❶ 中國大數據中心在哪裡
中心基地-北京、北方基地-烏蘭察布、南方基地-貴州。
2015年1月16日,由藍汛與北京市供銷總社共同投資的藍訊首鳴國際數據中心項目啟動儀式在北京天竺綜合保稅區舉行。據了解,該數據中心是北京首個國家級、超大規模雲數據中心,產業園佔地面積8萬平方米,包含9棟數據中心機房和1棟感知體驗中心。
2015年以來,200餘個大數據信息產業項目簽約落戶貴州,富士康、阿里巴巴、騰訊、華為等大型企業搶灘貴州發展。中國電信雲計算貴州信息園1.1期、中國移螞旦動(貴州)大數據中心、中國聯通貴安雲數據中心一期建成運營。中電樂觸、高新翼雲、翔明科技等第三方數據中心已建成並投運,目前數據中心伺服器達到2.2萬台;北京供銷社數據中心、惠普數據中心等一批項目已經啟動,預計2016年將達5萬台伺服器規模。烏蘭察布國家大數據災備中心啟動大會於2016年07月08日早上八點正式啟動,內蒙古自治區主席布小林出席會議。烏蘭察布市委市政府依據自身地理位置優越,地質板塊穩敏物陵定,電力資源豐橋戚富,氣候冷涼適宜,臨近京津冀經濟圈核心市場等優勢,將信息產業作為戰略性新興產業來發展,致力於將烏蘭察布市打造成面向華北、服務京津的國家級雲計算產業基地,為承接高科技產業、加快產業轉型升級提供強有力的支撐。市委市政府將為該建設國家大數據災備中心項目提供充足的土地與極具競爭力的投資政策吸引廣大企業參與建設。
❷ 企業想要成功布局大數據的七大關鍵步驟
企業想要成功布局大數據的七大關鍵步驟
在這個大數據已經成為市場一個美味的「大蛋糕」的今日,大多數企業都很想要分得一塊。大多數企業正做好了布局大數據的准備,那麼,該怎麼做才能成功去布局?
最近,電子科技大學教授,雲基地大數據實驗室合夥人周濤在接受采訪時提出,對於普通企業要通過修煉成為大數據企業,關鍵要做好7個步驟:
1.要實現數據化。企業要為此做好計劃,到底需要保存什麼樣的數據,以人為中心的數據還是以產品為中心,還是更關注企業運營,需要做好這樣的計劃,然後再將企業生產經營中的數據保存下來,即便是現在看來沒什麼用的數據,未來也可能產生巨大的價值。比如說像售樓處、體驗店客戶的來訪數據,就有必要完整的記錄下來。包括怎麼過來的,一個人來還是幾個人,有老人和小孩嗎,穿什麼樣的衣服等等,還有客戶的情緒,看了什麼,問了什麼問題,最後買了什麼東西,都是非常重要的數據。
另外,企業內部人力資源的各個方面也都可以記錄下來,這些可以進行挖掘和分析的數據。他舉例說,長虹公司在自己的生產線設置了很多感測器,監測溫度、濕度、震動、噪音、顆粒等等因素,希望了解到生產過程中哪些因素會對員工產生明顯影響。他們此前都認為溫度和顆粒可能對於員工操作和產品質量影響最大,但是事實上最終數據分析的結果,溫度是沒有什麼影響的,恆溫的控制對於生產效率和合格率的貢獻並不像想像中那麼大,反而是噪音對於員工情緒以及生產的影響非常重要。要成為大數據企業,第一步企必須要實現數據化。
2.企業要自己培養一些大數據理念,或者是小數據挖掘的團隊。做大數據,企業的規模不一樣,要求也不一樣。如果企業規模足夠大,比如說是電信運營商或者電力、銀行這樣的行業,可能會形成一個大數據的團隊。如果不是,比如說就是簡單的服務企業,那麼形成理念就可以了。現在我們認為比較好的數據科學家,也不是說就是特別擅長或適應網路,這樣的人不重要了,重要的是要有武器,什麼樣的問題來了知道怎麼解決。
關鍵我們認識是要培養四種理念:
(1)除了結構化數據以外還有文本、音頻、圖像、遙感、網路、行為軌跡、時間數據,這些數據怎麼處理,它存在的大挑戰是什麼。
(2)一定要懂預測,因為絕大部分的大數據應用回到預測中,預測裡面很多方法都是基準學習的,而基準學習目前最火的方向是集群學習。
(3)要走分布式存儲計算,這絕對不是說我知道給Hadoop 、Maprece、Hbase就夠了,關鍵問題是首先要知道怎麼樣去搭一個混合式的,你的數據來了,我到底是應該犧牲我的一致性還是犧牲操作性,大概的成本多少,哪些數據挖掘的重要演算法我要把他Hadoop、Maprece實現,哪些演算法要通過SPTA,可變邏輯治理是在硬體裡面,從而替代CPU、GPU。
(4)需要整個數據向外的發展,知道哪些數據可能在外部產生什麼樣的重要價值,或者外部的數據能夠在你的企業產生什麼樣的重要價值。企業應該培養出這四個能力,建立起企業數據挖掘的人才團隊。
3.企業一定要做好自己的外部數據儲備。我們都說「書到用時方恨少」,很多的企業,比如說像服裝銷售這樣的傳統行業,我要進的貨在淘寶、天貓上賣的怎麼樣?在淘寶、天貓哪一個店鋪怎麼樣?它的競爭品牌是什麼樣售價,怎麼樣銷售的?對於這樣一些數據,如果到需要的時候才去找,往往都來不及了。同樣的道理。比如銀行給中小企業發放貸款的時候,希望了解到它的用水、用電、生產、交通數據,例如通過攝像頭就能知道這個企業到底有多少車運行,這些數據可能對於中小企業發放貸款決策都很重要。但是當你要發貸款的時候,再去問已經沒有機會了,或者說成本太高了。我們建議,企業應該學會通過公共渠道或者數據交換的方法,根據自己的業務需求來量身定做自己的外部數據和戰略數據。
4.企業要建設自己的大數據管理與應用平台。對於很多企業,做大數據並不是意味著要自己去建設數據中心。隨著雲計算和雲數據中心出現,使用外部數據中心的成本已經非常低了,數據存儲的費用也是在成倍的下降。但是,企業要做大數據,必須要在IT基礎設施方面具有比較好的數據處架構,要用大一些工具比如數據分布式存儲、Hadoop等等。很關鍵的企業不僅要具備一個數據中心的硬體,還要考慮和企業業務方向結合,不僅就是包括了數據的採集、資料庫架構,向上的分析模塊,再往上的API數據出口,以及橫向的一些業務模塊和出口這些東西。要做成企業的大數據管理應用平台,我們強調一定要從企業的業務出發,量體裁衣,企業首先必須要搞清楚自己的業務形態是什麼。
5.大企業一定要有數據偵測的能力,需要有創新思維的人隨時思考這些問題,比如企業佔有的數據到底在外部能夠產生什麼樣大的作用。就像我們經常拿雅昌藝術中心的例子,它存了很多藝術品的數據,所以最後它可以發布藝術指數。同樣國家電網也發布兩個指數,一個叫重工業用電指數,一個叫輕工業用電指數。淘寶網有它的CPI指數,還有很多企業的一些數據,實際上都可以發揮想像不到的價值。
6.一個大數據企業包括未來現代化企業,一定要有開放共享的態度。一方面需要企業把自己的很多問題社會化,另一方面企業要盡量去通過一些平等辦法,通過數據交換的方式互相共享形成數據化。
7.企業還要做好數據方面的戰略投資。我認為有三種比較先進的模式。
一種模式叫做產業鏈布局,比如說海爾、長虹可以投物聯網,對物聯網企業創新進行投入。比如說中信集團可以關注醫療,在這個方面尋找相關的數據應用。
第二個方面就是技術,你要知道哪些是硬技術創新,特別是在基礎術設施層面的,比如加速存儲,雲計算的一些技術,比如數據挖掘,垂直應用分析,這個方面集中了很多創新也可以形成很大的規模。
第三種模式是數據集方面的投資,我們知道阿里巴巴投資高德是為了數據,它投資新浪微博不僅是要投錢還要花錢買數據,所有這一切本質還是想把數據流動起來做更大的事情。這種投資就是集成數據,強調數據流動性。這些投資裡面有幾點是需要注意的,一是要去關注企業的數據價值,其次要關注早期的投資,去長期指引而不是短期追逐回報率,最後還要多關注傳統行業。
周濤教授提出,大數據的本質不在於數據量有多少,也不在於是否是異構的數據,而是在於數據是關聯的,整體的數據可以流動起來。他認為,跨領域關聯,通過一加一產生遠大於二的價值才是大數據的精髓。
當然,數據本身並不產生價值,只有通過大數據的分析去解決難題才是價值,而大數據對於企業營銷的作用是可大可小的,不過在這個把大數據作為概念的時代,企業還是要做好布局大數據的准備,向大數據企業修煉。
❸ 如何利用大數據撬動人力資源
當前全社會多領域正在經受著大數據浪潮的洗禮,人力資源管理領域也不能例外。商業智能工具幫助人力資源管理從單憑經驗的模式逐步向依靠事實數據的模式轉型;人力測評由主觀性強的單一專家進行測評轉向構建數學模型依靠大數據處理技術進行測評;企業招聘過程也正朝著越來越依靠社交網路和大數據技術的方向發展。
前不久,專注於大數據分析的人力資源公司「數聯尋英」和僱主品牌咨詢及招聘服務商HiAll聯手推出了基於大數據的精準員工推薦模式及解決方案-人才雷達(Talent RADAR)。這是基於企業定製化的招聘需求,通過對社會化媒體及簡歷資料庫中用戶關系和文本描述大數據的定向挖掘,幫助人力資源主管通過社交招聘這一全新模式成功實現精準化、智能化、個性化的員工推薦和篩選,讓招聘工作變得更為簡單、高效和有趣。
基於大數據分析而產生人才雷達系統,不同於傳統的人力資源辦公管理系統(E-HR),它面向的是招聘的業務支撐和決策系統,並結合大數據社交網路數據挖掘和分析,提出一套同時面向求職者和招聘官的雙向擴展匹配演算法,既能讓人力資源工作人員在茫茫人海中發現與職位需求高度匹配的專業人才,又能為求職者提供個性化的營銷渠道,找到能夠展現個人才華的最佳舞台。它的獨特優勢還體現在對各種社交網路如Linkedin、新浪微博、人人網等網路大數據的深度分析上,通過建立求職者的性格圖譜、興趣圖譜和關系圖譜,深入了解求職者的性格特點、興趣方向和社交圈子。這些因素在招聘官最終決策和求職者人生職業規劃中都佔有重要地位。同時,人才雷達系統在企業內部員工推薦上的優勢更為明顯,通過對員工社交關系的延展和判斷,系統不僅能精準發現與職位需求匹配的求職者,還能計算求職者與推薦者的信任關系及參與應聘的意願度。
目前,越來越多的企業意識到數據在人力資源管理中的重要性,並希望將其運用到人力資源戰略決策中。HiAll公司CEO曾舒煜先生提出:「通過數據分析和量化招聘渠道對人才引進產生影響,並建立有效的人才資料庫,管理並持續積累人力資源方面的戰略數據資產,是眾多企業當前遇到的普遍挑戰。」
據分析,傳統的商業智能系統中用以分析人力資源的數據,大都是企業自身信息系統所產生的標准化和結構化的運營數據,低於企業可利用數據的30%,另外70%的非結構化和半結構化數據則廣泛存在於以社交網路為代表的媒介之中。這也就意味著,企業一旦掌握了基於社交網路等媒介所產生的定向人才數據,就能夠掌握獲取優秀人才的先機。
談到將大數據分析技術引入傳統招聘行業,數聯尋英的創始人、首席執行官周俊臨先生強調:「數聯尋英在招聘領域的大數據技術應用方面已有深厚的積累。現在我們將更進一步,從人力資源行業普適需求中切入,解決企業人力資源戰略遇到的挑戰,成為企業HR經營決策的參謀官。」
北京雲基地大數據實驗室創始合夥人,數聯尋英投資人鄭毅先生對大數據助力企業人力資源管理的前景充滿期待。鄭毅先生認為:「大數據時代的意義不僅在於數據體量之大,更在於大量的數據能夠幫助企業進行科學決策,提升企業效率。人才雷達系統通過引入外部數據源以及最先進的演算法,改變了傳統人力資源管理中缺乏數據憑直覺與經驗進行決策的不足。這一方式將對傳統的人力資源管理產生革命性的變革,成為支撐企業招聘業務不可或缺的「外腦」。」
❹ 天雲大數據的管理團隊
田溯寧先生,1963年出生於北京。1985年畢業於遼寧大學生物系,隨後進入中國科學院研究生院學習並獲生態學碩士學位。1988年赴美國德州理工大學就讀於資源管理專業,1993年獲得博士學位。
1994年至1999年,田溯寧先生參與創建了亞信科技(中國)有限公司並擔任首席執行官職務。2000年,亞信在美國納斯達克成功上市,成為第一家在美國上市的中國高科技企業(NASDAQ:ASIA)。
1999年至2006年,田溯寧先生擔任中國網通(HKSE:0906; NYSE:CN)副董事長兼CEO。中國網通是國內領先的固話電信運營商,也是亞太地區領先的國際數據通訊運營商。
2006年田溯寧先生創建寬頻資本(ChinaBroadband Capital)並擔任董事長。寬頻資本是中國第一家專注於電信、互聯網、媒體與科技產業的股權投資基金。
2010年8月在北京市政府、北京經信委、北京經濟技術開發區的領導和大力支持下,田溯寧先生創建了北京雲基地。位於北京亦庄經濟技術開發區的北京雲基地成為了北京第一個雲計算示範基地。 雷濤先生現任天雲融創數據科技(北京)有限公司(簡稱天雲大數據)首席執行官,服務於寬頻資本投資的雲基地,支持創始人田溯寧建立和拓展大數據業務,主導大數據商業模式、產品策略、研發和市場策略。
擁有20年豐富的IT從業經驗,10年以上全球先進跨國IT企業技術領導職務,領域涉及網路,系統,J2EE中間件,存儲等;2002年在Sun Microsystem晉級亞太區唯一的ES Ambassador企業方案大使, 期間獲得諸多專業領域認證,Solaris認證;J2EE Architect; Sun Cluster集群認證;Sun ONE Identity安全認證;存儲架構師認證;光纖網路BCSD認證;2004年在McDATA通過了最高等級的存域網專家資質MCSD;任SNIA存儲工業協會中國區技術委員會聯合主席,推廣雲存儲介面標准;任CCF中國計算機學會大數據專委會委員。