導航:首頁 > 網路數據 > 大數據測健康

大數據測健康

發布時間:2023-10-10 20:09:38

① 體檢的健康大數據是什麼

健康體檢是健康管理不可缺失的一環,而根據群體需求和生活方式的不同,對疾病專的篩查也應屬有的放矢,個性化的體檢定製將成為趨勢,針對性的檢後健康干預也將是醫療服務的重要環節之一。這也是近幾年醫療互聯網平台和移動互聯網平台崛起的重要原因之一,作為健康體檢服務平台的康康體檢網,旨在依靠互聯網技術,通過整合國內體檢機構和體檢數據,為國內體檢者提供個性化的體檢定製服務,同時聯合國內優質醫療衛生資源,做好檢後健康咨詢和干預,逐步打通完善國人健康大數據平台,為國內的慢病健康管理機構和中心的課題研究提供更多的依據和保障。

② 大數據分析在疾病與健康研究方面的應用

大數據分析在疾病與健康研究方面的應用

大數據分析技術將在以上方面發揮著特殊的作用。

一、疾病與健康研究

在疾病與健康研究方面,我們可將其分為三個子方面:健康研究、亞健康研究和疾病研究。

1、健康研究

中國是地域遼闊的多民族國家,不同地區不同種群的人的基因和健康指標有所不同,同一地區同一種群的人在不同的性別和年齡上健康標准也有差異。深入研究和分析上述人群的健康規律,對衛生保健、健康促進、疾病預防和治療有著重大的指導意義。例如:
1.1 對體檢數據分析和挖掘,得出不同地區、不同人群的健康差異,以確定精確的不同人群的健康標准,針對不同人群制定適宜的防病,治病方法以及預後標准,並量身打造個性化,地區化的健康評估模型。

1.2 在制定不同地區不同人群的參考值時,可進一步分析健康指標在不同性別、年齡和季節的差別,以及權重比,從而完善適合於國人全面的系統化的更科學的健康參考值。

1.3 人體存在的內在平衡,使得各個可觀察數據間有其特有的規律,基於經驗只能發現簡單的規律如鈣、磷常數等,使應用數據挖掘等大數據分析技術可以主動發現復雜的系統性的人體醫學規律,大幅提升防病,治病以及預後推測的技術水平,並且也對亞健康有個更科學的判斷依據,以及了解健康到亞健康的逐漸失衡的過程。

1.4 對孕婦在孕產期、產後及新生兒的健康數據進行深入分析,研究孕產婦和新生兒的健康規律,開發對孕產婦和新生兒的健康評價和因素的評估模型,給出更科學的孕產婦和新生兒保健的指導。

1.5 對兒童成長的體檢數據分析和挖掘,研究兒童的健康規律,開發對兒童成長的評價和因素的評估模型,分別適應中國遼闊的地域和眾多的人群,給出更科學的兒童成長發育指導。

1.6 對老年人的健康數據分析和研究,研究老年人的健康特點,開發對老年人健康的評價和因素的評估模型,給出更科學的老年人養生的指導。

1.7 對健康人的精神和心理數據進行深入分析,制定健康人的精神和心理參考標准,開發對健康精神和心理的評價和影響因素的評估模型,給出更科學的精神和心理衛生方面的保健指導。

2、亞健康研究

世界衛生組織將機體無器質性病變,但是有一些功能改變的狀態稱為「第三狀態」,也稱為「亞健康狀態」,主要包括:功能性改變,而不是器質性病變;體征改變,但現有醫學技術不能發現病理改變;生命質量差,長期處於低健康水平;慢性疾病伴隨的病變部位之外的不健康體征。

對亞健康進行深入分析與研究對保持健康狀態,預防和糾正亞健康狀態以及對疾病的預防和治療都有十分重要的意義。例如:

2.1 研究亞健康與疾病間的相互關系。研究各種可觀察指標(體檢數據)在亞健康中的權重,以及在不同地區、人群中的分布。應用時間序列,線性/非線性回歸研究亞健康觀察指標之間的關聯性。通過亞健康體檢數據挖掘,分析導致疾病的影響因素,建立評估模型來預測危險度,並進一步建立疾病的預測模型。

2.2 研究亞健康與健康間的相互關系。通過對體檢人群的地區、職業、年齡等因素的分析,研究最新的健康和亞健康的人群分布。不同的人群地區環境不同,生活習慣不同,加入亞健康醫學指標以外的相關外部數據(如職業、飲食、習慣、性格、愛好等)後,可發現綜合因素對亞健康的影響,以及這些因素的各自權重,及相關關系,從而探究出亞健康的原因,對預防和治療亞健康起著指導作用。

2.3 研究亞健康治療和預後的研究。通過對亞健康治療和預後的數據分析,評價治療效果,評估最佳治療方案,進一步開展對專科亞健康治療和預後的研究,同時研究其與疾病的關系。

2.4 對精神和心理亞健康的研究。如對常見的精神亞健康狀態:如神經衰弱、抑鬱、焦慮和強迫等症狀,進行數據歸納整理、分析挖掘,從而導出精神和心理亞健康的新知識發現,探究出精神疾病的原因,對預防和治療精神疾病起著指導作用。

2.5 將住院和社區健康管理數據相結合,進行因素權重分析和多因素的特性抽取,最後形成模型指導治療。最理想的情況是個體化評估模型,為每個病人建立專用預測模型。

3、疾病研究

中國面臨的嚴重危害人民健康的疾病包括:

傳染性疾病,如結核病、艾滋病、SARS、禽流感、甲型H1N1流感等;

慢性非傳染性疾病,如惡性腫瘤、腦血管病、心臟病、糖尿病等;

精神和心理疾病;

小兒出生缺陷。

對患有各種疾病的病人的醫學數據及相關數據的研究分析,對各種疾病的預防和治療都有十分重要的價值。例如:

3.1 對傳染性疾病,如結核病、艾滋病、SARS、禽流感、甲型H1N1流感等疾病的研究。應用數據挖掘技術對傳染性疾病的數據進行分析,找出傳染性疾病的發病規律,揭示傳染性疾病的病因,進一步摸索出傳染性疾病的變異規律,建立傳染性疾病的預測模型。

3.2 對慢性非傳染性疾病,如惡性腫瘤、腦血管病、心臟病、糖尿病等疾病的研究。應用數據倉庫技術和數據挖掘技術對慢性常見病的數據進行分析,找出慢性常見病的發病規律,探索慢性常見病的病因,進一步摸索出慢性常見病的並發症規律,科學評估各種治療方案的療效,建立慢性常見病的預測模型。

3.3 對精神和心理疾病的研究。應用數據倉庫技術、數據挖掘技術和數理統計技術對精神和心理疾病的數據進行分析,從廣泛的多變數集中找出影響精神和心理疾病的主要因素,在遺傳學、後天影響和病理學等多方面探索精神和心理疾病的病因,科學評估各種治療方案的療效,建立精神和心理疾病的預測模型。

3.4 對小兒出生缺陷的研究。應用大數據分析技術對兒童出生缺陷的數據進行分析,從廣泛的大變數集中找出影響兒童出生缺陷的主要因素,在環境、遺傳學、病理學等多方面探索兒童出生缺陷的病因,建立兒童出生缺陷的預測模型。

3.5 針對門診和住院病人數據在線分析統計學差異,尋找陽性案例,為研究提供素材,並為科研的預實驗提供思路和准備。對住院數據進行多維度分析和挖掘,橫向達到單病種的水平,縱向包括所有可觀測數據,所收集來的知識有很大可能會啟發醫學專家有新發現。

3.6不同 治療手段和治療效果的在線分析。結合收集來的大量資料全面分析,盡量提前全面的了解治療的臨床效果。

3.7 葯品治療效果在線分析,治療效果、副作用、對其他疾病的效果評估。結合收集來的大量資料全面分析,盡量提前全面的了解新葯和老葯。目前的葯品不良反應主要靠醫生的通報,對醫生的職業素養和敏感有很大的依賴,而使用數據挖掘及資料庫中的知識發現,可以極大限度地改進這項工作。

二、環境與健康研究

環境因素對健康造成的損害較其他健康損害復雜,是微量、慢性、長期和不可逆轉的。環境健康影響與公眾利益息息相關,環境健康損害如得不到妥善處理還將轉化為社會、經濟問題。環境與公共健康研究以人類生態系統可持續發展研究為基礎,關懷人類現在和未來的健康與安全,從環境研究途徑關注社會、經濟活動對人類生理和心理的健康影響,探索環境變遷對人民健康造成危害的預防和治理措施。

應用大數據分析技術對環境健康的研究,主要包括發現案例、發病機理和臨床治療研究,預防和治理各類環境流行病在污染源以及污染途徑控制的研究等。例如:
1. 應用大數據分析技術研究環境因素對健康的影響,實行 一體化的環境和健康監測,並在全國實現數據共享。

2. 應用大數據分析技術研究環境污染對兒童的影響,以解決環境對兒童所造成的不健康和疾病迅速增長的問題,從而給予兒童特殊注意的環境和健康指導。

3. 應用大數據分析技術開展職業病和職業多發病的預防預測。對於各種職業的發病分布和嚴重程度,以及對職業病的深入分析。不僅包括傳統意義的職業病,也包括不同職業的不同的疾病分布和在病因中的權重。另外,還可以分析不同職業的暴露特點進而對病因進行研究。

4. 應用大數據分析技術開展對空氣污染顯著提高城市人群呼吸道和過敏性疾病的發生 率的研究。

5. 應用大數據分析技術開展雜訊污染損害兒童的聽力和干擾他們的學習能力的研究。

6. 應用大數據分析技術開展快餐業的發展使肥胖病發病率不斷增長的研究,尤其是不合理的營養對兒童健康的影響。

7. 應用大數據分析技術開展對轉基因生物技術的應用對自然界生物和人類基因的潛在影響的研究。

三、醫葯生物技術與健康

生物技術涵蓋生命科學的所有領域,醫葯生物技術是生物技術的重要組成部分。當今人類面臨的人口、食物、健康、環境和資源問題,無不與之緊密相關。醫葯生物技術最鮮明的特點是大量新思想、新技術、新材料、新方法和新產品引入醫學研究和醫療保健之中,如全新的醫學成像技術、基因工程技術、微電子技術、幹細胞工程技術、組織工程技術、納米技術、生物晶元技術、克隆技術、酶工程技術、細胞工程技術、發酵工程技術、蛋白質工程技術、生物醫學工程技術、基因組與蛋白質組技術、生物信息技術和中醫葯技術等及其產品,將大大提高疾病預防、診斷、治療和葯物設計研製水平,以及對突發事件(如傳染病和生物恐怖等)的檢測、預防與治療水平。

以大數據分析技術為核心的生物信息技術在由眾多新技術構成的醫葯生物技術中發揮有獨特的作用。例如:

1. 利用生物信息技術進行生物信息的存儲與獲取。

2. 利用生物信息技術開展基因的序列對比、測序和拼接。

3. 利用生物信息技術進開展基因預測。

4. 利用生物信息技術進行生物進化與系統發育分析。

5. 利用生物信息技術進行蛋白質結構預測和RAN結構預測。

6. 利用生物信息技術進行分子設計和葯物設計。

7. 利用生物信息技術進行腫瘤分類及遺傳學分析。

8. 利用生物信息技術開展在生物分子層面對精神病的研究及遺傳學分析。

9. 利用生物信息技術開展在生物分子層面對如H1N1等傳染病的研究。

四、衛生宏觀決策支持

衛生宏觀決策支持系統是以數據倉庫為數據中心、以數據挖掘為技術核心、以商務智能為展現工具的綜合衛生信息平台。它可以建立在各級別衛生系統上,如醫院、地區衛生系統、全國衛生系統,為各級衛生部門提供智能決策系統,深入了解衛生系統的歷史和現在,把握衛生系統業務發展的未來,評估衛生系統內部各部門的業務效績,幫助各級決策者提供最佳實施方案,給決策者一雙慧眼,清晰認知系統內各方面變化趨勢和業務得失,使對系統各部門的評價、考核、獎勵更加科學、公正、客觀,使系統內各級關系更加和諧,積極發揮各部門的潛能,提高系統的整體業務水平和經濟效益。使用商務智能輔助決策,可以提供各種有價值的信息,各種事件的關聯,以及不同於微觀的角度分析各種衛生信息,如預防接種基本數據,傳染病報告等等。

以上是小編為大家分享的關於 大數據分析在疾病與健康研究方面的應用的相關內容,更多信息可以關注環球青藤分享更多干貨

③ 北京市被大數據監測到的健康監測人員如何管理

處於健康監測期間的人員,需每天兩次測量體溫,定時向社區、單位、學校或居住酒店上報個人健康狀況,不聚集、不聚會、避免不必要的外出。 健康監測期間,如出現發熱等症狀,應及時去設有發熱門診的醫療機構就診。就診途中要閉環管理,不要乘坐公共交通工具。在條件允許的情況下,盡量步行或乘坐私人交通工具前往。抵達醫療機構後,要向醫務人員如實准確提供個人近期旅居史、接觸史、個人健康情況,不得瞞報、漏報。配合開展流行病學調查、健康排查、核酸檢測、隔離觀察等防控措施。如經篩查排除新冠肺炎可能,仍要按要求做好剩餘時間的健康監測。

④ 大數據在醫學領域有什麼應用

1、健康監測


大數據技術可以提供居民的健康檔案,包括全部診療信息、體檢信息,這些信息可以為患病居民提供更有針對性的治療方案。並且通過智能手錶等可穿戴設備,隨時帶著,可以實時匯報病人的健康情況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。


2、數據電子化管理


患者的影像數據,病歷數據、檢驗檢查結果、診療費用等各種數據錄入大數據系統,統一管理起來,每位醫生都能夠在系統中查到病人的詳細資料以及變更記錄。而無需再通過耗時的紙質工作來完成,這對於大夫更好地把握疾病的診斷和治療十分重要。


3、醫療科研


在醫療科研領域,運用大數據技術對各種數據進行篩選、分析,可以為科研工作提供強有力的數據分析支持。例如健康危險因素分析的科研中,利用大數據技術可以在系統全面地收集健康危險因素數據,包括環境因素,生物因素,經濟社會因素,個人行為和心理因素,醫療衛生服務因素,以及人類生物遺傳因素等的基礎上,進行比對關聯分析,針對不同區域、家族進行評估和遴選,研究某些疾病發病的家族性、地區區域分布性等特性。

⑤ 健康大數據分析技術有哪些

21世紀是以生命科學為主導、科學技術迅猛發展的世紀,科技競爭力已成為決定國家前途和命運的重要因素,是推動經濟發展、促進社會進步和維護國家安全的關鍵所在。醫學在生命科學中佔有極其重要的地位,衛生科技的創新和進步,將促進醫療衛生事業的發展,提高全民族的健康素質,增強中國的科技競爭力和綜合國力。世界最新醫學科研技術是包括醫學、葯學、分子生物學、數學、計算科學、以及大數據分析技術等多種學科和技術的綜合。
大數據分析技術主要包括是以最新應用數學、前沿計算科學和信息工程學為核心,以數據挖掘、數據倉庫、商務智能等智能化的信息科技技術為手段,它不僅能夠大幅提高傳統的醫學科研技術,而且在最新的分子生物技術的發展中也發揮著關鍵的作用。
一項新技術的採用,往往意味著全新的方向。如同倫琴射線在醫學上的應用,開創了全新的醫學視角一樣,隨後的CT,MRI,B-US,PETS等新技術的採用一次次的推動了醫學的發展,擴展了醫生的視野,如今,影像學已經是不可缺少的組成部分。信息學的重點是對一切可觀測的指標(如年齡,住址,性別,化驗,治療,影像等一切通過現有手段可以觀測的數據)整合後,結合應用數學,系統工程學,進行再分析、再處理。
少量的個案往往不足以揭示規律和知識,當數量足夠大時,規律才有可能顯現。所以整合成數據倉庫也是必要的。而規律並不僅僅浮在數據表面,所以統計學和數據挖掘成為必要的手段,而在線式的方法提高了速度,基於系統工程的向導式結構有利於穩定大數據分析質量。
當年倫琴射線引入醫學的時候,一定不會想到今日的局面。而將KDD引入醫學領域,在中國廣闊地域,巨大的人口基數下,基於這些特點形成的巨大的衛生信息數據,僅僅是用在線式的傳統方法就可以發現大量有價值的醫學知識,而結合數據挖掘,數據倉庫,系統工程,發現新知識的可能性更是大大增加了。
健康大數據分析技術
大數據分析技術主要包括:
以數據挖掘為核心的知識發現技術,
以數據倉庫為核心的數據整合技術,
以商務智能為核心的智能決策技術。
一、以數據挖掘為核心的知識發現技術
以數據挖掘為核心的知識發現技術可以直接挖掘醫學新知識,幫助科研人員加速取得科研成果,甚至重大科研發現。
運用多種數據挖掘技術探索數據規律,為科研人員的科研設計提供科學依據,為科研命題指明方向,保證了科研的成功率。
數據挖掘是一種突破傳統的分析手段,為各類科研技術提供新的技術方法,大大縮短科研和分析周期,深入揭示醫學潛在規律。
數據挖掘,又稱知識發現(KDD),是從大量的數據中,抽取潛在的、有價值的知識的過程。數據挖掘所探尋的模式是一種客觀存在的、但隱藏在數據中未被發現的知識。例如,KDD可直接挖掘疾病高發人群,疾病及症狀間的未知聯系,化驗指標間的影響關系及化驗指標與疾病間的潛在影響,對未知的檢驗項值進行預測等等。通過可觀測指標推斷不可觀測指標,或通過簡單易行的觀測指標推斷昂貴的或有創的指標。由簡而知繁,由易而知難。再如,在科研設計中利用聚類分析、因子權重分析,我們可以對數據進行科學分組、考察多因素的不同權重、幫助確定析因分析或嵌套分析等不同的科研設計。KDD在醫學中應用非常廣泛,為醫學研究提供傳統方法不能企及的前沿技術手段,例如:
聚類分析關聯規則分析因子權重分析回歸預測分析特性抽取分析
二、以數據倉庫為核心的數據整合技術
以數據倉庫技術為核心的醫學數據整合系統,獨立於已有的醫療機構業務系統,以全新的設計將分散的業務系統產生的不一致的數據進行整理、變換、集成,整合得到全面、高效、一致的信息。
數據倉庫技術還使得對歷史的全部海量數據進行在線的、實時的、深入的分析成為可能,並使其變得很輕松。
直接利用積累的現有醫學數據,使科研成本大大降低,相同的的科研經費取得更多科研成果。
應用數據倉庫的整合技術,使獲得大數據科研樣本數據易如反掌。
結合中國龐大的人口基數和橫跨寒帶溫帶熱帶的廣闊地域,可建成世界上最大的衛生信息數據倉庫,其全面的信息量是每個醫務人員夢寐以求的。如能與世界各國合作,共享,整合,將成為與人類基因組計劃齊名的壯舉。
三、以商務智能為核心的智能決策技術
應用成熟的專業分析系統提供一致的准確的實時的數據分析,為各級各方面衛生決策提供可靠依據,使資源和效率得到優化,還能從經營決策和管理上獲取經濟效益和社會效益。
將商務智能技術(BI)應用於衛生決策分析,使決策者擺脫傳統報表的束縛,以全新的先進的分析手段多維度地深入理解需要的數據,為廣泛而深入的分析提供了新的有力工具。
專業的分析報表如累計貢獻度分析,分攤百分比分析,嵌套排名分析等專業分析報表使決策者對歷史和現狀一目瞭然,對各種業務表現的因果關系能輕松的了如指掌。
健康大數據分析的應用
健康大數據分析技術在如下四個方面得到應用:
疾病與健康研究
環境與健康研究
醫葯生物技術研究
衛生宏觀決策支持
大數據分析技術將在以上方面發揮著特殊的作用。

與大數據測健康相關的資料

熱點內容
蘋果的網站數據是什麼 瀏覽:22
ps滾字教程 瀏覽:237
win7網路鄰居如何保存ftp 瀏覽:186
安卓客戶端代理伺服器 瀏覽:572
編程用蘋果 瀏覽:659
51虛擬機的文件管理在哪裡 瀏覽:13
win10系統有沒有便簽 瀏覽:722
java引用傳遞和值傳遞 瀏覽:109
oracle下載安裝教程 瀏覽:854
php篩選資料庫 瀏覽:830
怎麼用手機看wlan密碼 瀏覽:745
奧維地圖導入的文件在哪裡 瀏覽:364
sdltrados2014教程 瀏覽:43
培訓制度文件在哪裡找 瀏覽:601
勒索病毒防疫工具 瀏覽:861
win10c不能打開 瀏覽:375
xfplay影音先鋒蘋果版 瀏覽:597
兩個文件打開兩個word 瀏覽:921
蘋果6s桌面圖標輕微抖動 瀏覽:326
如何刪除手機中看不見的臨時文件 瀏覽:469

友情鏈接