導航:首頁 > 網路數據 > 大數據項目工作內容怎麼寫

大數據項目工作內容怎麼寫

發布時間:2023-10-09 01:28:51

1. 大數據架構師崗位的主要職責概述

大數據架構師崗位的主要職責概述 篇1

職責:

1、負責大數據平台及BI系統框架設計、規劃、技術選型,架構設計並完成系統基礎服務的開發;

2、負責海量埋點規則、SDK標准化、埋點數據採集、處理及存儲,業務數據分布存儲、流式/實時計算等應用層架構搭建及核心代碼實現;

3、開發大數據平台的核心代碼,項目敏捷開發流程管理,完成系統調試、集成與實施,對每個項目周期技術難題的解決,保證大數據產品的上線運行;

4、負責大數據平台的架構優化,代碼評審,並根據業務需求持續優化數據架構,保證產品的可靠性、穩定性;

5、指導開發人員完成數據模型規劃建設,分析模型構建及分析呈現,分享技術經驗;

6、有效制定各種突發性研發技術故障的應對預案,有清晰的隱患意識;

7、深入研究大數據相關技術和產品,跟進業界先進技術;

任職要求

1、統計學、應用數學或計算機相關專業大學本科以上學歷;

2、熟悉互聯網移動端埋點方法(點擊和瀏覽等行為埋點),無埋點方案等,有埋點SDK獨立開發經驗者優選;

3、熟悉Hadoop,MR/MapRece,Hdfs,Hbase,Redis,Storm,Python,zookeeper,kafka,flinkHadoop,hive,mahout,flume,ElasticSearch,KafkaPython等,具備實際項目設計及開發經驗;

4、熟悉數據採集、數據清洗、分析和建模工作相關技術細節及流程

5、熟悉Liunx/Unix操作系統,能熟練使用shell/perl等腳本語言,熟練掌握java/python/go/C++中一種或多種編程語言

6、具備一定的演算法能力,了解機器學習/深度學習演算法工具使用,有主流大數據計算組件開發和使用經驗者優先

7、熟悉大數據可視化工具Tableau/echarts

8、具有較強的執行力,高度的責任感、很強的學習、溝通能力,能夠在高壓下高效工作;

大數據架構師崗位的主要職責概述 篇2

職責:

根據大數據業務需求,設計大數據方案及架構,實現相關功能;

搭建和維護大數據集群,保證集群規模持續、穩定、高效平穩運行;

負責大數據業務的設計和指導具體開發工作;

負責公司產品研發過程中的數據及存儲設計;

針對數據分析工作,能夠完成和指導負責業務數據建模。

職位要求:

計算機、自動化或相關專業(如統計學、數學)本科以上學歷,3年以上大數據處理相關工作經驗;

精通大數據主流框架(如Hadoop、hive、Spark等);

熟悉MySQL、NoSQL(MongoDB、Redis)等主流資料庫,以及rabbit MQ等隊列技術;

熟悉hadoop/spark生態的原理、特性且有實戰開發經驗;

熟悉常用的數據挖掘演算法優先。

大數據架構師崗位的主要職責概述 篇3

職責:

1、大數據平台架構規劃與設計;

2、負責大數據平台技術框架的選型與技術難點攻關;

3、能夠獨立進行行業大數據應用的整體技術框架、業務框架和系統架構設計和調優等工作,根據系統的業務需求,能夠指導開發團隊完成實施工作;

4、負責數據基礎架構和數據處理體系的升級和優化,不斷提升系統的穩定性和效率,為相關的業務提供大數據底層平台的支持和保證;

5、培養和建立大數據團隊,對團隊進行技術指導。

任職要求:

1、計算機相關專業的背景專業一類院校畢業本科、碩士學位,8年(碩士5年)以上工作經驗(至少擁有3年以上大數據項目或產品架構經驗);

2、精通Java,J2EE相關技術,精通常見開源框架的架構,精通關系資料庫系統(Oracle MySQL等)和noSQL數據存儲系統的原理和架構;

3、精通SQL和Maprece、Spark處理方法;

4、精通大數據系統架構,熟悉業界數據倉庫建模方法及新的建模方法的發展,有DW,BI架構體系的專項建設經驗;

5、對大數據體系有深入認識,熟悉Kafka、Hadoop、Hive、HBase、Spark、Storm、greenplum、ES、Redis等大數據技術,並能設計相關數據模型;

6、很強的學習、分析和解決問題能力,可以迅速掌握業務邏輯並轉化為技術方案,能獨立撰寫項目解決方案、項目技術文檔;

7、具有較強的內外溝通能力,良好的團隊意識和協作精神;

8、機器學習技術、數據挖掘、人工智慧經驗豐富者優先考慮;

9、具有能源電力行業工作經驗者優先。

大數據架構師崗位的主要職責概述 篇4

職責:

1.參與公司數據平台系統規劃和架構工作,主導系統的架構設計和項目實施,確保項目質量和關鍵性能指標達成;

2.統籌和推進製造工廠內部數據系統的構建,搭建不同來源數據之間的邏輯關系,能夠為公司運營診斷、運營效率提升提供數據支持;

3.負責數據系統需求對接、各信息化系統數據對接、軟體供應商管理工作

5.根據現狀制定總體的數據治理方案及數據體系建立,包括數據採集、接入、分類、開發標准和規范,制定全鏈路數據治理方案;深入挖掘公司數據業務,超強的數據業務感知力,挖掘數據價值,推動數據變現場景的落地,為決策及業務賦能;

6.定義不同的數據應用場景,推動公司的數據可視化工作,提升公司數據分析效率和數據價值轉化。

任職要求:

1.本科以上學歷,8年以上軟體行業從業經驗,5年以上大數據架構設計經驗,熟悉BI平台、大數據系統相關技術架構及技術標准;

2.熟悉數據倉庫、熟悉數據集市,了解數據挖掘、數據抽取、數據清洗、數據建模相關技術;

3.熟悉大數據相關技術:Hadoop、Hive、Hbase、Storm、Flink、Spark、Kafka、RabbitMQ;

4.熟悉製造企業信息化系統及相關資料庫技術;

5.具備大數據平台、計算存儲平台、可視化開發平台經驗,具有製造企業大數據系統項目開發或實施經驗優先;

6.對數據敏感,具備優秀的業務需求分析和報告展示能力,具備製造企業數據分析和數據洞察、大數據系統的架構設計能力,了解主流的報表工具或新興的前端報表工具;

7.有較強的溝通和組織協調能力,具備結果導向思維,有相關項目管理經驗優先。

大數據架構師崗位的.主要職責概述 篇5

職責:

1.負責產品級業務系統架構(如業務數據對象識別,數據實體、數據屬性分析,數據標准、端到端數據流等)的設計與優化。協助推動跨領域重大數據問題的分析、定位、解決方案設計,從架構設計上保障系統高性能、高可用性、高安全性、高時效性、分布式擴展性,並對系統質量負責。

2.負責雲數據平台的架構設計和數據處理體系的優化,推動雲數據平台建設和持續升級,並制定雲數據平台調用約束和規范。

3.結合行業應用的需求負責數據流各環節上的方案選型,主導雲數據平台建設,參與核心代碼編寫、審查;數據的統計邏輯回歸演算法、實時交互分析;數據可視化方案等等的選型、部署、集成融合等等。

4.對雲數據平台的關注業內技術動態,持續推動平台技術架構升級,以滿足公司不同階段的數據需求。

任職要求:

1.熟悉雲計算基礎平台,包括linux(Ubuntu/CentOS)和KVM、OpenStack/K8S等基礎環境,熟悉控制、計算、存儲和網路;

2.掌握大型分布式系統的技術棧,如:CDN、負載均衡、服務化/非同步化、分布式緩存、NoSQL、資料庫垂直及水平擴容;熟悉大數據應用端到端的相關高性能產品。

3.精通Java,Python,Shell編程語言,精通SQL、NoSQL等資料庫增刪改查的操作優化;

4.PB級別實戰數據平台和生產環境的實施、開發和管理經驗;

5.熟悉Docker等容器的編排封裝,熟悉微服務的開發和日常調度;

6.計算機、軟體、電子信息及通信等相關專業本科以上學歷,5年以上軟體工程開發經驗,2年以上大數據架構師工作經驗。

大數據架構師崗位的主要職責概述 篇6

職責描述:

1、負責集團大數據資產庫的技術架構、核心設計方案,並推動落地;

2、帶領大數據技術團隊實現各項數據接入、數據挖掘分析及數據可視化;

3、新技術預研,解決團隊技術難題。

任職要求:

1、在技術領域有5年以上相關經驗,3年以上的架構設計或產品經理經驗;

2、具有2年以上大數據產品和數據分析相關項目經驗;

3、精通大數據分布式系統(hadoop、spark、hive等)的架構原理、技術設計;精通linux系統;精通一門主流編程語言,java優先。

大數據架構師崗位的主要職責概述 篇7

崗位職責:

1、基於公司大數據基礎和數據資產積累,負責大數據應用整體技術架構的設計、優化,建設大數據能力開放平台;負責大數據應用產品的架構設計、技術把控工作。

2、負責制定大數據應用系統的數據安全管控體系和數據使用規范。

3、作為大數據技術方案到產品實現的技術負責人,負責關鍵技術點攻堅工作,負責內部技術推廣、培訓及知識轉移工作。

4、負責大數據系統研發項目任務規劃、整體進度、風險把控,有效協同團隊成員並組織跨團隊技術協作,保證項目質量與進度。

5、負責提升產品技術團隊的技術影響力,針對新人、普通開發人員進行有效輔導,幫助其快速成長。

任職資格:

1、計算機、數學或相關專業本科以上學歷,5—20xx年工作經驗,具有大型系統的技術架構應用架構數據架構相關的實踐工作經驗。

2、有分布式系統分析及架構設計經驗,熟悉基於計算集群的軟體系統架構和實施經驗。

3、掌握Hadoop/Spark/Storm生態圈的主流技術及產品,深入了解Hadoop/Spark/Storm生態圈產品的工作原理及應用場景。

4、掌握Mysql/Oracle等常用關系型資料庫,能夠對SQL進行優化。

5、熟悉分布式系統基礎設施中常用的技術,如緩存(Varnish、Memcache、Redis)、消息中間件(Rabbit MQ、Active MQ、Kafka、NSQ)等;有實踐經驗者優先。

6、熟悉Linux,Java基礎扎實,至少3—5年以上Java應用開發經驗,熟悉常用的設計模式和開源框架。

大數據架構師崗位的主要職責概述 篇8

崗位職責:

1、負責公司大數據平台架構的技術選型和技術難點攻關工作;

2、依據行業數據現狀和客戶需求,完成行業大數據的特定技術方案設計與撰寫;

3、負責研究跟進大數據架構領域新興技術並在公司內部進行分享;

4、參與公司大數據項目的技術交流、解決方案定製以及項目的招投標工作;

5、參與公司大數據項目前期的架構設計工作;

任職要求:

1、計算機及相關專業本科以上,5年以上數據類項目(數據倉庫、商務智能)實施經驗,至少2年以上大數據架構設計和開發經驗,至少主導過一個大數據平台項目架構設計;

2、精通大數據生態圈的技術,包括但不限於MapRece、Spark、Hadoop、Kafka、Mongodb、Redis、Flume、Storm、Hbase、Hive,具備數據統計查詢性能優化能力。熟悉星環大數據產品線及有過產品項目實施經驗者優先;

3、優秀的方案撰寫能力,思路清晰,邏輯思維強,能夠根據業務需求設計合理的解決方案;

4、精通ORACLE、DB2、mySql等主流關系型資料庫,熟悉數據倉庫建設思路和數據分層架構思想;

5。熟練掌握java、R、python等1—2門數據挖掘開發語言;

6。熟悉雲服務平台及微服務相關架構思想和技術路線,熟悉阿里雲或騰訊雲產品者優先;

7、有煙草或製造行業大數據解決方案售前經驗者優先;

8、能適應售前支持和項目實施需要的短期出差;

大數據架構師崗位的主要職責概述 篇9

崗位職責:

1、負責相關開源系統/組件的性能、穩定性、可靠性等方面的深度優化;

2、負責解決項目上線後生產環境的各種實際問題,保障大數據平台在生產上的安全、平穩運行;

3、推動優化跨部門的業務流程,參與業務部門的技術方案設計、評審、指導;

4、負責技術團隊人員培訓、人員成長指導。

5、應項目要求本月辦公地址在錦江區金石路316號新希望中鼎國際辦公,月底項目結束後在總部公司辦公

任職要求:

1、熟悉linux、JVM底層原理,能作為技術擔當,解決核心技術問題;

2、3年以上大數據平台項目架構或開發經驗,對大數據生態技術體系有全面了解,如Yarn、Spark、HBase、Hive、Elasticsearch、Kafka、PrestoDB、Phoenix等;

3、掌握git、maven、gradle、junit等工具和實踐,注重文檔管理、注重工程規范優先;

4、熟悉Java後台開發體系,具備微服務架構的項目實施經驗,有Dubbo/Spring cloud微服務架構設計經驗優先;

5、性格開朗、善於溝通,有極強的技術敏感性和自我驅動學習能力,注重團隊意識。

大數據架構師崗位的主要職責概述 篇10

職責描述:

1、負責大數據平台框架的規劃設計、搭建、優化和運維;

2、負責架構持續優化及系統關鍵模塊的設計開發,協助團隊解決開發過程中的技術難題;

3、負責大數據相關新技術的調研,關注大數據技術發展趨勢、研究開源技術、將新技術應用到大數據平台,推動數據平台發展;

4、負責數據平台開發規范制定,數據建模及核心框架開發。

任職要求:

1、計算機、數學等專業本科及以上學歷;

2、具有5年及以上大數據相關工作經驗;

3、具有扎實的大數據和數據倉庫的理論功底,負責過大數據平台或數據倉庫設計;

4、基於hadoop的大數據體系有深入認識,具備相關產品(hadoop、hive、hbase、spark、storm、 flume、kafka、es等)項目應用研發經驗,有hadoop集群搭建和管理經驗;

5、熟悉傳統數據倉庫數據建模,etl架構和開發流程,使用過kettle、talend、informatic等至少一種工具;

6、自驅力強、優秀的團隊意識和溝通能力,對新技術有好奇心,學習能力和主動性強,有鑽研精神,充滿激情,樂於接受挑戰;

2. 大數據工程師日常工作內容有哪些

當前隨著雲計算、大數據平台逐漸開始落地應用,大數據開發工程師(行業領域)的崗位需求正在不斷增加,目前也有不少程序員(Java方向)也會轉向大數據開發崗位,這些崗位的崗位附加值還是比較高的。這些開發崗位的日常工作基本上就是完成代碼的編寫,只不過需要與大數據平台進行交互,需要調用大數據平台的各種服務來完成功能實現,總體上的難度並不算大,但是需要具有一定的行業經驗。

當前大數據平台開發崗位的附加值還是比較高的,大數據平台開發崗位往往集中在大型互聯網企業,隨著雲計算逐漸從IaaS向PaaS過渡,大數據平台開發也會基於行業特點來開發針對性比較強的PaaS平台,這是整合行業資源並搭建技術生態的一個關鍵。搭建PaaS平台不僅需要掌握大數據知識,同時還需要掌握雲計算知識,實際上大數據和雲計算本身就有比較緊密的聯系,二者在技術體系結構上都是以分布式存儲和分布式計算為基礎,只不過關注點不同而已。

大數據運維工程師以搭建大數據平台為主,雖然這部分崗位的門檻相對比較低,但是需要學習的內容還是比較多的,而且內容也比較雜,網路知識、資料庫管理知識、操作系統(Linux)知識、大數據平台(含開源和商用平台)知識都需要掌握一些,對於實踐操作的要求會比較高。

最後,當前大數據工程師往往並不包含專業的數據分析崗位,一般數據分析崗位都會單獨列出來,這部分崗位涉及到演算法崗、開發崗(實現)和數據呈現崗等,數據分析崗位對於從業者的數學基礎要求比較高,同時還需要掌握大量的數據分析工具,當然也離不開Python、Sql等知識。

關於大數據工程師日常工作內容有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

3. 大數據工作內容是什麼

為你整理了幾個最常見的大數據人才工作內容。
數據分析師
這個職位大概是最常見的,「數據分析師」指的是不同行業中,專門從事行業內數據搜集、整理、分析,並依據這些數據做出研究、評估的專業人員。
數據科學家
數據架構師
數據架構師要負責建立和維持公司數據儲存的技術基準,策劃硬體和軟體的結構,確保數據儲存系統可以支持未來的數據量和分析需求。數據架構師通常擁有電腦科學學位,並且精通資料庫相關知識,像是關聯式資料庫(Relational database)、數據倉儲(Data warehouse)、以及分散式數據系統(Distributed storage system)等等。美國地區數據架構師的薪資范圍是 $65,928 到 $147,868 美元,中間值為 $105,581 美元,以目前的趨勢來看,比起 SQL ,擅長 OracleDB 的人才較容易得到高薪。

4. 大數據運維的主要工作內容是什麼

大數據運維,這里指互聯網運維,通常屬於技術部門,與研發、測試、系統管理同為互專聯網產屬品技術支撐的4大部門,這個劃分在國內和國外以及大小公司間都會多少有一些不同。

一個互聯網產品的生成一般經歷的過程是:產品經理(proct manager,非技術部)需求分析、研發部門開發、測試部門測試、運維部門部署發布以及長期的運行維護。

一般來講國內的互聯網運維負責軟體測試交付後的發布和管理,其核心目標是將交付的業務軟體和硬體基礎設施高效合理的整合,轉換為可持續提供高質量服務的產品,同時最大限度降低服務運行的成本,保障服務運行的安全。

5. 數據工程師是做什麼工作內容

數據工程師都做什麼?
數據工程師負責創建和維護分析基礎架構,該基礎架構幾乎可以支持數據世界中的所有其他功能。他們負責大數據架構的開發、構建、維護和測試,例如資料庫和大數據處理系統。大數據工程師還負責創建用於建模,挖掘,獲取和驗證數據集合等流程。
數據工程師的關鍵技能
下面介紹數據工程師所需的幾項關鍵技能。
1.大數據架構的工具與組件
數據工程師更關注分析基礎架構,因此所需的大部分技能都是以架構為中心的。
2.深入了解SQL和其它資料庫解決方案
數據工程師需要熟悉資料庫管理系統,深入了解SQL至關重要。同樣其它資料庫解決方案,例如Cassandra或BigTable也須熟悉,因為不是每個資料庫都是由可識別的標准來構建。
3.數據倉庫和ETL工具
數據倉庫和ETL經驗對於數據工程師至關重要。像Redshift或Panoply這樣的數據倉庫解決方案,以及ETL工具,比如StitchData或Segment都非常有用。此外,數據存儲和數據檢索經驗同樣重要,因為處理的數據量是個天文數字。
4.基於Hadoop的分析(HBase,Hive,MapRece等)
對基於Apache Hadoop的分析有深刻理解是這個領域的一個非常必要的需求,一般情況下HBase,Hive和MapRece的知識存儲是必需的。
5.編碼
說到解決方案,編碼與開發能力是一個重要的優點(這也是許多職位的要求),你要熟悉Python,C/C++,Java,Perl,Golang或其它語言,這會非常有價值。
6.機器學習
雖然數據工程師主要關注的是數據科學,但對數據處理技術的理解會加分,比如一些統計分析知識和基礎數據建模。
機器學習已經成為標准數據科學,該領域的知識可以幫我們構建同類產品的解決方案。這種知識還有一個好處,就是讓你在這個領域極具市場價值,因為在這種情況下能夠「戴上兩頂帽子」會讓你成為一個更強大的工具。
7.多種操作系統
最後,需要我們對Unix,Linux和Solaris系統有深入了解,許多數學工具基於這些操作系統,因為它們有Windows和Mac系統功能沒有的訪問許可權和特殊硬體需求。

6. 大數據開發工程師的基本職責-崗位職責

大數據開發工程師的基本職責-崗位職責

在學習、工作、生活中,很多情況下我們都會接觸到崗位職責,明確崗位職責能讓員工知曉和掌握崗位職責,能夠最大化的進行勞動用工管理,科學的進行人力配置,做到人盡其才、人崗匹配。我們該怎麼制定崗位職責呢?以下是我為大家整理的大數據開發工程師的基本職責-崗位職責,僅供參考,歡迎大家閱讀。

大數據開發工程師的基本職責-崗位職責1

職責:

1、參與大數據平台搭建以及項目技術架構。

2、數據分析,挖掘,模型具體的產品化;

3、根據產品需求,分析編寫和制定大數據相關解決方案

崗位要求:

1、計算機相關專業本科以上學歷,編程基礎扎實,有2年以上大數據開發經驗

2、熟悉Hadoop生態和體系架構,熟悉Flink、Spark,Hive等常用開源工具

3、熟悉Flume,kakfa,scribe等日誌收集體系

4、熟悉主流資料庫(Oracle、postgresql、Mysql、Sql Server)中的1種及以上,有較好的SQL性能調優經驗

5、有數據倉庫ETL經驗者優先

6、有用戶行為日誌採集、海量數據處理、數據建模方面經驗者優先

7、有持續學習的能力;喜歡開源軟體,樂於知識分享;對工作認真負責;可以獨立承擔較大工作壓力

大數據開發工程師的基本職責-崗位職責2

職責:

1、數字貨幣領域數據統計分析,負責數字貨幣量化投資策略的設計、管理以及實際投資運作

2、與交易員對接,制定切實可行的的'策略測試計劃,開展新策略模型的開發和驗證

3、協助交易員進行交易、風險管理,並對實際交易結果進行量化的績效分析,推動交易自動化

4、上級交辦的其他工作

任職要求:

1、數學/計算機/金融專業畢業,有扎實的演算法和機器學習的理論基礎

2、有量化實盤交易經驗,具備豐富的數學建模經驗及較強的數據處理能力優先

3、對金融市場的價格波動有獨特理解和深入的量化分析,具備一定對沖策略研究經驗;

4、對數字貨幣領域感興趣,結果導向;

5、有網頁抓取和爬蟲程序編寫經驗者優先。

大數據開發工程師的基本職責-崗位職責3

職責:

1、大數據日誌分析系統的設計,選型和開發;

2、配合各業務給予數據支持,對產品和運營數據總結和優化;

3、處理用戶海量數據,提取、分析、歸納用戶屬性,行為等信息,完成分析結果;

4、發現並指出數據異常情況,分析數據合理性;

5、公司大數據基礎架構平台的運維,保障數據平台服務的穩定性和可用性;

6、大數據基礎架構平台的監控、資源管理、數據流管理;

7、基於數據分析的可預測的雲平台彈性擴展解決方案。

任職要求:

1、日誌分析數據系統實際經驗;

2、3年以上互聯網行業研發經驗,有使用Hadoop/hive/spark分析海量數據的能力;

3、掌握Hadoop、Flume,Kafka、Zookeeper、HBase、Spark的安裝與調試;

4、熟悉大數據周邊相關的資料庫系統,關系型資料庫和NoSQL。

5、掌握Linux操作系統的配置,管理及優化,能夠獨立排查及解決操作系統層的各類問題;

6、有良好的溝通能力,具備出色的規劃、執行力,強烈的責任感,以及優秀的學習能力。

大數據開發工程師的基本職責-崗位職責4

職責:

1、負責數據分析、加工、清理、處理程序的開發;

2、負責數據相關平台的搭建、維護和優化;

3、負責基於Hadoop/Spark/Hive/kafka等分布式計算平台實現離線分析、實時分析的計算框架的開發;

崗位要求:

1、本科學歷須211院校以上,碩士及以上學歷不限院校,計算機軟體及相關專業

2、熟悉Java和Scala語言、熟悉常用設計模式、具有代碼重構意識;

3、熟練使用hadoop、hbase、Kafka、hive、spark、presto,熟悉底層框架和實現原理;

4、使用Spark Streaming和Spark SQL進行數據處理,並具有SPARK SQL優化經驗;

5、需要有至少2年開發經驗,有flink開發經驗優先;

6、學習能力強,喜歡研究新技術,有團隊觀念,具備獨立解決問題的能力。

大數據開發工程師的基本職責-崗位職責5

職責:

1、負責大數據平台的基礎環境搭建與性能優化,完成平台的構建與維護、實時流計算平台、分布式調度、可視化報表等平台的架構與研發;

2、對各種開源框架進行深入的代碼剖析和優化;

3、參與大數據技術方案評審;

4、指導初中級大數據工程師工作;

崗位要求:

1、計算機相關專業全日制專科及以上學歷,具有3年或以上的分布式計算平台研發工作經驗;

2。對大數據相關組件:Hadoop、Spark、Hbase、Hive、Flink、Kafka、Flume等架構與底層實現有深入理解,具備相應的定製和研發能力,尤其需要精通Flink框架;

3。具備構建穩定的大數據基礎平台的能力,具備數據收集、數據清洗、數據倉庫建設、實時流計算等系統研發經驗;

4。對技術有熱情,有不錯的數據思維和敏感度,有一定的數據分析能力優先,對深度學習、機器學習有一定的了解優先;

5。工作有計劃性,責任心和執行能力強,具備高度的責任心、誠信的工作作風、優秀溝通能力及團隊精神。

;

7. 大數據工程師的工作內容是什麼

1、數據採集:


業務系統的埋點代碼時刻會產生一些分散的原始日誌,可以用Flume監控接收這些分散的日誌,實現分散日誌的聚合,即採集。


2、數據清洗:


一些欄位可能會有異常取值,即臟數據。為了保證數據下游的"數據分析統計"能拿到比較高質量的數據,需要對這些記錄進行過濾或者欄位數據回填。


一些日誌的欄位信息可能是多餘的,下游不需要使用到這些欄位做分析,同時也為了節省存儲開銷,需要刪除這些多餘的欄位信息。


一些日誌的欄位信息可能包含用戶敏感信息,需要做脫敏處理。如用戶姓名只保留姓,名字用'*'字元替換。


3、數據存儲:


清洗後的數據可以落地入到數據倉庫(Hive),供下游做離線分析。如果下游的"數據分析統計"對實時性要求比較高,則可以把日誌記錄入到kafka。


4、數據分析統計:


數據分析是數據流的下游,消費來自上游的數據。其實就是從日誌記錄里頭統計出各種各樣的報表數據,簡單的報表統計可以用sql在kylin或者hive統計,復雜的報表就需要在代碼層面用Spark、Storm做統計分析。一些公司好像會有個叫BI的崗位是專門做這一塊的。


5、數據可視化:


用數據表格、數據圖等直觀的形式展示上游"數據分析統計"的數據。一般公司的某些決策會參考這些圖表裡頭的數據。

8. 大數據工程技術人員是做什麼的 工作內容有哪些

近日,人社部發布通知,正式公布了十三個新職業信息,其中大數據工程技術人員就是其中之一。

大數據工程技術人員的工作內容

大數據工程技術人員是指從事大數據採集、清洗、分析、治理、挖掘等技術研究,並加以利用、管理、維護和服務的工程技術人員。

主要工作任務:

大數據採集(爬蟲)、大數據清洗(ETl工程師)、大數據建模(演算法工程師)與大數據分析(數據分析員);

管理、分析展現及應用等技術(大數據開發工程師);

研究、應用大數據平台體系架構、技術和標准;

設計、開發、集成、測試大數據軟硬體系統;

管理、維護並保障大數據系統穩定運行;

監控、管理和保障大數據安全;

提供大數據的技術咨詢和技術服務。

我推薦: 中國13個新職業公布

大數據工程技術人員就業前景如何

在企業中,大數據工程師的發展分為四個階段:從軟體技術員到助理軟體工程師,再到軟體工程師,最後成為高級軟體工程師。據IDC的統計數字,在所有軟體開發類人才的需求中,對大數據工程師的需求達到全部需求量的60%—70%。同時,大數據軟體工程師的工資待遇相對較高。

大數據軟體工程師的一般起步月薪在6k-1w之間,遠遠超過應屆畢業生的兩三千的薪資。有一兩年的工作經驗之後,薪資待遇還會提升,比如有一年工作經驗的大數據高級工程師的薪資待遇差不多在年薪10w-15w之間。

在未來的幾年內,大數據人才的缺口只會越來越大,企業對人才的需求遠遠大於供給。大數據工程師是目前國內高端計算機領域,就業薪資非常高的一類職業。

9. 大數據分析的具體內容有哪些

隨著互聯網的不斷發展,大數據技術在各個領域都有不同程度的應用
1、採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
2、導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3、統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4、挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。

10. 大數據包含了哪些內容 具體是做什麼的

大數據就是使用單台計算機沒法在規定時間內處理完或無法處理的數據集。大數據,就是信息資產。接下來給大家分享一些大數據的相關信息,希望對大家有幫助。

大數據包含的內容

大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

大數據工程是以面向場景應用為本,提煉挖掘、演算法模型、業務流程再造、加工處理成有價值、可支持決策的「成品數據」,進而通過這些「成品數襲叢據」賦能決策,提高生產效率、實現精準營銷和輔助社會治理。

學完大數據有什麼用

學完大數據可以做大數據系統研發,研發團隊主要承擔整個運營系統的構建與維護、數據准備、平台與工具開發。一個穩定的大數據平台需要大數據開發師、大數據運維師、大數據架構師協作完成。

學完大數據可以做大數據應用開發工作,大數據應用開發工程師負責基於大數據平台實現業務項目的開發以及維護工作,需要具備扎實的機器學習/數據挖掘野禪渣基礎,對商業BI、用戶畫頌悄像、可視化呈現等需要了解。

學完大數據可以做數據分析,數據分析師專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測,幫助企業把數據和技術轉化為商業價值。需要對數字具有敏銳的洞察力。

閱讀全文

與大數據項目工作內容怎麼寫相關的資料

熱點內容
瑞銀3887win10 瀏覽:833
學網路編程哪個好 瀏覽:805
手機vmos導入的文件在哪裡 瀏覽:115
蘋果手機可以把文件傳到華為嗎 瀏覽:63
海川化工下載的文件默認到哪裡 瀏覽:343
學唱粵語歌app 瀏覽:975
qq游戲生死狙擊玩不了 瀏覽:120
win10郵件不顯示圖片 瀏覽:922
口袋妖怪所有版本下載 瀏覽:504
我們身邊都有哪些大數據例子 瀏覽:25
震旦adc307掃描的文件在哪裡 瀏覽:999
圖片打開變成文件 瀏覽:194
松下微單電腦傳文件軟體 瀏覽:574
蘋果藍牙鍵盤surface 瀏覽:170
mindmaplinux 瀏覽:733
oppo手機怎麼連接電腦傳輸數據 瀏覽:624
word刪除章節附註分隔符 瀏覽:773
公告質疑需要哪些文件 瀏覽:608
資料庫模型是干什麼的 瀏覽:404
win10的驅動怎麼安裝驅動 瀏覽:320

友情鏈接