導航:首頁 > 網路數據 > 大數據產業發展路徑

大數據產業發展路徑

發布時間:2023-09-27 16:39:29

大數據未來的發展趨勢

趨勢一:數據的資源化


什麼是數據的資源化,它指的是大數據成為企業和社會關版注的重要戰略資權源,並且已經成為大家爭奪的焦點。因此,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。


趨勢二:與雲計算的深度結合


大數據離不開雲處理,雲處理能夠為大數據提供彈性可拓展的基礎設備,是產生大數據的平台之一。自從2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。


另外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。


趨勢三:數據科學和數據聯盟的成立


未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。


與此同時,基於數據這個基礎平台,也將建立起跨領域的數據共享平台,之後,數據共享將擴展到企業層面,並且成為未來產業的核心一環。


關於大數據未來的發展趨勢的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈡ 大數據時代怎麼發展

你好,很高興為你解答。因為大數據的到來,改變了人們的生活品質,提高了人內們對各個方面的需求程度,所以容可見大數據多麼的強大。未來一旦大數據發展成熟、全面完善,會更加豐富人們全方面的需要,提高各行各業的效率,讓社會展現新生時代的風貌,未來大數據無疑會成為行業的巨頭。謝謝。

㈢ 目前國內大數據產業發展到什麼地步了呢

“大數據”作為一種概念和思潮由計算領域發端,之後逐漸延伸到科學和商業領域。大數據與物聯網、雲計算、人工智慧等技術有較為密切的關系,從大數據行業發展來看,目前大數據處在落地應用的初期,未來大數據的發展空間依然非常大。

大數據相關技術、產品、應用和標准不斷發展,逐漸形成了包括數據資源與API、開源平台與工具、數據基礎設施、數據分析、數據應用等板塊構成的大數據生態系統,並持續發展和不斷完善,其發展熱點呈現了從技術向應用、再向治理的逐漸遷移。

國家大數據戰略實施以來,地方政府紛紛響應聯動、積極謀劃布局。國家發改委組織建設11個國家大數據工程實驗室,為大數據領域相關技術創新提供支撐和服務。發改委、工信部、中央網信辦聯合批復貴州、上海、京津冀、珠三角等8個綜合試驗區,正在加快建設。各地方政府紛紛出台促進大數據發展的指導政策、發展方案、專項政策和規章制度等,使大數據發展呈蓬勃之勢。

㈣ 企業實施大數據的路徑

企業實施大數據的路徑

企業實施大數據的具體的建設路徑有兩個方面,一方面是自下而上,另一方面是自上而下。
自上而下
自上而下的路徑,首先是有序地在管理層建立數據的決策文化,在企業文化層面建設起數據的使用意識,然後建立對應的組織架構、對應的部門和團隊,確定需要招聘什麼樣的人進來、需要多少人、具體職責怎麼劃分,最後建立起對應的技術平台。
自下而上
自下而上第一是讓員工學習和掌握相關技術技能,可以通過內部培訓,也可以通過外部招聘。第二,要有規劃地設計,以後系統怎麼走、怎麼做, 要有一個長期的規劃。第三,要有明確的績效考核的指標,數據的管理、質量的管控、效益怎麼保證。第四,在思維上要保持一個開放的態度,互聯網時代大數據還在發展的初期,一般認為大數據在企業的應用還處於幼兒園階段,這個時候還有很多東西要學習,必須保持一個開放的心態,不斷地學習,才能真正把事情做好。
(一)建立企業的數據文化
文化是企業看待事物的價值觀和執行行動的衡量標准。建立數據文化就是要在整個企業層面建立一種以客觀的數據為決策依據和衡量標準的價值觀和制度體系,為企業能夠真正利用大數據產生價值提供基礎。沒有這個基礎,企業即使擁有再好的技術和資源,也無法利用好它們來為企業服務。
什麼叫企業數據文化?它包括六個方面的內容。
第一,數據文化主要體現在數據驅動決策,決策主要通過數據來說話。
第二,企業運行效率的分析。一方面,通過對數據進行深度分析,可以像望遠鏡一樣了解企業各方面的運營情況,另一方面,數據可以像顯微鏡一樣去觀察企業運營的細節,找到以優化的地方。
第三,通過數據來分析營銷規劃的得失。通常企業做促銷活動,銷售量提升了就覺得是成功了,但是促銷是有成本的,銷量提升了,是不是真的就帶來效益了呢?
第四,在以人為本的時代,企業對員工的人身安全和健康的責任越發重大了。如果能通過客觀可衡量的數據,關注員工的工作環境和舒適性,對保障良好健康的工作環境、提升員工的滿意度將起到非常重要的作用。
第五,員工績效,必須要有一個數量化的指標。
第六,價值鏈中的數據管理。在縱向供應鏈中通過數據的分享和交換,可以更好地讓供應鏈上下游的企業了解整個供應鏈上的需求、庫存和供給,從而可以優化鏈條上的庫存,主動發起供給的准備,更快地應對市場的變化。在橫向生態鏈中,通過分享和交換數據,可以在全方位生活場景中對用戶進行分析,從而打造出滿足用戶更廣泛需求的一站式服務,不僅可以挖掘出更多的商業機會,而且增強了用戶的粘性。
(二)建立企業的數據戰略
建立企業的數據戰略,需要建設三個方面的內容,如下圖
數據模型
第一個方面是建立完整的數據模型。數據模型的目的是正確地定義數據,對數據進行分類和確定數據交互之間的標准。將對企業業務管理的理解,轉化為數據的要求,從而理解到底什麼樣的數據需要管理。不同的系統產生不同的數據,各系統之間的數據和數據之間互相交互的內容是什麼。企業內部有不同的系統,ERP 系統、供應鏈系統、CRP 系統等,用戶信息放在哪,供應商信息、物聯網信息、財務信息分別放在哪,他們之間怎麼協調,怎麼溝通?這些都是需要考慮的問題。
數據服務
第二個方面是建立數據服務體系,包括選用什麼樣的技術平台、採用什麼樣的數據技術,不同的系統如何使用這些不同技術,包括傳統的資料庫、數據倉庫、商業智能、新型的 Hadoop 等。基於業務架構的設計,來設計數據應用的架構,然後通過數據交互介面來交換數據,從而避免出現數據孤島,同時建立統一的數據規劃,確保數據源的統一和一致性,為後期的數據分析提供支持。
數據管理
第三個方面是建立數據的治理體系。數據治理包括數據的管理制度和整體生命周期的管理。數據正在成為一種資產,與此相對應的,資產需要體系化的管理。數據的資產權利管理,包括確定數據的所有權、確定每個數據的所有者、誰是這個數據的管理者、誰來負責這個數據的准確性、誰來保障數據的質量,等等。數據的高質量是進行數據分析的基礎,數據如果是錯誤的,怎麼分析都不會有正確的結果。同時,數據的合規和安全的管理也是核心環節,比如誰可以操作數據、誰負責數據的安全、備份和服務等,一個嚴格的數據的合規和安全管控制度是必不可少的。
數據的生命周期管理,包括如何和何時建立數據、什麼時候可以修改、誰批准修改、數據如何消除等。國內的企業這方面做得比較欠缺,不只是數據,還包括設備、電腦等,電腦報廢了不能用了,就直接丟棄。在這方面,國外企業做得不錯,國外信息安全的企業, 通常會花錢請第三方公司來進行專業的數據銷毀的處理,甚至每台電腦花費幾百塊錢來進行環保型銷毀。比如在一些數據消除案例中,數據要用各種方 法來確保被徹底擦除,比如有些企業要求對數據進行格式化七遍,以避免可 能的數據恢復。
(三)建立企業的數據組織能力
建立數據的組織能力,包括設立合適的組織角色的定位、招聘到合適的人員、設立合適的組織結構以及設計合適的責權利,等等。
第一,數據的組織能力,建議有條件的公司可以建立首席數據官(ChiefData Officer)崗位,這個崗位主要是設計整個數據的戰略,領導數據戰略的落地,以及通過數據和業務管理層進行溝通、對話,傳遞數據的價值。
第二,數據科學家的作用非常重要,數據科學家研究的是如何用最好、最科學的演算法得出最好的結果。同樣一堆數據在那兒,十個不同的人在看,十個人看的結果都不同。那麼為什麼科學家算得准呢?因為他的知識夠深入,他了解哪個因素最重要,那麼多因素裡面他應該選哪部分來分析。數據科學家目前是整個市場上最欠缺的人才,因為同時兼具數據演算法專業知識和業務知識的人才是極其難得的。數據科學家可以分為三種類型,第一種是技術型數據科學家,他們是計算演算法方面的行家,對各種統計分析技術非常在行;第二種是應用數據科學家,他們對數據架構非常熟悉,熟悉數據在各個系統中的分布,能夠很好地把各種數據進行集成管理;第三種是業務數據科學家,這些人對行業知識和企業業務非常熟悉,同時兼具一部分對數據處理技術的了解,能很好地把業務的需要和特徵轉換成數據的處理要求,同時可以很好地將數據處理結果轉換成業務的視角和言語,來傳遞給業務管理者。
第三,對於一定規模的企業,我們通常建議,企業要建立一個集中式的數據管理運營中心。雲計算服務就是集中化管理方式,成本最低、靈活性最高、擴展性最強。
第四,整個數據組織的架構標准不是以技術、產品來交付,而是以商業價值交付為衡量標准。考量數據分析的產出能力,不是數據分析的速度有多快,也不是數據量有多大,而是數據分析的結果對業務到底有沒有幫助、是不是有指導意義。這也是所有數據分析的核心價值,也是對大數據中「大」的含義的最核心的衡量標准——「大」到產生業務價值。這個衡量標准對技術組織來說,執行起來有些困難,所以必須建立一個明確的績效評估標准和價值評估標准,讓技術人員能夠更多地從業務角度來考慮所做的工作的價值,而不陷入技術優先論的境地。
第五,提升一線人員的業務決策權和數據決策權,建立一個扁平化管理的組織。通過系統化的培訓來不斷培養員工的數據分析能力。由專業數據分析人員和演算法人員設計的數據分析解決方案或者產品,必須以簡單易用的方式提供給一線員工,同時更為重要的是,加強相關的解決方案或者數據產品的系統化培訓,讓更多的員工意識到這些解決方案或者產品的價值,並樂於在日常工作中使用。我們建議數據建模 / 數據產品研發的費用和針對一線員工的使用培訓的投入應該是對半分的。為了更好地推進培訓,企業還可以考慮成立興趣驅動的數據協會,讓更多的員工加入到該協會中,定期舉行培訓課程、研討沙龍以及聘請外部專家做相關分享以開拓視野。
建立了企業的數據組織能力後,企業使用數據的過程如下闡述。
首先搜集數據,從不同地方把數據找到,找到以後選擇演算法。其次進行業務關聯的分析,確定哪些指標、哪些維度是有意義的,這就是數據科學乾的事。業務科學家和數據科學家可以分離,也可以整合,大部分企業是一套人馬來做,展示成一個業務的可以接受、可以理解的方法,如果單純是數據展示,可能管理層、業務部門看不懂,這就需要轉換成業務管理者可以理解的語言和信息。最後,提交給管理層或者是對應的部門作商業決策。這就 完成了一個完整的價值交付。
在上述的數據處理過程中,數據團隊中有不同的崗位來執行對應的工作。在數據的採集和清理環節,主要是數據管理員,包括企業內部的數據抓取, 外部的微博、淘寶、第三方電信等的數據採集,數據很多,需要做清理,把一些沒有用的數據處理掉,留下來有效的數據,這主要是數據管理員要做的事情。接下來是數據科學家,選擇正確的演算法,同時可以根據業務的維度製作各種不同的模型,來得出一個分析的結果。再接下來,還有一個團隊是業務分析師,根據這些分析結果,將其轉換成業務人員可以理解的語言和展示方法,交給 CDO 和核心管理層、決策層做溝通,幫助他們作決策。作為整個技術平台的提供者,還有一個技術團隊做具體的平台搭建,可以自行開發基於 Hadoop 開源的大數據平台,或者購買第三方的系統做管理維護,也可以 直接使用大數據的 SaaS 服務平台來快速建立大數據技術能力。
(四)選擇技術平台
企業以往使用傳統數據進行復雜分析時,多使用數據倉庫和商務智能系統,也就是所謂的 OLAP 系統,對傳統數據比如財務數據、用戶數據進行抓取、挖掘和分析,然後通過頁面展示出來,這是非實時的分析系統。在互聯網+時代,要將第三方的社交數據和電商數據,比如微博、電商數據等放進來分析是很難的,因為傳統的架構是基於結構化的數據基礎上的,而現在更大量的數據是非結構化的數據,傳統方式很難支持。這樣我們分析數據就碰到一些困難,大數據應運而生,Hadoop 是其中最重要的一個平台。
Hadoop 是一個生態系統,它裡麵包括了一些計算的系統、數據存儲的系統、數據分析的系統,它是阿帕奇組織在 2004 年正式開展的一個項目。Hadoop 是一個非常重要的革命性的應用,因為它是免費發布,讓很多人都有機會使用,現在很多企業都是以 Hadoop 開源平台為基礎,再由內部技術人員做一些優化來使用。
傳統數據和大數據的關系是一個發展和結合的關系。傳統數據還是可以分析出對業務有價值的信息,也還是用以前倉庫的方式分析,新型數據用大數據的方式分析,兩個系統最後進行整合,形成一個後端的解決方案;現在也出現了一種完全集成式的方案,這是最近一兩年出現的新的大數據平台,可以同時兼容新的大數據和傳統的數據,這種集成式的應用將會越來越多。市場上很多公司的商業套件和 Hadoop 開源的方案有什麼區別呢?它們的主要區別是商業套件在性能上做了優化、提 升,在安全上做了增強,它加入了針對對應行業的業務理解,幫助企業預置了建模的方法和工具,但問題是價格比較貴。所以,各種方案的選擇是基於企業的實際情況,包括預算和團隊能力等因素綜合考慮的。
(五)數據的開放和共享
對於數據的來源,企業內部通常不具有大數據分析所需要的所有數據。 2014 年,我國的大數據市場規模 84 個億,預計 2015 年達到 166 個億,增長40%。相信隨著大數據交易平台的建設,增長還會更多。根據中國信息通訊研究院的研究報告,企業對大數據的認同度,認為「比較重要」的達到 97%,這說明企業對大數據的重要性是有認識的,問題是怎麼來落地。企業對待大數據往往關注的是安全性和穩定性。這說明雖然企業已經意識到大數據的重要性,但還是比較保守,對安全的顧慮影響了對數據商業價值的挖掘。隨著安全技術的發展以及對商業價值的認識的提高,企業應用大數據、獲取和交換數據將會越來越多。安全和商業價值永遠是一對需要衡量的關系,它就像速度和成本、速度和質量一樣是相輔相成、互相平衡的關系,要同時追求兩方面是有困難的,不同時期要有不同的策略。
企業對政府公開數據的需求非常強烈。市場上有很多針對政府數據的創業公司,例如一家企業叫法海風控,他是從法律層面分析企業的信用狀態,通過分析企業相關的法律文書,比如這家企業過去數年有沒有相關的法律官司、勝訴還是敗訴,也包括相關聯企業涉及到的法律行為,從這些角度提供風控的判斷,這是一個很好的應用案例,這取決於政府的數據公開程度。政府擁有海量的數據,如交通數據、社保數據等,一旦這些數據能夠公開,將會帶來大量的創業機會,也會給企業帶來更多考慮問題的維度,所以企業都希望政府能夠盡快地公開數據。
(六)找好切入點,小步快走
關於實施路徑,企業或多或少已經有一些數據、有一些系統,這個時候是推倒重來,還是有一些別的方法?數據能夠在哪些領域實現業績的大幅提高?數據能在哪些領域實現企業運營效率的提升?這些問題很重要,一開始就必須提出來。每個重要業務部門和職能部門都需要考慮這個問題,並展開相關的研討。企業高管實施大數據戰略的時候,需要高度重視這一步,但在國內很多企業往往忽略這一方面,投入大數據往往不是以提升業績為導向,而是以學術為導向,使得很多企業實施大數據戰略後,看不到數據對企業績效的提升,從而使得大數據戰略流產。
(七)放眼未來,永遠在路上
大數據是不是萬能的?是不是永遠有效的?大數據的使用有限制嗎?正確地認識這些問題,有助於企業更好地利用大數據,更客觀地看待大數據。
第一,大數據不是萬能的,大數據的使用是有限制的。大數據的使用,首先是在討論相關性的時候,而在判斷、解決一個具體問題的時候,大數據不是最好的方法。
第二,大數據即使大,也不能囊括所有的數據,大數據終究有成本的問題,准確性還不會達到百分之百。雖然它足夠可以做預測,但是不是絕對正確的東西。
第三,我們不能過於相信數據,因為有時候數據會解讀得不對,所以還要嘗試做一個驗證,如果這明顯和常識相反,你要驗證一下你的分析方法否正確。
還有一個問題是數據的安全,數據這么重要,能不能保護好數據,數據使用過程中有一些問題和潛在的風險。
最後的寄語:大數據是文化和技術的結合,最終的目的是產生業務價值。
第一,大數據技術是 IT 驅動業務變革的一個機會,不管從IT 部門本身的定位、IT 對企業產生的作用來說,還是企業能夠增強核心競爭力的角度來說,大數據都是一個非常重要的推動力。
第二,應用大數據技術的前提是要有一個數據驅動決策的企業文化,如果用大數據形成了一個報表,企業管理者作決策時根本不看,這就沒有意義了。只有當企業建立了數據驅動決策的文化,並真實地執行後,數據的價值才能夠充分實現。所以大數據使用的重要前提是企業有數據驅動決策的文化。
第三,數據本身只是一些信息,大數據的價值不在於數據本身,而在於如何通過數據做分析整理,最後產生分析和預測,傳遞業務價值,這才是使用大數據的目的和核心。

㈤ 大數據以後的發展方向是什麼

大數據醫療應用場景豐富,前景廣闊

目前,醫療大數據的應用場景主要包括臨床決策支持、健康及慢病管理、支付和定價、醫葯研収、醫療管理,服務對象涵蓋居民、醫療服務機構、科研機構、醫療保險機構、公共健康管理部門等。

醫療大數據的潛在價值巨大,其應用有助於提高醫療服務質量、減少資源浪費、優化資源配置、控制騙保行為、改善自我健康管理等。

2019年7月25日,邦盛醫療裝備(天津)股份有限公司聯手天九共享,掀起移動體檢大數據浪潮。

2019年9月11日,德華安顧人壽保險有限公司與浪潮集團簽署戰略合作協議,雙方將在健康醫療大數據應用、健康管理、慢病防治等領域開展全面合作與實踐。

由於大數據在醫療管理、醫療研究等領域具有獨特優勢,越來越多醫療相關單位與大數據企業、醫療信息化公司合作,同時高等醫學類院校也紛紛成立大數據研究院,比如重慶醫科大學、南京醫科大學等,尤其是2018年4月28日,北京大學健康醫療大數據國家研究院在京成立,標志著醫療大數據在高校和醫院聯合研究方面走上了新的高度。



——以上數據來源參考前瞻產業研究院發布的《中國大數據產業發展前景與投資戰略規劃分析報告》。

㈥ 大數據在未來有什麼樣的發展趨勢_大數據的未來發展前景

大數據的未來發展趨勢主要有以下幾點:趨勢一:數據資源化

何為資源化,是指大數據成為企業和社會關注的重要戰略資源,並已成為大家爭相搶奪的新焦點。因而,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。

趨勢二:與雲計算的深度結合

大數據離不開雲處理,雲處理為大數據提供了彈性可拓亂櫻寬的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一起助力大數據革命,讓大數據營銷發揮出更大的影響力。

趨勢三:科學理論的突破

隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。隨之興起的數據挖掘、機器學習和人工智慧等相關技術,可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。

趨勢四:數據科學和數據聯盟的成立

未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。與此同時,基於數據這個基礎平台,也將建立起跨領域的數據共享平台,之後,數據共享將擴展到企業層面,並且成為未來產業的核心一環。

趨勢五:數據泄露泛濫

未來幾年數據泄露事件的增長率也許會達到100%,除非數據在其源頭就能夠得到安全保障。可以說,在未來,每個財富500強企業都會嘩陸叢面臨悉孫數據攻擊,無論他們是否已經做好安全防範。而所有企業,無論規模大小,都需要重新審視今天的安全定義。在財富500強企業中,超過50%將會設置首席信息安全官這一職位。企業需要從新的角度來確保自身以及客戶數據,所有數據在創建之初便需要獲得安全保障,而並非在數據保存的最後一個環節,僅僅加強後者的安全措施已被證明於事無補。

趨勢六:數據管理成為核心競爭力

數據管理成為核心競爭力,直接影響財務表現。當「數據資產是企業核心資產」的概念深入人心之後,企業對於數據管理便有了更清晰的界定,將數據管理作為企業核心競爭力,持續發展,戰略性規劃與運用數據資產,成為企業數據管理的核心。數據資產管理效率與主營業務收入增長率、銷售收入增長率顯著正相關;此外,對於具有互聯網思維的企業而言,數據資產競爭力所佔比重為36.8%,數據資產的管理效果將直接影響企業的財務表現。

趨勢七:數據質量是BI(商業智能)成功的關鍵

採用自助式商業智能工具進行大數據處理的企業將會脫穎而出。其中要面臨的一個挑戰是,很多數據源會帶來大量低質量數據。想要成功,企業需要理解原始數據與數據分析之間的差距,從而消除低質量數據並通過BI獲得更佳決策。

趨勢八:數據生態系統復合化程度加強

大數據的世界不只是一個單一的、巨大的計算機網路,而是一個由大量活動構件與多元參與者元素所構成的生態系統,終端設備提供商、基礎設施提供商、網路服務提供商、網路接入服務提供商、數據服務使能者、數據服務提供商、觸點服務、數據服務零售商等等一系列的參與者共同構建的生態系統。而今,這樣一套數據生態系統的基本雛形已然形成,接下來的發展將趨向於系統內部角色的細分,也就是市場的細分;系統機制的調整,也就是商業模式的創新;系統結構的調整,也就是競爭環境的調整等等,從而使得數據生態系統復合化程度逐漸增強。

㈦ 大數據驅動農業發展新路徑

大數據驅動農業發展新路徑

農業大數據:從國內國際的發展來看,大數據正在驅動農業發展路徑發生變化,以提高農業效率,保障食品安全,實現農產品優質優價,農業大數據蘊含著巨大的商業價值。

以主要應用目的劃分,國內農業大數據應用分六種類型:1。重塑產業生態圈。代表性公司大北農,利用大數據再造養殖生態產業鏈。2。打造「新農人」運營服務平台。代表性公司智慧農業,通過集聚、分析「新農人」的生產經營數據,提高專業合作社運營效率。3。匯聚產業鏈大數據,降低交易成本,形成品牌溢價。

代表性公司新希望,搭建養殖服務雲平台,監控養殖全程,實現可追溯,匯聚產業鏈真實數據,實現消費者對廠家的信任,從而形成品牌溢價。4。轉型種植服務商,提高生產效率及產品品質。代表性公司芭田股份,集聚種植大數據,成為全面解決種植問題的服務提供商!5。升級農產品流通模式,提升農產品交易效率。代表性公司一畝田,積累大量的交易數據,提供價格指導、金融等多項服務。6。為企事業提供農業大數據分析服務。代表性公司龍信思源,以大數據分析挖掘技術為核心競爭力,幫助企事業單位實現高效管理,提升服務質量,推動行業發展。

國際上,利用大數據及互聯網提高農業效率的企業和案例也比比皆是,大數據及互聯網技術已開始在全球農業中得到廣泛運用,並成為資本與農業龍頭投資的下一風口!代表性公司有孟山都收購的精準種植服務商PrecisionPlantingInc,大數據意外天氣保險公司TheClimateCorporation等。

以上是小編為大家分享的關於大數據驅動農業發展新路徑的相關內容,更多信息可以關注環球青藤分享更多干貨

㈧ 大數據未來的發展趨勢怎麼樣

隨著IT行業的不斷發展,大數據會是未來重要的發展趨勢,整個IT行業將以大數據為基礎來構建新的應用生態,當前大數據技術被廣泛應用於互聯網、政府機構、金融行業等,此外大數據是支撐物聯網發展的核心技術之一,也會與雲計算、人工智慧等前沿創新技術進行深度融合。

大數據未來的發展趨勢有以下幾個方面:

1.大數據推動物聯網的發展。

物聯網就是把所有物品通過信息感測設備與互聯網連接起來,進行信息交換,即物物相息,以實現智能化識別和管理。物聯網產生大雹模數據,大數據助力物聯網。目前,物聯網正在支撐起社會活動和人們生活方式的變革,被源畝緩稱為繼計算機、互聯網之後沖擊現代社會的第三次信息化發展浪潮。物聯網握手大數據,正在逐步顯示出巨大的商業價值。

2.大數據推動科技領域的發展。

大數據的發展正在推動科技領域的發展進程,大數據的影響現在不局限於互聯網領域,在金融、教育、醫療等諸多領域也有了不同程度的影響。在人工智慧研發領域,大數據也起到了重要的作用,尤其在機器學習、計算機視覺和自然語言處理等方面,人工智慧是能夠充分利用大數據的一個領域,大數據為人工智慧帶來了更多的創新。

大數據會改變很多行業,而對於企業來說,需要提高核心競爭力,而企業的信息化建設是其中的重中之重,但這個建設過程並不是一步到位的,需要統籌規劃分步實施耐氏,大數據平台的構建屬於企業整體信息化建設中的很重要一環,在構建時,需要先整體後局部,有一個清晰明確的整體架構,這樣才能保證業務流程間的相互運轉、信息化系統間的合理支撐,再逐步深入推進。

閱讀全文

與大數據產業發展路徑相關的資料

熱點內容
245倒角編程怎麼計算 瀏覽:599
可以買生活用品的app有哪些 瀏覽:175
cad在c盤產生的文件夾 瀏覽:541
聯想手機解鎖工具 瀏覽:696
瑞銀3887win10 瀏覽:833
學網路編程哪個好 瀏覽:805
手機vmos導入的文件在哪裡 瀏覽:115
蘋果手機可以把文件傳到華為嗎 瀏覽:63
海川化工下載的文件默認到哪裡 瀏覽:343
學唱粵語歌app 瀏覽:975
qq游戲生死狙擊玩不了 瀏覽:120
win10郵件不顯示圖片 瀏覽:922
口袋妖怪所有版本下載 瀏覽:504
我們身邊都有哪些大數據例子 瀏覽:25
震旦adc307掃描的文件在哪裡 瀏覽:999
圖片打開變成文件 瀏覽:194
松下微單電腦傳文件軟體 瀏覽:574
蘋果藍牙鍵盤surface 瀏覽:170
mindmaplinux 瀏覽:733
oppo手機怎麼連接電腦傳輸數據 瀏覽:624

友情鏈接