⑴ 大數據技術有在工業領域的成功應用案例嗎
. 深圳市兒童醫院成功部署IBM集成平台與商業智能分析系統
IBM利用其行業領先的大數據與分析技術,支持深圳市兒童醫院搭建信息集成平台,整合原有分散在多系統中的海量數據,實現各部門的信息共享;同時通過商業智能分析對集成數據進行深入挖掘,為醫院各部門人員的科學決策提供全面的輔助,提升醫院的服務水平和管理能力。
2. Informatica幫助紫金農商銀行深挖數據價值
紫金農商銀行ODS數據倉庫項目建設使用Informatica產品完成數據的載入、清洗、轉換工作顯得尤為簡單,圖形化、流程化設計使維護人員能夠快速、順暢的操作,即使數據源結構發生變化,也不會像以前必須修改大量的程序代碼,只需要在PowerCenter中配置一下即可。
3. 華為大數據一體機服務於北大重點實驗室
經過大量的前期調查,比較和分析准備工作,北大重點實驗室選擇了華為基於高性能伺服器RH5885 V2的HANA數據處理平台。HANA提供的對大量實時業務數據進行快速查詢和分析以及實時數據計算等功能,在很大程度上得益於華為RH5885 V2伺服器的高可靠、高性能和高可用性的支撐。
4. IBM攜手漢端科技為飛鶴乳業打造全產業鏈可追溯體系
IBM、漢端科技與中國飛鶴乳業聯合宣布,通過利用IBM業界領先的全面大數據與分析能力,和漢端科技在商業智能領域豐富的行業經驗,飛鶴乳業實現了產品的可追溯與食品安全的數字化管理,完成了系統數字化、透明化、服務化的升級。
5. 浪潮大數據平台大大提升了濟南的警務工作能力
浪潮在幫助濟南公安局在搭建雲數據中心的基礎上構建了大數據平台,以開展行為軌跡分析、社會關系分析、生物特徵識別、音視頻識別、銀行電信詐騙行為分析、輿情分析等多種大數據研判手段的應用,為指揮決策、各警種情報分析、研判提供支持,做到圍繞治安焦點能夠快速精確定位、及時全面掌握信息、科學指揮調度警力和社會安保力量迅速解決問題。
6. 英特爾攜杭州誠道科技構建智能交通
面對大數據挑戰,杭州市和杭州誠道科技有限公司緊密合作,部署了基於英特爾大數據解決方案的誠道重點車輛動態監管系統,通過集中的數據中心將全市卡口、電子警察、視頻監控、流量檢測設備、信號機、誘導設備等有效地連接起來,從交通案件偵破能力、交通警察對機動車輛的監管能力到利用關聯車輛的數據分析能力,都得到了極大提升。
7. 步步高集團借Oracle Exadata 大大提高了IT投資回報率
步步高集團採用 Oracle Exadata資料庫雲伺服器搭建信息化平台,憑借Oracle Exadata資料庫雲伺服器的高擴展性、安全性和冗餘性,步步高集團得以在該基礎架構上運行一系列Oracle零售行業以及Oracle的應用軟體。此外,基於Oracle Exadata的步步高IT新架構比傳統架構擁有更好的性價比,最大限度地增加了IT的投資回報率。
8. 華為Anti-DDoS助阿里巴巴檢測DDoS變革
阿里巴巴現網多個數據中心出口都部署了華為的Anti-DDoS解決方案,平均每天防護的DDoS攻擊次數超過100次,每年達數萬次,峰值防護的DDoS攻擊流量超過100Gbps。如今,DDoS攻擊在阿里巴巴安全工程師眼裡已經習以為常,由華為Anti-DDoS方案自動調度進行清洗防護即可。「雙11」期間,華為Anti-DDoS方案一如既往地成功防護了多輪DDoS攻擊事件,有力保障了阿里巴巴網路交易的順暢平穩。
9. 華為大數據方案在福建移動的應用
為進一步提升外呼成功率,從2014年初開始,福建移動聯合華為公司開展基於大數據的精準營銷工作,採用大數據分析的方法選擇外呼目標價值用戶。基於大數據分析方法和傳統外呼方法分別提供20萬目標客戶清單,在前台無感知下進行對比驗證,確保對比效果不受人為因素影響,經過外呼驗證,基於大數據分析方法較傳統方法外呼成功率提升50%以上,有效支撐了福建移動4G用戶發展戰略。
10. 北京市人民政府「12345」便民電話中心選擇Oracle Exadata 實現便攜服務
為了進一步提升部門的調度能力、辦理水平和群眾滿意度,北京市人民政府「12345」便民電話中心選擇Oracle Exadata資料庫雲伺服器,升級成為北京市非緊急救助服務綜合受理調度平台,通過Oracle Exadata Database Machine支撐起新平台的資料庫訪問需求。升級後的平台能夠整合全市的便民呼叫服務,支撐來自群眾的各類訴求、求助、批評和建議,並可為公眾提供方便、快捷的公共信息服務,真正成為全市的輿情中心、信息匯集中心和城市名片。
11. 民生銀行借IBM BigInsights應對金融業的大數據挑戰
IBM BigInsights大數據解決方案和企業級NoSQL資料庫SequoiaDB合作,為民生銀行搭建低成本、高性能、高可靠且水平擴張的數據平台,幫助民生銀行通過大數據分析應對金融業的大數據挑戰,完善交易流水查詢分析系統,產業鏈金融管理系統,以及私人銀行產品貨架管理系統。
12. 中信銀行信用卡實施EMC Greenplum 數據倉庫解決方案
中信銀行信用卡中心選擇實施EMC Greenplum 數據倉庫解決方案。Greenplum 數據倉庫解決方案為中信銀行信用卡中心提供了統一的客戶視圖,藉助客戶統一視圖,中信銀行信用卡中心可以更清楚地了解其客戶價值體系,從而能夠為客戶提供更有針對性和相關性的營銷活動。基於數據倉庫,中信銀行信用卡中心現在可以從交易、服務、風險、權益等多個層面分析數據。通過提供全面的客戶數據,營銷團隊可以對客戶按照低、中、高價值來進行分類,根據銀行整體經營策略積極地提供相應的個性化服務。
13. 惠普助力雅昌集團掘金大數據
成立於1993年的雅昌集團首創「傳統印刷+IT技術+文化藝術」的商業模式,形成環環相扣的文化產業鏈,為藝術市場提供全面、綜合的一站式服務。基於企業內容數據管理體系,惠普為雅昌搭建了從數據採集、處理、管理到應用的全過程處理流程,使雅昌可以快速利用所需數據,縮短新品上線時間,快速響應市場變化。
14. 德國足球隊採用SAP大數據方案迎戰世界盃
德國足協和SAP公司通過聯合創新引入SAP Match Insights解決方案,該方案基於SAP HANA平台運行處理海量數據,可以為球員和教練提供一個簡明的用戶界面,幫助雙方開展互動性更強的對話,分析球隊訓練、備戰和比賽情況,從而提升球員和球隊的成績。
15. 1號店借Oracle Exadata改善終端客戶體驗
1號店採用Oracle Exadata資料庫雲伺服器成功優化統一整合的數據平台,滿足了不斷增長的業務處理需求,並進一步改善了終端客戶體驗。經過Oracle Exadata整合後的新平台採用混合負載互備架構,將平均處理性能提升7倍,既可以支持目前規劃業務量的業務處理,還能夠隨著業務量的增長進行在線升級、擴容,滿足處理能力和數據量的增長需求。軟、硬體集成設計的Oracle Exadata 協助解決了1號店的I/O瓶頸問題,實現了比傳統架構更高的性能和可擴展性。同時,基於Exadata的1號店IT新架構比傳統架構擁有更好的性價比,最大限度地發揮了IT投資回報率。
16. 大數據在青島銀行:提升銀行交易性能、簡化運營和管理
利用IBM大數據專家PureData,青島銀行能夠高效集成業務數據,簡化運維。PureData for Transactions作為青島銀行重要業務處理系統,能夠在一個系統中整合超過幾十個資料庫,同時提供良好的性能、可用性和可擴展性支持實現廣泛的業務目標,例如地域擴張,突發的業務交易高峰,新櫃面、流程銀行等大規模的業務上線等。
17. Informatica方案幫助南京兒童醫院實現信息互通共享
南京市兒童醫院目前已建成包括HIS、LIS、PACS、電子病歷EMR、醫生工作站、移動護理、病案、財務管理、庫房管理和手術麻醉等幾十個應用系統,這些異構系統間數據調用分散,不能集中統一標准化管理。通過採用Informatica ETL工具構建數據倉庫系統,並基於數據倉庫建設醫院數據調用公共資源中心庫,南京市兒童醫院實現了實時的數據交互和信息共享,干凈、標準的數據為跨應用系統數據關聯分析打下扎實基礎。
18. 東吳大學採用達索系統EXALEAD啟動大數據應用暨產學合作
台灣東吳大學採用達索系統EXALEAD大數據智能應用開發解決方案,全方位地整合校務信息,積極開發校務經營發展的各項應用。此外還將啟動三方產學合作計劃,協助建立校內大數據相關課程、人才培訓和實習機制,使學生自入學就開始不斷提升其未來職場所需的關鍵競爭力,學用合一,實現學校、學生、企業三贏。
19. 網路大腦PK人腦 大數據押高考作文題
為了幫助考生更好地備考,網路高考作文預測通過對過去八年高考作文題及作文範文、海量年度搜索風雲熱詞、歷年新聞熱點等原始數據與實時更新的「活數據」進行深度挖掘分析,以「概率主題模型」模擬人腦思考,反向推導出作文主題及關聯詞彙,為考生預測出2014年高考作文的六大命題方向。
20. IBM助力同仁醫院構築強大的分析體系
同仁醫院通過與IBM合作,同仁醫院建立起了強大的分析能力和體系,包括對臨床、運營、科研、考核等信息的分析,實現智慧的醫院管理與考核;同時也能看到醫療設備的平均故障間隔周期,從而降低了設備的故障率、平均維修時間。這一切都讓工作效率穩步提升,也緩解了病人看病難的問題,提高了患者就醫滿意度。
21. 微軟助上海市浦東新區衛生局更加智能化
作為上海市公共衛生的主導部門,浦東新區衛生局在微軟SQL Server 2012的幫助之下,積極利用大數據,推動衛生醫療信息化走上新的高度:公共衛生部門可通過覆蓋區域的居民健康檔案和電子病歷資料庫,快速檢測傳染病,進行全面的疫情監測,並通過集成疾病監測和響應程序,快速進行響應。與此同時,得益於非結構化數據的分析能力的日益加強,大數據分析技術也使得臨床決策支持系統更智能。
22. 湖南電信通過分析掌握電信市場動向、針對性定製營銷計劃
利用IBM大數據專家PureData,湖南電信實現了通過分析掌握市場整體經營情況、快速制定市場策略以及加強客戶經理營銷維系的高效執行。PureData for Analytics作為湖南電信本地數據集市建設工程重要組成部分,高效整合了湖南電信旗下各本地網數據,為進一步分析創造先機。
23. 攜程借SQL Server增強了數據採集和掌控
作為國內領先的綜合性旅行服務公司,攜程計算機技術有限公司曾面臨分支機構、服務城市和員工數量的增長所帶來的運營數據分散和數據集成難的 IT 問題。藉助微軟SQL Server 2012 商業智能解決方案,攜程增強了其對所有下屬分支機構的數據採集和掌控,大大減少了計劃性停機時間以及非計劃性停機的時間,靈活的部署選項也可以根據攜程的需要實現從伺服器到雲的擴展。
24. 上海公共研發平台部署Oracle Exadata應對擴展需求
上海公共研發平台部署Oracle Exadata資料庫雲伺服器,以應對其系統和應用的擴展需求。Oracle Exadata融合了一系列同類最佳的預配置的伺服器、網路、存儲和軟體,能為數據倉庫和在線事務處理應用程序提供超強性能。上海公共研發平台運行Oracle Exadata期間相對穩定,CPU佔用率控制在5%以內,極大改善了用戶應用體驗。同時,Exadata平台的可擴展性極好的滿足了上海公共研發平台的系統需求,目前整個公共研發平台的20多個應用系統已經全部遷移到Exadata上,應用部署量增長1倍,且運行十分穩定。
25. 360手機衛士10KB解決iPhone騷擾
360手機衛士通過對海量數據的運算和精準匹配下發,將一組大小僅為10KB的數據即1000個騷擾號碼同步到用戶手機上,打造個性化的騷擾號碼資料庫,此外,每天更新的騷擾號碼庫數據,會依據標記趨勢調整騷擾號碼庫中各類數據比例,即每一位360手機衛士用戶手機中的1000個騷擾號碼都是動態的,隨地域、身份以及騷擾趨勢的變化而變化。
26. 神州數碼助張家港市更「智慧」
在張家港實踐的城市案例中,市民登錄這款「神州數碼」研發的市民公共信息服務平台後,市民只要憑借自己的身份證和密碼,即可通過該系統平台進行240餘項「在線預審」服務、130餘項「網上辦事」服務等,還可通過手機及時查看辦事狀態。相比於以前來說,市民辦事的時間最少可以節省一半以上。
27. IBM助中網組委會構建安全和敏捷的內聯網
IBM專門為中網設計了具有實時大數據分析功能的MatchTracker(賽事追蹤系統),可以為球迷提供數據呈現、計分等功能。 MatchTracker基於IBM SlamTracker分析技術,使球迷能夠利用歷史和實時性數據,洞悉比分之後的態勢和策略。此外,IBM還為中網組委會構建了安全和敏捷的內聯網。
28. Cortana基於微軟Bing大數據預測世界盃
微軟為Cortana增加了世界盃預測的功能,基於微軟Bing大數據,並綜合考慮世界盃各支球隊的過往比賽結果、比賽時間、天氣情況、主場優勢以及其他因素,使用大量的博彩市場公開數據、民意調查、社交媒體以及其它在線數據,利用大數據分析來判斷每場比賽的結果。
29. 中科曙光助同濟大學科研領域再創新高
為了滿足爆炸式增長的用戶和數據量,同濟大學攜手中科曙光,在全面整合雲計算平台和現有資產的基礎上,採用 DS800-F20存儲系統、Gridview集群管理系統,以及Hadoop分布式計算平台構建出了業內領先的大數據柔性處理平台,使得同濟大學在信息學科及其交叉學科研究領域邁上一個新台階。
30. 華為助農行完成海量數據分布式處理的需求
華為向農行提供了良好的計算平台,基於華為RH2288 V2伺服器的分布式並行計算集群進行測試,以及還提供了快速響應客戶需求的研發能力,以及業界最快捷的售後服務。農行的測試結果表明,華為解決方案完全滿足農行對海量數據進行分布式處理的要求。
⑵ 大數據案例分析:中國的大數據在哪裡
大數據案例分析:中國的大數據在哪裡
近幾年,大數據這個詞突然變得很火,不僅納入阿里巴巴、谷歌等互聯網公司的戰略規劃中,同時也在我國國務院和其他國家的政府報告中多次提及,大數據無疑成為當今互聯網世界中的新寵兒。那麼大數據到底為什麼這么火呢,難道它真的是從金星來?
現今的我們正處於時代轉型中,讓你意想不到的事情時常發生,就像富士、柯達膠卷這樣的百年企業會被時代所淘汰,由於科技的發展與互聯網的日益強大,數據將逐步取代舊事物,創造出新事物。這是一個不可遏制的發展趨勢,也是人類進步的標志。
隨著當下全球數據的增長已經到了一個高峰,數據的存儲單位不斷擴大,由此大數據的概念被重視,如何處理海量的繁雜數據就是這個時代轉型的關鍵所在。
只是,大數據給大多數人的感覺是,專業性強,操作繁瑣,完全屬於「高大上」的技術。普通人應該怎麼理解大數據?普通人又該怎麼玩大數據呢?今天,本文就給大家分析一下,大數據到底是個什麼鬼?
1、大數據引領生活
從矽谷到北京,大數據的話題正在被傳播。隨著智能手機以及「可佩帶」計算設備的出現,我們的行為、位置,甚至身體生理數據等每一點變化都成為了可被記錄和分析的數據。信息社會所帶來的好處是顯而易見的:每個人口袋裡都揣著一部手機,每台辦公桌上都放有一台電腦,每間辦公室內都擁有一個大型區域網。但是,信息本身的用處卻並沒有如此引人注目。半個世紀以來,隨著計算機技術全面融合社會生活,信息爆炸已經積累到了一個開始引發變革的程度,它不僅使世界充斥著比以往更多的信息,而且其增長速度也在加快。
大數據時代的生活令人神往,你對客觀世界的認識更進一步,所做的決策也不再僅僅依賴主觀判斷。甚至對於你的一個習慣動作,你的一次消費行為,你的一份就診記錄,都在被巨大的數字網路串聯起來。移動互聯網風潮洶涌。大數據正悄悄包圍著我們。甚至連著世界經濟格局也在醞釀著巨大變革!
互聯網時代,尤其是社交網路、電子商務與移動通信把人類社會帶入了一個「PB」(1024TB)為單位的結構與非結構數據信息的新時代。通過雲計算對大數據進行分析、預測,會使得決策更為精準,釋放出更多數據的隱藏價值。數據,這個21世紀人類探索的新邊疆,正在被雲計算發現、征服。
2、大數據的經典案例
數據正在成為巨大的經濟資產,成為新世紀的礦產與石油,將帶來全新的創業方向,商業模式和投資機會。然而大數據真正的應用核心是預測。以前單純依靠人類判斷力的領域都會被計算機系統所改變甚至取代,運用大數據的處理與分析,為我們的生活創造出前所未有的可量化的維度。對我們而言,危險不再是隱私的泄露,而是被預知的可能性。下面跟大家分享兩個非常經典的案例:
①中石油
客戶挑戰
▼銷售情況無法檢測
-銷售隊伍人員龐大,部門經理無法從龐大的銷售數據了解到銷售代表的銷售業績與KPI
-從宏觀角度發現問題時,無法精確定位發生問題的原因
-無法從各個角度對整體的銷售數據進行切片分析,擁有數據卻非掌握數據
▼無法根據市場走勢制定營銷策略
-只能根據粗淺的數據進行感性的市場判斷與決策,風險很大
-無法以數字化的方法對市場表現進行精確衡量,無法發現量價平衡的問題
-無法對市場下一步動向進行精確預測
解決方案
▼解決方案之全維度數據分析與挖掘
-時間、空間、維度、指標標准化,與業務強相關-聯動分析、鑽取分析、細節展示,多角度幫助深入挖掘問題,輔助決策-將智能分析結果通過QQ、微信、郵件、ERP寫入等相關的方式通知用戶,智能輔助決策
▼解決方案之綜合市場指數
-演算法獨特的市場綜合指數,數字化運營,不再拍腦袋決策-科學嚴謹的挖掘演算法,精確衡量市場走勢數據挖掘技術,預測未來
最終效果-銷售代表業績及潛力明晰
▼-銷售代表業績及潛力明晰、銷售數據實時掌控整個銷售團隊中,成功獲取:
1)銷售代表的綜合業績最好者2)銷售總額最高者3)毛利率額最高者4)具有潛力的銷售代表
▼-數據化掌控,制定營銷策略,總經理可以完成
1)從任意部門到各個大區、銷售代表和代理商的下鑽和上選分析2)實現多層次多維度數據的查詢3)從龐大的數據中挖掘重點客戶和潛在客戶,從而制定營銷策略
②沃爾瑪的搜索
這家零售業寡頭為其網站Walmart.com自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
任何事情的發生,都會有蛛絲馬跡的前兆表露出來。如果人們不去關注一支股票行情走勢,就不會去買賣這支股票;如果人們不去詢問某件商品的價格,也很難產生購買行為;如果沒有悶熱的天氣,似乎就沒有透心涼的大雨。關於地震前種種異象,更是被許多書籍、文章大肆渲染。
假定有一種技術可以記錄下所有這些先兆,人們就獲得了未卜先知的能力。利用大數據技術,能夠廣泛採集各種各樣的數據類型,並進行統計分析,從而預測未來,大數據影響之深遠,波及之廣泛,遠非一般的信息技術可比。大數據預測應該被利用到生活的方方面面,尤其是在預測地震,泥石流等等,擁有先進技術的目的,就應該是人類造福,它的意義也應該在此;否則,所以的創造都是無用功。
大數據的利用,可以重新定位生產商與供應商的關系;可以通過商品本身收集數據並傳回製造商進行研究與開發;可以通過用戶交互提高服務;當文字變成數據,不僅人可以用之閱讀,機器也可用之分析……充分說明,第一,個人也好,公司也好,都需要與時俱進;第二,大數據的多樣性有待於更全面的開發,更好地服務於人們的生活。
大數據時代開啟了一場尋寶游戲,而人們對於數據的看法以及對於有因果關系向相關關系轉化時釋放出的潛在價值的態度,正是主宰這場游戲的關鍵。
大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。
以上是小編為大家分享的關於大數據案例分析:中國的大數據在哪裡的相關內容,更多信息可以關注環球青藤分享更多干貨
⑶ 大數據利用的六大現實商業案例
大數據利用的六大現實商業案例_數據分析師考試
大數據正在改變市場的競爭格局。而那些能夠充分利用大數據分析的企業往往能夠更快地向市場提供產品和服務,更好地保持與顧客需求和慾望的一致性。2014年,調研公司Gartner的調查發現,73%的受訪企業在大數據方面進行了投資,或者計劃在接下來的24個月內投資大數據項目;而2013年的這一數據比例則為64%。改善客戶體驗和流程效率被受訪者排在最高的優先順序。
客戶體驗的改善不管是在線上或線下都在發生著的,數據從智能手機、移動應用程序、POS系統和電子商務網站等等渠道進行收集。隨著企業比以往任何時候都能夠收集和分析更多的、且類型豐富的數據信息,企業現如今所進行哪些相關工作,以及為什麼要進行都需要進行數據量化。而且,那是最靈活的調整自己的經營策略,以提高或維持市場份額的手段。在執行過程中,客戶體驗的改善有助於提高客戶的忠誠度和企業營收的增長。另一方面,如果公司選擇無視相關的數據,他們很可能會失去客戶和交易,而將其拱手讓給那些對於數據分析反應更敏捷,更精明的競爭對手。
企業流程的改進繼續專注於提高效率,節約成本,以及提高產品或服務的質量。大數據可以提供比傳統系統更深入的見解,因為其有更多的數據點和數據來源分析作為支撐。
無論企業的目標是為了促進營收增長、或是加快產品服務的上市速度、優化勞動力,或是實現其他操作方面的改進,其核心都在與變得更加積極主動,減少被動反應,這就意味著需要使用預測分析,以縮短學習曲線。
有許多使用大數據來提升和改善企業運營的方法,下面將為大家介紹六個典型的案例。
縮短上市時間
推出新的產品或服務涉及多個生命周期階段,其中一些比另一些更容易加速。在過去的幾十年中,葯品製造商已經使用臨床試驗模擬學習速度,降低成本,並減少了參與試驗患者的不必要的負擔。藉助雲計算和大數據,臨床試驗的模擬可以變得更加有利於製造商和患者。
百時美施貴寶公司(bristol-myers squibb) 通過將其內部託管網格環境擴展到AWS雲,減少了98%的臨床試驗模擬時間。該公司還進一步優化了劑量水平,使得葯物產品更安全,並只需要較少的臨床試驗患者的血液樣本。
由於臨床試驗對於數據是高度敏感的,百時美施貴寶公司建立了一個專門的,加密的VPN隧道鏈接亞馬遜網關,並配置了虛擬私有雲,以便使得其運行環境能夠與公眾客戶進行隔離。
在遷入雲中之前,科學家們使用一個共享的內部環境,所以運行大約數百個項目需要花費60小時。現在,每個科學家都有一個專門的環境,2000個項目大約在1.2小時內就能夠處理完畢,而且不會引起影響到團隊的其他成員。
遷移到AWS雲之後,百時美施貴寶公司得以能夠減少兒科研究臨床試驗受試者的人數,從60減少到40人,同時還縮短了一年多的學習研究時間。
優化勞動力
一些企業的人力資源部門正在使用人才分析和大數據來降低成本,進而有效管理人力資源相關的問題。大數據幫助他們能夠有效的選擇能夠更好的適應企業的新員工,降低員工離職率,了解技能和現有市場勞動力的輸出狀況,並確定公司前向發展所需要的人才。
施樂公司使用大數據將其呼叫中心的人員流失率降低了20%。要做到這一點,就必須了解是什麼原因導致了員工的離職,並確定如何改善員工的敬業度。
改善財務績效
企業的財務部門已經不僅僅只是進行定期的報告和BI工作了,他們已經在開始利用大數據來降低風險和成本,尋找機會提高預測的准確性。具體地說,他們使用的數據來識別高風險客戶和供應商,以阻止欺詐,找准收入泄漏,並發掘新的或更有效的商業模式。
最近,天氣預測公司The Weather Company與IBM之間的合作將使企業用戶得以更好地管理天氣狀況對於企業績效的影響。據The Weather Company介紹,每年,僅在美國天氣因素就會造成價值五千億美元的經濟影響。
這些氣象數據是來自超過10萬台的氣象感測器和飛機,以及數以百萬計的智能手機、建築和路上奔跑的車輛。這些數據與其他22億個獨特的預測點的數據來源相結合,平均每天進行100多億次的實時天氣預報。例如,零售商可以使用這些數據信息來調整人員配置和供應鏈策略。而能源公司將能夠藉助這些天氣數據信息改善供應和預測需求。保險公司將能夠向其投保人警告惡劣天氣條件,這樣他們就可以減少在冰雹災害天氣發生汽車損壞的可能性。
智能化的銷售
稍微修改一下企業的銷售和營銷策略就可能會對您企業的銷售業績產生深遠的影響,特別是當通過大數據分析之後進行的有規劃的修改。
想像一下,一個為期六周的直郵營銷活動票面收益率的超過了70%。而根據直銷協會的介紹,平均直郵回報率僅為3.7%。而雜貨連鎖店Kroger公司是如何做到的呢?一方面,他們根據客戶個人的購物歷史記錄採用個性化的直接郵寄方式。
Kroger公司的客戶會員卡計劃,被食品行業評為第一。超過90%的客戶使用會員卡購買產品。雖然也有其他因素的共同作用,使得Kroger公司的財務績效如此驕人,但其連續45個季度的持續增長至少部分要歸因於其客戶忠誠計劃。
最大限度地減少設備和資產故障
企業希望避免不必要的業務中斷干擾和客戶的焦慮。現在,感測器已經被嵌入到一切設備,企業可以使用這些數據信息,以確定何時需要對飛機,火車,汽車,及其它電器設備進行維修。理想情況下,當問題已經出現的時候,企業要了解這個問題是什麼原因造成的,以及其如何能得到解決,最好有一個專業的維修隊伍。
Pratt &Whitney公司是美國聯合技術公司(United Technologies Corp.)下屬的一個單位,該公司試圖減少意外的飛機發動機維修。據Airinsight.com介紹,今天的發動機能夠在飛機飛行過程中從多個快照收集約100個參數。相比之下,新一代的引擎能夠收集關於連續飛行的5000個參數。這一過程中產生約2千兆位元組的數據。使用這些數據信息,Pratt &Whitney公司及其合作夥伴IBM得以進行主動的維修。
利用客戶的終身價值
如今的授權客戶比以往任何時候都更加苛刻和善變。企業為了保持或增加市場份額,需要盡可能多地了解自己的客戶,不斷改善自己的產品和服務,並願意調整自己的商業模式,以反映其客戶的實際需求。
美國汽車租賃公司AvisBudget就一直致力於這方面。他們通過實施整合戰略增加了市場份額,並取得了數億美元的額外收入。主動參與確定客戶價值細分,提供分層激勵,提高客戶的忠誠度。該公司的IT合作夥伴CSC公司採用模型預測AvisBudget客戶資料庫的終身價值,並驗證了其使用多通道的營銷活動和相應的分析。
現在的客戶評估數據結合了其他數據,包括客戶的租賃歷史,服務問題,服務地區的人口統計,企業隸屬關系和客戶反饋等等。Avis Budget也收集和分析社交媒體數據。該公司有一個社交媒體專家團隊專門進行品牌營銷。該公司最近還更新了網站,以進一步改善客戶體驗,並且他們正在使用大數據預測區域性的車隊配售和定價服務需求。
以上是小編為大家分享的關於大數據利用的六大現實商業案例的相關內容,更多信息可以關注環球青藤分享更多干貨
⑷ 關於大數據應用有什麼例子
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。
有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
⑸ 大數據攻略案例分析及結論
大數據攻略案例分析及結論
我們將迎來一個「大數據時代」。與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?
{研究結論}
■大數據營銷的本質是一個影響消費者購物前心理路徑的問題,而這在大數據時代前很難做到。
■對於傳統企業而言,要打通線上與線下營銷,實現新的商業模式,如O2O等,離不開大數據。
■雖然大數據應用往往集中於大數據營銷,但對於一些企業,大數據的應用早已超越了營銷范疇,全面進入了企業供應鏈、生產、物流、庫存、網站和店內運營等各個環節。
■對於大部分企業,由於數據分析人員與業務人員之間的彼此視角與思考方向不同,大數據分析和運營之間存在脫節情況,這是大數據無法用於企業運營最大的阻力
■對於大多數互聯網公司來說,大數據量、大用戶量是一個相互促進,強者越強的循環過程。
■對於大型互聯網平台,大數據已經成為其生態循環中的血液,對於這些企業,最重要
的不是如何利用大數據改進自身運營,而是利用大數據更好地繁榮平台生態。
■對於平台企業,它們的大數據策略正逐漸從大數據運營,向運營大數據轉變,前者和
後者的差別在於,前者只是運營改進的動力,而後者則成為企業實現未來戰略的核心資源。
我們都已被反復告知:我們將迎來一個「大數據時代」。
大數據應用,將和雲計算、3D列印這些技術變革一樣,顛覆既有規則,並成為先行企業的制勝關鍵。
與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?
來自於互聯網、移動互聯網、物聯網感測器、視頻採集系統的數據正海量增長,匯成大數據的海洋,相伴的是海量數據存儲、分析技術的突破性發展,所有這一切都給企業的應用帶來了無限可能性。
中國企業家研究院對當前中國企業大數據應用的狀況進行了歸納分類,以幫助企業了解實際應用大數據時的困局難點,並提供領先企業的典型案例以資借鑒。
表1
表2
大數據運營—企業提升效率的助推力
對於大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自於互聯網、物聯網、各種感測器的海量辯笑虧數據撲面而至。於是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。大數據運營應用中,大數據的應用分為三類:用於企業外部營銷、用於內部運營,以及用於領導層決策。
一、大數據營銷
大數據營銷的本質是影響目標消費者購物前的心理路徑,它主要應用在三個方面:1、大數據渠道優化,2、精準營銷信息推送,3、線上與線下營銷的連接。在消費者購物前,通過各種方式,直接介入其信息收集和決策過程。而這種介入,是建立在對於線上與線下海量用戶數據分析的基礎之上。相比傳統狂轟濫炸或等客上門的營銷,大數據營銷無論在主動性和精準性方面,都有非常大的優勢。它是目前主要的大數據應用領域。
大數據營銷不僅僅是用大數據找出目標顧客,向其發布促銷信息,它還可以做到:
實現渠道優化。根據用戶的互聯網痕跡進行渠道營銷效果優化,就是根據互聯網上顧客的行為軌跡來找出哪個營銷渠道的顧客來源最多,哪個來源顧客實際購買量最多,是否是目標顧客等等,從而調整營銷資源在各個渠道的投放。例如東風日產,它利用對顧客來源的追蹤,來改進營銷資源在各個網路渠道如門戶網站、搜索和微博的投放。
精準營銷信息攜神推送。精準建立在對海量消費者的行為分析基礎之上,消費者網路瀏覽、搜索行為被網路留下,線下的購買和查看等行為可以被門店的POS機和視頻監控記錄,再加上他們在購買和注冊過程中留下的身份信息,在商家面前,正逐漸呈現出消費者信息的海洋。
一些企業通過收集海量的消費者信息,然後利用大數據建模技術,按消費者屬升猛性(如所在地區、性別)和興趣、購買行為等維度,挖掘目標消費者,然後進行分類,再根據這些,對個體消費者進行營銷信息推送。比如孕婦裝品牌十月媽咪通過對自己微博上粉絲評論的大數據分析,找出評論有「喜愛」相關關鍵詞的粉絲,然後打上標簽,對其進行營銷信息推送。京東商城副總經理李曦表示:「用大數據找出不同細分的顧客需求群,然後進行相應的營銷,是京東目前在做的事情。」小也化妝品將自身網站作為收集消費者信息的雷達,對不同消費者推薦相應的肌膚解決方案,創始人肖尚略希望在未來,大數據營銷能替代網站的作用,真正成為面向顧客的前端。
打通線上線下營銷。一些企業將互聯網上海量消費者的行為痕跡數據與線下購買數據打通,實現了線上與線下營銷的協同。比如東風日產,線上與線下的協同營銷方式為:其門戶網站帶來訂單線索,而通過這些線索,服務人員進行電話回訪,從而推動顧客在線下交易。在此過程中,東風日產記錄了消費者進入、瀏覽、點擊、注冊、電話回訪和購買各個環節的數據,實現了一個橫跨線上線下,以大數據分析為支持的,營銷效果不斷優化的閉環營銷通路。而國雙科技,衡量某一地區線下促銷活動的效果,就是看互聯網上,來自這個地區對於促銷內容的搜索量。一些企業,通過鼓勵線下顧客使用微信和Wi-Fi等可追蹤消費者行為和喜好的設備,來打通線上與線下數據流,銀泰百貨計劃鋪設Wi-Fi,鼓勵顧客在商場內使用,然後根據Wi-Fi賬號,找出這個顧客,再通過與其它大數據挖掘公司合作,以大數據的手段,發掘這個顧客在互聯網的歷史痕跡,來了解這個顧客的需求類型。
二、大數據用於內部運營
相比大數據營銷,大數據在內部運營中的應用更深入,對於企業內部的信息化水平,以及數據採集和分析能力的要求更高。本質上,是將企業外部海量消費者數據與企業內部海量運營數據聯系起來,在分析中得到新的洞察,提升運營效率。(詳見P96表5:大數據在內部運營中的應用)
表5
三、大數據用於決策
在大數據時代,企業面對眾多新的數據源和海量數據,能否基於對這些數據的洞察,進行決策,進而將其變成一項企業競爭優勢的來源?同大數據營銷和大數據內部運營相比,運用大數據決策難度最高,因為它需要一種依賴數據的思維習慣。
已有少數企業開始嘗試。比如國內一些金融機構在推出一個金融產品時,會廣泛分析該金融產品的應用情況和效果、目標顧客群數據、各種交易數據和定價數據等,然後決定是否推出某個金融產品。
但是,中國企業家研究院在調研中發現,目前中國企業當中,大數據決策的應用非常之少,許多企業領導者進行決策時,仍習慣於憑借歷史經驗和直覺。
大數據產品——企業利潤滋長的新源泉
大數據除了用於運營外,還能夠與企業產品結合,成為企業產品背後競爭力的核心支持或者直接成為產品。提供大數據產品的企業分為兩類,直接提供大數據產品的企業,以及將大數據作為產品和服務核心支撐的企業。前者主要為大數據產業鏈中提供數據服務的參與者,包括數據擁有者、存儲企業,挖掘企業、分析企業等,後者則主要是那些以大數據為產品核心支撐的企業,它們大多是互聯網企業,其產品和服務先天就有大數據基因,這些企業包括搜索引擎、在線殺毒、互聯網廣告交易平台以及眾多植根於移動互聯網之上,為用戶提供生活和資訊服務的APP等。
表3
表4
一、大數據作為產品核心支持
它們主要在以下幾方面使用大數據:
1、提供信息服務。很多互聯網企業通過對海量互聯網信息和線下信息的整合和分析,為個人和企業提供信息服務,典型的如網路、去哪兒、一淘、高德地圖、春雨醫生等等。在美國,一些互聯網企業甚至根據大數據提供更深度的預測信息服務,美國科技創新公司farecast,通過分析特定航線機票的價格,幫助消費者預測機票價格走勢。
2、分析用戶的個性化需求,藉此提供個性化產品和服務,或者實現更精準的廣告。典型的有移動社交工具陌陌、網路、騰訊、廣告交易平台品友互動以及一些互聯網游戲商。這種應用往往先是收集海量用戶的互聯網行為數據,將用戶分類,根據不同類型的用戶,提供個性化的產品,或者提供個性化的促銷信息。比如網易等門戶網站推出了訂閱模式,讓使用者按照個人喜好方便地定製和整合不同來源的信息。
3、增強產品功能。對於很多互聯網產品,如殺毒軟體、搜索引擎等等,海量數據的處理能夠讓產品變得更聰明更強大,如果沒有大數據,產品的功能就大大減弱。比如奇虎360公司的360殺毒軟體,憑借每天海量的殺毒處理,建立了龐大的病毒庫,這使它能夠更快地發現病毒,而一些小的殺毒軟體公司則無法做到這一點。
4、掌控信用狀況,提供信貸服務。阿里巴巴上匯集了海量中小企業的日常資金與貨品往來,通過對這些往來數據的匯總與分析,阿里巴巴能發現單個企業的資金流與收入情況,分析其信用,找出異常情況與可能發生的欺詐行為,控制信貸風險。
5、實現智能匹配。婚戀網站、交易平台等,利用大數據可以進行精準而高效的配對服務。網易花田會挖掘用戶行為數據,比如點擊哪些異性的頁面,發表什麼樣的評論,建立用戶興趣模型,從而挖掘到用戶所期待另一半的類型,然後主動推薦與對方匹配度比較高的人選。2010年,阿里巴巴嘗試性地推出「輕騎兵」服務,由阿里巴巴將中國各產業集群地的供應商與海外買家的個性采購需求進行快速匹配,所憑借的,就是對供應商的海量交易數據信息的整合與挖掘。
二、大數據直接作為產品
對一些企業,大數據直接成為了產品,這些產品包括海量數據、分析、存儲與挖掘的服務等,目前大數據產業鏈正在形成過程中,出現了一批開放、出售、授權大數據和提供大數據分析、挖掘的公司和機構,前者主要是一些擁有海量數據的公司,將數據服務作為新的盈利來源。如大型的互聯網平台、民航、電信運營商、一些擁有大數據的政府機構等等,後者主要包括一些能夠存儲海量數據或者將海量數據與業務場景結合,進行分析和挖掘,或者提供相關產品的公司,如IBM、SAP、拓而思、天睿公司。它們為大數據應用者們提供海量數據存儲、數據挖掘、圖像視頻、智能分析等服務以及相關系統產品。
大數據平台——企業群落繁榮的滋養劑
而網路已建成了包括網路指數、司南、風雲榜、數據研究中心和網路統計在內的五大數據體系平台,幫助其營銷平台上的企業了解消費者行為、興趣變化,以及行業發展狀況、市場動態和趨勢、競爭對手動向等信息。
為解決這些問題,各個平台在積極地努力。比如阿里巴巴建立了數據委員會,在統一數據格式標准、從源頭上保證數據的質量,採集和加工出精細化的數據,確保其能符合平台企業的應用場景等方面,不遺餘力地嘗試。尤其在大數據精細化方面,阿里巴巴更是作為其大數據戰略的重點。這方面,騰訊目前也在加快步伐。比如新版騰訊網出現了「一鍵登錄」的提示,用戶可以在上面通過一些細分標簽,訂閱自己關注的內容。實際上,這也是騰訊收集更精細化的用戶興趣數據的一個有效手段。
Tips
大數據實戰手冊
將大數據應用於內部運營中時,企業會遇到一些常見問題
1企業如何獲取與分析數據?
互聯網是大數據的一個主要來源,一些線下的傳統企業很難獲得。但它們可以:
a和擁有或能抓取海量數據的平台、企業以及政府機構合作。比如淘寶上的電商就購買淘寶收集的海量數據中與自身運營相關的部分,用於自身業務。再如卡夫通過與IBM合作,在博客、論壇和討論版的內容中抓取了47.9萬條關於自己產品的討論信息,通過大數據分析出消費者對卡夫食品的喜愛程度和消費方式。
b建立自己在互聯網上的平台,比如朝陽大悅城利用自己的微信、微博等平台收集消費者評論數據。
c許多傳統企業沒有分析海量數據的能力,此時它們可以和大數據分析和挖掘公司合作,目前市場上已經有天睿公司、IBM、百分點、華勝天成等一批提供大數據分析和挖掘服務的公司,它們是傳統企業進行大數據分析可以藉助的力量。
2如何避免大數據應用時的部門分割?
對於許多企業,其信息流被各部門彼此分割,數據難以互通,對於這種情況下,大數據的共享和匯集就只是一個泡影,更難以實現大數據的深度應用。
要打通部門之間信息分割的局面,首先要建立統一的、集中的數據系統。就像立白信息與知識總監王永紅所說的,「要真正用好大數據,企業要採用大集中的信息系統。」從更深入的角度來談,企業信息流的部門分割,更在於企業部門之間的分割,比如有一些企業的營銷按照渠道分割,導致對於顧客的大數據收集和分析效果大打折扣。
IBM智慧商務技術總監楊旭青認為,「很多時候由於組織結構問題,大數據分析有效性大大降低了。」這就需要組織與流程層面的重新設計,在這方面,阿里巴巴的部門負責人輪崗制度,對於打破部門壁壘無疑是一劑好葯。而一些企業為了打破部門分割,建立了矩陣型的組織結構,強化部門間的橫向合作,這些無疑為大數據的匯集、共享與應用創造了良好條件。
3如何讓業務人員重視大數據的應用?
解決這個問題,一方面在於一把手對整個企業數據文化的倡導,比如1號店董事長於剛就要求業務人員無論在開會,還是匯報工作時,都以數據說話,而馬雲更是將大數據提升到了戰略高度。
另一方面,也在於數據部門的帶動,阿里巴巴數據委員會負責人車品覺分享了經驗,「因為運營部門的業務人員很難看到大數據的潛力,可以首先從一些對業務見效快,見效顯著的數據項目出發,通過一兩個項目的成功,調動對方的積極性,然後再逐步一個個地引導。」
4為何大數據工作與運營需求脫節?
這往往是由於數據人員與業務人員視角、專業知識不同而導致的。大數據人員做了很多努力,但是業務人員卻認為這些努力無關痛癢。如何解決這個問題?
有的企業從組織設計上發力,將大數據納入業務分析部門的管理之下,用業務統馭數據。對於朝陽大悅城,由主要負責戰略和經營分析的部門來管理大數據工作,其中的大數據分析人員則作為支持人員。在負責人張岩看來,大數據要靠商業法則指導,關鍵是找到業務需求的點,然後由數據分析和挖掘人員實現。在具體操作中,大悅城對微信的數據挖掘,挖掘什麼樣的關鍵詞,由業務分析人員確定,而具體挖掘則由數據部門做;有的企業從流程設計上著手,推動業務部門與數據部門人員之間的溝通,建立數據人員工作與效果掛鉤的考核機制。
例如阿里巴巴根據數據挖掘的成效(比如帶來的商品轉化率的提升)來考核數據挖掘師,考核數據分析師則看其分析結果能否出現在經營負責人的報告中。從數據部門自身角度則需要降低運營部門使用數據的障礙和門檻,比如立白集團的數據人員會努力嘗試向運營部門提供更易懂、更生動的圖形化數據分析界面,在立白老闆辦公室上,就有一份「客戶運營健康體檢表」,讓老闆對全國經銷商的當月銷售情況一目瞭然。再如阿里巴巴開發的無線Bi,讓經營人員在手機上也可以看到大數據分析結果,拿車品覺的話說,「以數據之氧氣包圍經營人員。」
⑹ 什麼是大數據,大數據的典型案例有哪些
隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:
「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。
⑺ 百度大數據的主要案例
網路大數據中心與峨眉山景區強強聯合,從搜索行為、遊客人群、景區定製數據和網路輿情進行全面合作,以適應對數據的需求、掌控旅遊發展的趨勢;大數據合作為做好未來旅遊發展奠定了重要的基礎,能夠做到早發現、早分析、早應對,對及時的做好精準營銷、社群營銷和網路營銷都有積極的幫助,無疑是以大數據支撐「互聯網+旅遊」落地的極佳案例。
⑻ 大數據有哪些具體的應用案例_大數據應用的典型案例
大數據有具體的應用案例還是很多的,比如:
1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
2.Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態銀頌的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。
3.沃爾瑪的搜索。自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
4.快餐業的培搏鍵視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。
5.Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。
6.PredPolInc.。PredPol公司通過與洛杉磯和聖配巧克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。
7.TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。
8.AmericanExpress(美國運通,AmEx)和商業智能。以往,AmEx只能實現事後諸葛式的報告和滯後的預測。「傳統的BI已經無法滿足業務發展的需要。」Laney認為。於是,AmEx開始構建真正能夠預測忠誠度的模型,基於歷史交易數據,用115個變數來進行分析預測。該公司表示,對於澳大利亞將於之後四個月中流失的客戶,已經能夠識別出其中的24%。
⑼ 有哪些大數據分析案例
如下:
1. 大數據應用案例之:醫療行業
1)Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
2)大數據配合喬布斯癌症治療
喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。
2. 大數據應用案例之:能源行業
1)智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。
通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。
因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
2)丹麥的維斯塔斯風能系統(Vestas Wind Systems)運用大數據,系統依靠的是BigInsights軟體和IBM超級計算機,分析出應該在哪裡設置渦輪發電機,事實上這是風能領域的重大挑戰。在一個風電場20多年的運營過程中,准確的定位能幫助工廠實現能源產出的最大化。
為了鎖定最理想的位置,Vestas分析了來自各方面的信息:風力和天氣數據、湍流度、地形圖、公司遍及全球的2.5萬多個受控渦輪機組發回的感測器數據。這樣一套信息處理體系賦予了公司獨特的競爭優勢,幫助其客戶實現投資回報的最大化。
3. 大數據應用案例之:通信行業—通過大數據分析挽回核心客戶
法國電信-Orange集團旗下的波蘭電信公司Telekomunikacja Polska是波蘭最大的語音和寬頻固網供應商,希望有效的途徑來准確預測並解決客戶流失問題。
他們決定進行客戶細分,方法是構建一張「社交圖譜」- 分析客戶數百萬個電話的數據記錄,特別關注 「誰給誰打了電話」以及「打電話的頻率」兩個方面。「社交圖譜」把公司用戶分成幾大類,如:「聯網型」、「橋梁型」、「領導型」以及「跟隨型」。
這樣的關系數據有助電信服務供應商深入洞悉一系列問題,如:哪些人會對可能「棄用」公司服務的客戶產生較大的影響?挽留最有價值客戶的難度有多大?運用這一方法,公司客戶流失預測模型的准確率提升了47%。
4、大數據應用案例之:零售業—大數據幫零售企業制定促銷策略
北美零售商百思買在北美的銷售活動非常活躍,產品總數達到3萬多種,產品的價格也隨地區和市場條件而異。由於產品種類繁多,成本變化比較頻繁,一年之中,變化可達四次之多。
結果,每年的調價次數高達12萬次。最讓高管頭疼的是定價促銷策略。公司組成了一個11人的團隊,希望透過分析消費者的購買記錄和相關信息,提高定價的准確度和響應速度。
定價團隊的分析圍繞著三個關鍵維度:
1)數量:團隊需要分析海量信息。他們收集了上千萬的消費者的購買記錄,從客戶不同維度分析,了解客戶對每種產品種類的最高接受能力,從而為產品定出最佳價位。
2)多樣性:團隊除了分析了購買記錄這種結構化的數據外,他們也利用社交媒體發帖這種新型的非結構化數據。由於消費者需要在零售商專頁上點贊或留言以獲得優惠券,團隊利用情感分析公式來分析專頁上消費者的情緒,從而判斷他們對於公司的促銷活動是否滿意,並微調促銷策略。
3)速度:為了實現價值最大化,團隊對數據進行實時或近似實時的處理。他們成功地根據一個消費者既往的麥片購買記錄,為身處超市麥片專櫃的他/她即時發送優惠券,為客戶帶來便利性和驚喜。
透過這一系列的活動,團隊提高了定價的准確度和響應速度,為零售商新增銷售額和利潤數千萬美元。
5、大數據應用案例之:網路營銷行業(SEM)
很多企業在做SEM的過程中,都有這樣的感觸:每年都會花費大量的預算在SEM推廣中,但是因為關鍵詞投入產出無法可視化,常常花了很多錢卻不見具體的回報。
在競爭如此激烈的SEM市場中,企業需要一個高效的數據分析工具來盡可能地幫企業優化SEM推廣,例如BDP,來幫企業節省不必要的支出,提升整體的經營績效。
企業可藉助數據平台提供的網路營銷整合解決方案,打通各個搜索引擎營銷(SEM)、在線客服系統和CRM系統,營銷競價人員無需掌握復雜的編程技術,簡單拖拽即可生成報表,觀察每一個關鍵詞的投入和產出,分析每一個頁面的轉化,有效降低投放成本。
通過BDP實況分析數據,可以快速洞悉對手關鍵詞的投放時段、地域及排名,並對其進行可視化的分析,實時監控自己和競爭對手的投放情況,了解對手的投放策略,支持自定義設置數據更新的時間點、監控頻次和時段,及時調整策略。知已知彼,才能百戰不殆。
6、大數據應用案例之:電商行業
意料之外:胸部最大的是新疆妹子。曾經淘寶平台顯示,中國女性購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好,其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。
雖然淘寶數據平台不能代表一切,但是結合現實來看,這個也具有普遍的代表性,只能感慨中國女性普遍size。在文胸顏色中,黑色最為暢銷,黑色絕對是百搭,每個女性必備。
從省市排名,胸部最大的是新疆妹子。這些數據都對於文胸店鋪而言是很好的參考,為店鋪的庫存、定價、款式選擇等策略都有奠定數據基礎。
7、大數據應用案例之:娛樂行業
微軟大數據成功預測奧斯卡21項大獎。2013年,微軟紐約研究院的經濟學家大衛•羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。
今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。
總的來說,大數據的終極目標並不僅僅是改變競爭環境,而是徹底扭轉整個競爭環境,帶來新機遇,企業需要應勢而變。企業只有認識到這一點,使用合適的數據分析產品、聰明地使用和管理數據,才能在長期競爭中成為終極贏家。