

標簽: 紅酒,長城

時間: 因為是昨天的行為,假設衰減因子為:r=0.95

行為類型: 瀏覽行為記為權重1

地點: 品尚紅酒單品頁的網址子權重記為 0.9(相比京東紅酒單品頁的0.7)

假設用戶對紅酒出於真的喜歡,才會去專業的紅酒網選購,而不再綜合商城選購。

則用戶偏好標簽是:紅酒,權重是0.95*0.7 * 1=0.665,即,用戶A:紅酒 0.665、長城 0.665。

上述模型權重值的選取只是舉例參考,具體的權重值需要根據業務需求二次建模,這里強調的是如何從整體思考,去構建用戶畫像模型,進而能夠逐步細化模型。

本文並未涉及具體演算法,更多的是闡述了一種分析思想,在計劃構建用戶畫像時,能夠給您提供一個系統性、框架性的思維指導。

核心在於對用戶接觸點的理解,接觸點內容直接決定了標簽信息。內容地址、行為類型、時間衰減,決定了權重模型是關鍵,權重值本身的二次建模則是水到渠成的進階。模型舉例偏重電商,但其實,可以根據產品的不同,重新定義接觸點。

比如影視產品,我看了一部電影《英雄本色》,可能產生的標簽是:周潤發 0.6、槍戰 0.5、港台 0.3。最後,接觸點本身並不一定有內容,也可以泛化理解為某種閾值,某個行為超過多少次,達到多長時間等。

比如游戲產品,典型接觸點可能會是,關鍵任務,關鍵指數(分數)等等。如,積分超過1萬分,則標記為鑽石級用戶。鑽石用戶 1.0。

百分點現已全面應用用戶畫像技術於推薦引擎中 ,在對某電商客戶,針對活動頁新訪客的應用中,依靠用戶畫像產生的個性化效果,對比熱銷榜,推薦效果有顯著提升:推薦欄點擊率提升27%, 訂單轉化率提升34%。

金融企業內部的信息分布在不同的系統中,一般情況下, 人口屬性信息主要集中在客戶關系管理系統 , 信用信息主要集中在交易系統和產品系統之中 ,也集中在客戶關系管理系統中, 消費特徵主要集中在渠道和產品系統中 。

興趣愛好和社交信息需要從外部引入 ,例如客戶的行為軌跡可以代表其興趣愛好和品牌愛好,移動設備到位置信息可以提供較為准確的興趣愛好信息。社交信息,可以藉助於金融行業自身的文本挖掘能力進行採集和分析,也是可以藉助於廠商的技術能力在社交網站上直接獲得。社交信息往往是實時信息,商業價值較高,轉化率也較高,是大數據預測方面的主要信息來源。例如用戶在社交網站上提出羅馬哪裡好玩的問題,就代表用戶未來可能有出國旅遊的需求;如果客戶在對比兩款汽車的優良,客戶購買汽車的可能性就較大。金融企業可以及時介入,為客戶提供金融服務。

客戶畫像數據主要分為五類, 人口屬性、信用信息、消費特徵、興趣愛好、社交信息。 這些數據都分布在不同的信息系統,金融企業都上線了數據倉庫(DW),所有畫像相關的強相關信息都可以從數據倉庫裡面整理和集中,並且依據畫像商業需求,利用跑批作業,加工數據,生成用戶畫像的原始數據。

數據倉庫成為用戶畫像數據的主要處理工具,依據業務場景和畫像需求將原始數據進行分類、篩選、歸納、加工等,生成用戶畫像需要的原始數據。

用戶畫像的緯度信息不是越多越好,只需要找到這五大類畫像信息強相關信息,同業務場景強相關信息,同產品和目標客戶強相關信息即可。根本不存在360度的用戶畫像信息,也不存在豐富的信息可以完全了解客戶,另外數據的實效性也要重點考慮。

依據用戶畫像的原則,所有畫像信息應該是五大分類的強相關信息。強相關信息是指同業務場景強相關信息,可以幫助金融行業定位目標客戶,了解客戶潛在需求,開發需求產品。

只有強相關信息才能幫助金融企業有效結合業務需求,創造商業價值 。例如姓名、手機號、家庭地址就是能夠觸達客戶的強人口屬性信息,收入、學歷、職業、資產就是客戶信用信息的強相關信息。差旅人群、境外遊人群、汽車用戶、旅遊人群、母嬰人群就是消費特徵的強相關信息。攝影愛好者、游戲愛好者、健身愛好者、電影人群、戶外愛好者就是客戶興趣愛好的強相關信息。社交媒體上發表的旅遊需求,旅遊攻略,理財咨詢,汽車需求,房產需求等信息代表了用戶的內心需求,是社交信息場景應用的強相關信息。

金融企業內部信息較多,在用戶畫像階段不需要對所有信息都採用,只需要採用同業務場景和目標客戶強相關的信息即可,這樣有助於提高產品轉化率,降低投資回報率(ROI),有利於簡單找到業務應用場景,在數據變現過程中也容易實現。

千萬不要將用戶畫像工作搞的過於復雜,同業務場景關系不大, 這樣就讓很多金融企業特別是領導失去用戶畫像的興趣,看不到用戶畫像的商業,不願意在大數據領域投資。為企業帶來商業價值才是用戶畫像工作的主要動力和主要目的。

金融企業集中了所有信息之後,依據業務需求,對信息進行加工整理,需要對定量的信息進行定性,方便信息分類和篩選。這部分工作建議在數據倉庫進行,不建議在大數據管理平台(DMP)里進行加工。

定性信息進行定量分類是用戶畫像的一個重要工作環節,具有較高的業務場景要求,考驗用戶畫像商業需求的轉化。其主要目的是幫助企業將復雜數據簡單化,將交易數據定性進行歸類,並且融入商業分析的要求,對數據進行商業加工。例如可以將客戶按照年齡區間分為學生,青年,中青年,中年,中老年,老年等人生階段。源於各人生階段的金融服務需求不同,在尋找目標客戶時,可以通過人生階段進行目標客戶定位。企業可以利用客戶的收入、學歷、資產等情況將客戶分為低、中、高端客戶,並依據其金融服務需求,提供不同的金融服務。可以參考其金融消費記錄和資產信息,以及交易產品,購買的產品,將客戶消費特徵進行定性描述,區分出電商客戶,理財客戶,保險客戶,穩健投資客戶,激進投資客戶,餐飲客戶,旅遊客戶,高端客戶,公務員客戶等。利用外部的數據可以將定性客戶的興趣愛好,例如戶外愛好者,奢侈品愛好者,科技產品發燒友,攝影愛好者,高端汽車需求者等信息。

將定量信息歸納為定性信息,並依據業務需求進行標簽化 ,有助於金融企業找到目標客戶,並且了解客戶的潛在需求,為金融行業的產品找到目標客戶,進行精準營銷,降低營銷成本,提高產品轉化率。另外金融企業還可以依據客戶的消費特徵、興趣愛好、社交信息及時為客戶推薦產品,設計產品,優化產品流程。提高產品銷售的活躍率,幫助金融企業更好地為客戶設計產品。

利用數據進行畫像目的主要是為業務場景提供數據支持,包括尋找到產品的目標客戶和觸達客戶。金融企業自身的數據不足以了解客戶的消費特徵、興趣愛好、社交信息。

金融企業可以引入外部信息來豐富客戶畫像信息,例如引入銀聯和電商的信息來豐富消費特徵信息,引入移動大數據的位置信息來豐富客戶的興趣愛好信息,引入外部廠商的數據來豐富社交信息等。

外部信息的緯度較多,內容也很豐富,但是如何引入外部信息是一項具有挑戰的工作。外部信息在引入時需要考慮幾個問題,分別是外部數據的覆蓋率,如何和內部數據打通,和內部信息的匹配率,以及信息的相關程度,還有數據的鮮活度,這些都是引入外部信息的主要考慮緯度。外部數據魚龍混雜,數據的合規性也是金融企業在引入外部數據時的一個重要考慮, 敏感的信息例如手機號、家庭住址、身份證號在引入或匹配時都應該注意隱私問題 , 基本的原則是不進行數據交換,可以進行數據匹配和驗證。

外部數據不會集中在某一家,需要金融企業花費大量時間進行尋找。外部數據和內部數據的打通是個很復雜的問題, 手機號/設備號/身份證號的MD5數值匹配是一種好的方法 ,不涉及隱私數據的交換,可以進行唯一匹配。依據行業內部的經驗,沒有一家企業外部數據可以滿足企業要求,外部數據的引入需要多方面數據。一般情況下,數據覆蓋率達到70%以上,就是一個非常高的覆蓋率。覆蓋率達到20%以上就可以進行商業應用了。

金融行業外部數據源較好合作方有 銀聯、芝麻信用、運營商、中航信、騰雲天下、騰訊、微博、前海徵信,各大電商平台等 。市場上數據提供商已經很多,並且數據質量都不錯,需要金融行業一家一家去挖掘,或者委託一個廠商代理引入也可以。獨立第三方幫助金融行業引入外部數據可以降低數據交易成本,同時也可以降低數據合規風險,是一個不錯的嘗試。另外各大城市和區域的大數據交易平台,也是一個較好的外部數據引入方式。

用戶畫像主要目的是讓金融企業挖掘已有的數據價值,利用數據畫像技術尋找到目標客戶和客戶的潛在需求,進行產品推銷和設計改良產品。

用戶畫像從業務場景出發,實現數據商業變現重要方式。 用戶畫像是數據思維運營過程中的一個重要閉環,幫助金融企業利用數據進行精細化運營和市場營銷,以及產品設計。用戶畫像就是一切以數據商業化運營為中心,以商業場景為主,幫助金融企業深度分析客戶,找到目標客戶。

DMP(大數據管理平台)在整個用戶畫像過程中起到了一個數據變現的作用。從技術角度來講,DMP將畫像數據進行標簽化,利用機器學習演算法來找到相似人群,同業務場景深度結合,篩選出具有價值的數據和客戶,定位目標客戶,觸達客戶,對營銷效果進行記錄和反饋。大數據管理平台DMP過去主要應用在廣告行業,在金融行業應用不多,未來會成為數據商業應用的主要平台。

DMP可以幫助信用卡公司篩選出未來一個月可能進行分期付款的客戶,電子產品重度購買客戶,篩選出金融理財客戶,篩選出高端客戶(在本行資產很少,但是在他行資產很多),篩選出保障險種,壽險,教育險,車險等客戶,篩選出穩健投資人,激進投資人,財富管理等方面等客戶,並且可以觸達這些客戶,提高產品轉化率,利用數據進行價值變現。DMP還可以了解客戶的消費習慣、興趣愛好、以及近期需求,為客戶定製金融產品和服務,進行跨界營銷。利用客戶的消費偏好,提高產品轉化率,提高用戶黏度。

DMP還作為引入外部數據的平台,將外部具有價值的數據引入到金融企業內部,補充用戶畫像數據,創建不同業務應用場景和商業需求,特別是移動大數據、電商數據、社交數據的應用,可以幫助金融企業來進行數據價值變現,讓用戶畫像離商業應用更加近一些,體現用戶畫像的商業價值。

用戶畫像的關鍵不是360度分析客戶,而是為企業帶來商業價值 ,離開了商業價值談用戶畫像就是耍流氓。金融企業用戶畫像項目出發點一定要從業務需求出發,從強相關數據出發,從業務場景應用出發。用戶畫像的本質就是深度分析客戶,掌握具有價值數據,找到目標客戶,按照客戶需求來定製產品,利用數據實現價值變現。

銀行具有豐富的交易數據、個人屬性數據、消費數據、信用數據和客戶數據,用戶畫像的需求較大。但是缺少社交信息和興趣愛好信息。

到銀行網點來辦業務的人年紀偏大,未來消費者主要在網上進行業務辦理。銀行接觸不到客戶,無法了解客戶需求,缺少觸達客戶的手段。分析客戶、了解客戶、找到目標客戶、為客戶設計其需要的產品,成了銀行進行用戶畫像的主要目的。銀行的主要業務需求集中在消費金融、財富管理、融資服務,用戶畫像要從這幾個角度出發,尋找目標客戶。

銀行的客戶數據很豐富,數據類型和總量較多,系統也很多。可以嚴格遵循用戶畫像的五大步驟。先利用數據倉庫進行數據集中,篩選出強相關信息,對定量信息定性化,生成DMP需要的數據。利用DMP進行基礎標簽和應用定製,結合業務場景需求,進行目標客戶篩選或對用戶進行深度分析。同時利用DMP引入外部數據,完善數據場景設計,提高目標客戶精準度。找到觸達客戶的方式,對客戶進行營銷,並對營銷效果進行反饋,衡量數據產品的商業價值。利用反饋數據來修正營銷活動和提高ROI。形成市場營銷的閉環,實現數據商業價值變現的閉環。另外DMP還可以深度分析客戶,依據客戶的消費特徵、興趣愛好、社交需求、信用信息來開發設計產品,為金融企業的產品開發提供數據支撐,並為產品銷售方式提供場景數據。

簡單介紹一些DMP可以做到的數據場景變現。

A 尋找分期客戶

利用發卡機構數據+自身數據+信用卡數據,發現信用卡消費超過其月收入的用戶,推薦其進行消費分期。

B 尋找高端資產客戶

利用發卡機構數據+移動位置數據(別墅/高檔小區)+物業費代扣數據+銀行自身數據+汽車型號數據,發現在銀行資產較少,在其他行資產較多的用戶,為其提供高端資產管理服務。

C 尋找理財客戶

利用自身數據(交易+工資)+移動端理財客戶端/電商活躍數據。發現客戶將工資/資產轉到外部,但是電商消費不活躍客戶,其互聯網理財可能性較大,可以為其提供理財服務,將資金留在本行。

D 尋找境外遊客戶

利用自身卡消費數據+移動設備位置信息+社交好境外強相關數據(攻略,航線,景點,費用),尋找境外遊客戶為其提供金融服務。

E 尋找貸款客戶

利用自身數據(人口屬性+信用信息)+移動設備位置信息+社交購房/消費強相關信息,尋找即將購車/購房的目標客戶,為其提供金融服務(抵押貸款/消費貸款)。

來源: 錢塘大數據二次整理,TalkingData的鮑忠鐵原文出處,

④ 【案例分享】某銀行用這20件事,實現數字化轉型

【案例分享】某銀行用這20件事,實現數字化轉型

1.項目背景

隨著銀行各業務的精細化運營,經營活動從批量式逐步向互動式、個性化、場景化方式轉變,越來越多的銀行都在運用數據來構建自己的精準營銷渠道和場景,某銀行零售事業部在此潮流之下希望能夠盡快突破現狀,建立數字化的解決方案來應對競爭和客戶流失。

2.痛點分析

某銀行零售事業部現在面臨的兩大問題,一方面是來自客戶的,另一方面是來自競爭者的。

客戶對銀行的期望發生了變化,他們希望銀行能夠實現定製化的服務,提高服務的協作性、便利性、一致性以及控制性。

與此同時,競爭者正積極利用數字創新重新定義價值創造,以便更好地滿足被忽略或未獲滿足的客戶需求。這就出現了同一區域的不同銀行利用數字化技術來搶占本地客戶的現象。

另外,該銀行零售事業部的高管存在對數智化理解不多的情況,對如何實現銀行的數智化轉型缺乏認知,甚至束手無措,即使花費了大量的錢也沒有獲得想要的效果。

3.解決方案

面對這些問題和挑戰,該銀行牽手國雲數據一起為該銀行零售部定製應對自身發展的解決方案。

第一步:國雲數據通過對該銀行全面的調研,幫助其打造戰略、業務、需求、應用、演算法、數據等六大地圖,從而幫助其找到問題症結。

圖片

第二步:在確定完戰略地圖後,把戰略轉化成能執行的20件事情,做好這個20件事情意味著轉型基本成功,讓事業部有明確的目標感。

(1)建設新零售數字化中台。打通個金、互金、CRM、數據倉庫及外部購買三方數據、政府數據、互聯網數據;

(2) 建立新零售用戶,建立產品、網點等數據資產池,建立新零售數據組織,實現數據自助分析和提升,大大提高運營效率,讓數據看得見、用的到,

(3) 建立數據驅動運營體系;

精細化運營:用戶分群;重點客群畫像:中老、商貸、親子等不同客戶的不同運營策略和方法;

存量運營:代發工資用戶貢獻提升。對代發工資用戶做用戶畫像,智能交叉銷售

(4) 產品推薦:建立客臘正戶分層差異化營銷服務體系,定位和聚焦重點戰略客群

(5) 提升客戶經營服務能力,深度經營實現價值提升,提升流失客戶挽回能力,並利用大數據技術建立高效的客戶流失預警體系,實現流失預警、提示、催促提前挽回、自動挽回

(6) 建立客戶畫像。建立網易貸獲客模型和風險模型,自動智能篩賀飢選個貸客戶白名單

(7) 建立客戶裂變系統。通過客戶推薦客戶的方式實現客戶高質量裂變,畫出主推客戶的畫像以及主推客戶的關系鏈,實現一鍵推薦,推薦有獎;

(8) 建立競爭情報系統。實時監控競爭對手及競品的動態,幫助更合理更實時的定價調價、制定營銷策略、爆品調整、產品組禪局返合推薦策略等;

(9) 理財用戶。做大理財用戶規模、精準獲客模型,做強財富管理,加速擴張信用卡,豐富財富管理產品線。利用技術模型實現精準獲客模型,給一線員工精準推薦財務管理潛在白名單,通過給財富管理客戶建立實時動態畫像,讓一線員工提供定製、貼身、以咨詢為導向的營銷服務模式;

(10) 推動精細化銷售管理體系,建立總-分-支常態化檢視督導,實現軍事化目標管理;

(11) 打造新零售總部數據化運營和指揮系統:以戰略目標為導向,梳理業務詳細關鍵指標,全鏈路閉環運營,實現精細化運營實時動態管控;

(12) 實時預警:調整分行零售總行數字化管理系統、根據總行策略,實時可下發任務系統;

(13) 網點畫像:實現網點數字化、經營狀況、健康指數分析,基於網點畫像指導網點優化,對不同網點進行排名、相互學習、經驗分享;

(14) 推動線下渠道優化:建立網點選址系統提供個性精準的選址方案、建立網點周邊白名單用戶精準推薦系統,根據內外部數據精準獲取用戶並讓網點精準;

(15) 對銷售一線人員實現數字化客戶管理;

(16) 迭代創新線上渠道:建立手機銀行端到端的客戶行為追蹤系統,從用戶登陸到轉化每個環境,指導手機銀行優化,提供轉化率;

(17) 基於數據分析和精準營銷推薦:將結果推薦手機銀行,客服中心轉型為重要的線上渠道,承接營銷和客戶經營職能,成為半利潤中心;

(18) 線上線下一體化經營:線上精準定位高潛客戶並向線下推送,線下網點引流客戶至線上虛擬店,從單一、各自孤立的渠道向融合渠道轉型;

(19) 前線賦能系統:利用數據分析、客戶推薦和銷售激勵實現自動化過程管理,並建設高產能,專業化前線團隊實現數字化績效,讓每個員工知道今天的動作,動作換來的收入,以及收入狀況;

(20) 數智化用戶管理系統:讓前線員工清楚的看到自己客戶的動態、實現復購提醒、自動定製方案等方案。

第三步:基於這20件事情,快速幫助該行零售事業部構建了該部門數字化平台,包含數據中台、智能營銷雲平台等,並和該銀行的科技部無縫對接,一方面快速滿足了零售部的需求,又避免了過去投入大而效果不明顯的狀況,用20%的預算完成了既定目標。同時針對銀行零售部的高管、中層人員等都做了不同程度的數字化轉型課程培訓,幫助他們迅速理解數字化轉型的方法論及相關實現路徑和產品。

4.最終效果

通過數據中台構建,解決了該銀行因傳統方式反復重建,每個煙囪投入大,建設周期長、無法快速響應業務等方面的問題。幫助銀行深化客戶經營、豐富產品服務、推動綜合營銷、加速渠道轉型。新客獲取成本比以往降低了5個百分點,同時挽回了上萬個流失客戶,實現不同渠道間輕松轉化,年度初步統計降低投入及人員成本500萬。

5.關於國雲數據

國雲數據集團是由原阿里數據團隊建立的以獨創的「數字化轉型合夥人」的方式為客戶提供數字化轉型服務的公司,也是一家能為客戶提供「戰略+技術+人才」三位一體全方位、高標准數字化轉型落地綜合服務的供應商。

國雲數據獨創數字化轉型方法論指導客戶數字化轉型落地,該方法論最近已衍生為《數字化轉型方法論:落地路徑與數據中台》,由機械工業出版社出版,作者為公司創始人馬曉東,該書現在已全面發售。《數字化轉型方法論:落地路徑與數據中台》是一部從戰略、技術、人才和管理4個維度全面闡述企業數字化轉型方法論的著作,是國雲數據服務7萬余家企業的經驗總結。

閱讀全文

與銀行大數據客戶畫像相關的資料

熱點內容
數據線壞了換一個多少錢 瀏覽:94
蘋果電腦如何測試網路ping 瀏覽:633
沒網路能重裝系統嗎 瀏覽:403
電話鈴聲我的文件在哪裡保存 瀏覽:148
嚮往的生活第五季運動app是什麼 瀏覽:765
ps怎麼把pdf文件顏色改一下 瀏覽:458
蘋果6解ld碼多少錢 瀏覽:161
win101709教程 瀏覽:369
去廣告qq下載地址 瀏覽:15
win10搜索框重新顯示不出來 瀏覽:874
tomcat版本區別 瀏覽:475
appstore電腦版有什麼好玩的游戲 瀏覽:544
南陽網站怎麼推廣 瀏覽:31
解套app什麼用 瀏覽:682
安卓設置文件許可權管理 瀏覽:451
蘋果電腦隱藏文件怎麼顯示 瀏覽:246
vuejscontextmenu 瀏覽:888
為什麼app評分總是彈窗 瀏覽:975
德塔文榜數據最高多少 瀏覽:102
參觀工具管理擺放有感 瀏覽:617

友情鏈接