⑴ 大數據工程包括哪些工作崗位
數據分析師:日常工作內容有三個方面,第一是臨時取數,第二是報表的需求分析,第三是業務專題分析。
數據挖掘工程師:日常工作內容主要有五類。第一是用戶基礎研究,第二是個性化推薦演算法,第三是風控領域應用的模型,第四是產品的知識庫,第五是文本挖掘、文本分析、語義分析、圖像識別。
數據產品經理:日常工作內容:第一是大數據平台的建設,讓獲取數據、使用數據更加容易,構建完善的指標體系,實現對業務的全流程監控,提高決策效率,降低運營成本,提升應收水平;第二是數據需求分析,形成數據產品,對內可以提升效率,控製成本,對外增加創收,最終實現數據價值的變現。
大數據研發工程師:這個崗位是需求量最大的,日常工作內容有三個方面:第一是數據的採集,比如爬蟲、日誌採集等;第二是數據預處理、ETL工作,比如數據清洗、轉換、集成、規約等;第三是大數據應用和可視化的開發。
⑵ 大數據的就業崗位有哪些
1、大數據開發工程師
大數據開發工程師,很多公司都在招聘的熱門技術人才,工資也是相對於其他方向更高一些。想要成為大數據開發工程師需要掌握計算機技術、hadoop
、spark、storm開發、hive
資料庫、Linux
操作系統等知識,具備分布式存儲、分布式計算框架等技術。
2、大數據分析師
大數據分析師是數據師的一種,指的是不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。在工作中通過運用工具,提取、分析、呈現數據,實現數據的商業意義。
作為一名數據分析師、至少需要熟練SPSS、STATISTIC、Eviews、SAS、大數據魔鏡等數據分析軟體中的一門,至少能用Acess等進行資料庫開發,至少掌握一門數學軟體如matalab、mathmatics進行新模型的構建,至少掌握一門編程語言。總之,一個優秀的數據分析師,應該業務、管理、分析、工具、設計都不落下。
3、數據挖掘工程師
做數據挖掘要從海量數據中發現規律,這就需要一定的數學知識,基本的比如線性代數、高等代數、凸優化、概率論等。
經常會用到的語言包括Python、Java、C或者C++,我自己用Python或者Java比較多。有時用
MapRece
寫程序,再用Hadoop或者Hyp來處理數據,如果用Python的話會和Spark相結合。
4、大數據可視化工程師
隨著大數據在人們工作及日常生活中的應用,大數據可視化也改變著人類的對信息的閱讀和理解方式。從網路遷徙到谷歌流感趨勢,再到阿里雲推出縣域經濟可視化產品,大數據技術和大數據可視化都是幕後的英雄。
大數據可視化工程師崗位職責:1、
依據產品業務功能,設計符合需求的可視化方案。2、
依據可視化場景不同及性能要求,選擇合適的可視化技術。3、
依據方案和技術選型製作可視化樣例。4、
配合視覺設計人員完善可視化樣例。5、
配合前端開發人員將樣例組件化。
⑶ 大數據專業有哪些就業崗位
大數據專業畢業後就業崗位主要有大數據架構師、大數據演算法工程師、大數據運營維護工程師、數據分析師/挖掘師等。
前兩個工作崗位偏技術,大數據架構師需要熟悉底層架構的,開發平台,數據建模,核心框架開發等,對計算機、數學,尤其是數據的知識要求高;大數據演算法工程師對人的要求更高,開發演算法,而且還要帶團隊,對人的學歷和能力都有比較高的要求;大數據運營維護工程師,會偏向運營和維護,對人的要求低一些,門檻沒有那麼高;數據分析師/挖掘師,會偏向業務層面,需要調研需求,挖掘分析數據,包括溝通相應的客戶,要求有比較強的與人溝通的能力。
偏技術就是接觸技術更多,偏業務就是接觸人偏多,可以說根據不同的性格,就可以勝任不同崗位的工作。當然不論在任何工作崗位,都需要很好的溝通表達能力,所以大學期間一定要對自己這方面的能力做提升。
這個領域待遇還是比較不錯的,在一二線城市,3年以上,月薪都是能達到1萬元以上的, 工作5年也是能達到月薪2-4萬/月之間的,能力強薪資會越來越高,頂級的會更高。
⑷ 大數據工作崗位有哪些 就業方向是什麼
大數據技術的熱門工作崗位主要有大數據開發工程師、大數據分析師、數據挖掘工程師、大數據可視化工程師等。這些崗位都凳扒是遲粗洞企業的核心技術崗位,有很大的需求,工資待遇也非常可觀,可以說學好了大數據技術,高薪職業任你選擇。
1、大數據開發工程師
大數據開發工程師,很多公司都在招聘的熱門技術人才,工資也是相對於其他方向更高一些。想要成為大數據開發工程師需要掌握計算機技術、hadoop 、spark、storm開發、hive 資料庫、Linux 操作系統等知識,具備分布式存儲、分布式計算框架等技術。
2、大數據分析師
大數據分析師需要對海量的大數據做分析、挖掘和展現,並且將其中有價值的信息提取出來為決策提供支持,而大數據分析師實際上就是從事這類工作的從業人員。大數據分析師不僅要具備數據分析知識,作為高級大數據分析師,還要掌握大數據技術相關知識,如Hadoop、Python等,具備更為綜合的大數據知識體系。
3、數據挖掘工程師
做數碼枯據挖掘要從海量數據中發現規律,這就需要一定的數學知識,基本的比如線性代數、高等代數、凸優化、概率論等。經常會用到的語言包括Python、Java、C或者C ,我自己用Python或者Java比較多。有時用MapRece寫程序,再用Hadoop或者Hyp來處理數據,如果用Python的話會和Spark相結合。
Hadoop大數據開發方向:市場需求旺盛,是大數據培訓的主體,目前IT培訓機構的重點。對應崗位有大數據開發工程師、爬蟲工程師、數據分析師等;
數據挖掘、數據分析&機器學習方向:學習起點高、難度大,市面上只有很少的培訓機構在做。對應崗位有數據科學家、數據挖掘工程師、機器學習工程師等;
大數據運維&雲計算方向:市場需求中等,更偏向於Linux、雲計算學科。對應崗位有大數據運維工程師等。
⑸ 大數據有哪些職位和工作機會_大數據可以應聘什麼職位
下面是比較熱門的幾個大數據崗位:
1、首席數據官(CDO)
首席數據官的工作內容非常多,職責也很復雜,他們負責公司的數據框架搭建、數據管理、數據安全保證、商務智能管理、數明弊襲據洞察和高級分析。因此,首席數據師必須個人能力出眾,同時還需要具備足夠的領導力和遠見,找准公司發展目標,協調應變管理過程。
2、營銷分析師/客戶關系管理分析師
客戶忠誠度項目、網路分析和物聯網技術積攢了大量的用戶數據,很多先進公司已經在使用相關策略來支持公司的發展計劃。尤其是市場部門能夠運用這些數據進行更有針對性的營銷。營銷分析師能夠發揮他們在Excel和SQL等數據分析工具卜察方面的專業特長,對客戶進行細分,確保數字化營銷能夠到達目標客戶群體。
3、數據工程師
隨著Hadoop和非結構化數據倉庫的流行,所有分析功能的第一要務就是要得到正確的數據。高水平的工程師需要掌握數據管理技能,熟悉提取轉換載入過程,激兄很多公司都急需這樣的人才。事實上,很多首席數據官甚至認為,數據工程師才是大數據相關行業中最重要的職位。
4、商務智能開發工程師
商務智能開發工程師的最基本職能,是管理結構數據從資料庫分配至終端用戶的過程。商務智能(BI)曾經只是商務金融的基礎,現在已經獨立出來,成為了單獨的部門,很多商務智能團隊正在搭建自服務指示板,這樣運營經理就能快速且有效地獲取高性能數據,評價公司運營情況。
5、數據可視化
隨著指示板和可視化工具的增多,商務智能「前端」研發工程師需要更熟練掌握Tableau、QlikView/QlikSense、SiSense和Looker。能夠使用d3.js在網路瀏覽器中製作數據可視化的研發工程師也越來越受到公司歡迎。很多大公司開出的年薪已經超過了7萬5千英鎊,平均日薪500多英鎊。
6、大數據工程師
正如上文提到過的,數據工程師的工作是負責管理公司的數據,包括數據的收集,存儲、處理和分析。大數據工程師需要能夠搭建並維護大型異構數據框架,這些數據通常是在MongoDB等NoSQL資料庫中。很多公司採用Hadoop框架和很多Hadoop次級軟體包,如Hive(數據軟體),Pig(數據流語言)和Spark(多編程模型)。
⑹ 大數據就業崗位有哪些
大數據方面的就業主要有三大方向:
一是數據分析類大數據人才,二是系統研發類大數據人才,三是應用開發類大數據人才。他們的基礎崗位分別是大數據系統研發工程師、大數據應用開發工程師、大數據分析師。
2大數據熱門專業
1、Hadoop開發 隨著數據規模不斷增大,傳統BI的數據處理成本過高企業負擔加重。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。並成為大數據人才必須掌握的一種技術。
2、信息架構開發 大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以十分有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。
3、數據安全研究 數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。
4、ETL研發 企業數據種類與來源的不斷增加,對數據進行整合與處理變得越來越困難,企業迫切需要一種有數據整合能力的人才。ETL開發者這是在此需求基礎下而誕生的一個職業崗位。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。