導航:首頁 > 網路數據 > 大數據nsa

大數據nsa

發布時間:2023-09-25 07:26:46

❶ 因為大數據10大行業正在改變

因為大數據 10大行業正在改變

進入大數據時代是一場跟不上就被淘汰的比賽。無論你是一家獨立經營的實體商店,還是下一個美國矽谷的「獨角獸」,當務之急都是在商業決策中採用大數據戰略。與其說是因為數據很有價值,還不如說是數據正在改變商業經營的方式。

去年十月,在埃森哲和通用電氣聯合發布的調研報告中突破性地指出了這一緊迫性。89%的調查者認為,一家沒有大數據戰略的企業將在明年就遭到市場份額和發展勢頭方面的損失。雖然報告側重的是工業互聯網和醫療保健,但其中的結論對於其他行業仍有很大啟示。

大約一年後,將會有10個行業因大數據戰略而迅速變革。事實上,84%的企業認為大數據將在未來一年重塑競爭版圖。所以即使你所處的行業不在其列,留意下周圍那些正在經歷這場巨變的公司也沒有壞處。

10、能源產業

技術和物聯網顛覆了能源產業。從微觀上看,有像Quirky公司的Aros這樣的智能空調設備,它不但可以利用數據學慣用戶習慣和溫度偏好,保持屋內涼爽和舒適,而且幾乎不需要浪費多少能源。從宏觀上看,有覆蓋國家的智能網路。這一試點項目將大量的能源使用數據收集起來,幫助我們形成更好的能源使用習慣、減少碳排放和不必要的能源使用。

9、房地產行業

房地產是推動市場的中堅力量。在2008年,我們看到了這一力量消極的一面,但所幸只是是產生了個體規模上的影響。可見房地產有可能帶來豐厚的個人收益,也有可能對個體資產造成毀滅性的打擊——只是需要衡量風險有多大。所以如果有個方法可以規避這種風險的話……

大數據就是答案,它將從三個方面上提高房地產交易質量和降低投資風險。首先,資產分析方式將改變。利用數據可以分析樓盤質量、樓盤壽命、結構完整性等。「賬目上是否可信?」「是否有必要申請貸款?」都將從大數據分析中找到答案。第二,大數據將促成更精明的交易。對大量的客戶投資進行評估後,可以提供更明智的方案來更快敲定交易。第三,大數據將提高物業管理水平。數據可以幫助更快發現和修復故障,再加上智能家居技術的應用,可以減少不少事故帶來的不利影響。

8、保險行業

保險行業從來沒有像過去5年那樣備受關注,當然這很大程度上是因為對於這一領域的總統立法,不過這好歹也讓人們開始關注這個系統內固有的缺陷和復雜了。

保險公司必須從各個角度來考量協議:對保險供應商最優的方案是什麼,對客戶最明智的選擇是什麼,如何盡可能吸引到更多的用戶,如何降低總體風險……以此看來,保險行業將是產生大數據變革的一片沃土。

其實,大數據正在改變這個行業:利用大數據提高索賠分析的效率,為個人提供更多的定向方案,反欺詐,甚至於為病患投保者提供保健的方法。

自助保險初創企業,MetroMile,為客戶提供「開多少公里,扣多少保費」的車險業務,即按英里計保費。MetroMile表示,該業務可以幫助不常開車的客戶平均一年省下500美元的保費。

總的來說,保險業的大數據分析可以促使系統快速迭代,不斷改進。

7、音樂產業

你可能在最近幾周看了很多關於像Spotify和 Tidal 公司的得與失的消息。盡管在過去十年音樂市場急速縮減,藝人唱片公司仍在苦苦摸索從所有人身上用音樂賺錢的方式——包括從藝人身上——不單單是提高演唱會的票價或迫使藝人全年364天都在全球巡迴演出的路上。

問題是他們並沒有找到很好的賺錢方法。直到 Spotify 公司解決了如何為藝人的流音樂支付實質工資的問題後,Taylor Swift 才同意成為旗下一員。沒人願意每月花費20美元在 Jay Z 的「高保真」歌曲上,而他們在 Spotify 上完全不用花錢就可以聽到 。

一種可能的解決方法是與廣告商合作。社交媒體上收集的大數據表明,特別是在Instagram, 品牌和藝人間的品牌合作,即藝人作為品牌攝影師,可以為雙方帶來可觀的利潤,同時並不會損害藝人的形象。

基於社交媒體和流音樂網站的連接,聽音樂的人群統計數據也變得很容易獲得,唱片公司可以並且已經開始運用這些數據跟品牌做出戰略性的合作,而這些品牌可以為藝人品牌化的音樂和視頻買單。

6、航空業

大數據將打破信息和航空業之間的裂縫,特別是在商業航空旅行領域。每年從商旅上收集的大量數據,甚至是每日收集的數據,在規劃航線、制定激勵計劃、提升銷量上,仍有大量可利用的空間。

首先就可以做質量管控。IBM一項研究表明,在飛行上收集的大量數據可以快速減少航線在設備和維修上的成本,這點無疑可以使航空公司更具競爭市場,減少票價成本,最終驅動銷售。與此同時,飛行方面的數據也可以幫助節約時間、減少晚點和改善行李管理,甚至可以為後續航班推薦和客戶留存提供智能指導。

5、電信業

如果你看過關於NSA告密者 Edward Snowden 的紀錄片 《第四公民》,那麼你應該已經理解了電信業和數據的聯系。利用元數據,似乎會讓你發布的 Instagram 圖片泄露你的位置。但在下面這個案例中,這不是數據改變電信行業的原因。

T-Mobile 合並了所有的客戶數據集,將其分為六大類,以此來進行完整的客戶行為分析,最終分析使得客戶流失率降低了50%。簡而言之,大數據分析幫助 T-Mobile 得出影響客戶做出是否續用電信服務的因素,然後成為了他們做出調整的依據。

4、生活消費品產業

關於大數據對於生活消費品產業的變革並不用說太多,事實上,只需要兩個詞就足夠,供給和需求。

你可能已經注意到大部分的咖啡店都將以往笨重老舊的POS機更換成了更加輕便的 iPad 樣式的 POS 系統,像是 Square 解決方案。Square 是小范圍信用卡處理系統,它可以幫助實體商戶收集大量客戶數據,這也意味著獨立經營的商戶自己就可以很容易地收集數據。

這些數據首先也是最重要的事情就是為上下浮動的貨品和供應提供智能指導,也可以幫助商戶為大量購買的情況做好准備,更加理解消費者的統計信息,幫助商戶運營得更有效率。大數據可以為每個人的首要之事(商戶的賬目和消費者的需求)都提供更好的分析。

3、酒店管理業

酒店管理業不死——不管以何種形態存在。我們總是會去旅行,總是需要假期,只是需要解決旅行方式、地點和時間的問題。一些公司過分依賴這種模式,而忽視了共享經濟帶來的變化,像是Airbnd 這種公司帶來的變化。但是也有 Duetto 這樣的公司,給這個市場帶來了新的競爭力。【譯者註:Airbnb,聯系旅遊人士和家有空房出租的房主的服務型網站。Duetto,酒店定價管理 SaaS 服務商】

Duetto 為酒店提供客戶行為習慣數據,幫助酒店管理房間預訂、調整房間定價,甚至於預測需求量。人們總是在旅行,其中產生了大量酒店可利用的數據,而 Duetto 將它們變得極易獲取並且易於分析。

2、游戲業

在過去十年游戲業是爆炸性產業。隨著《光環5:守護者(Halo 5: Guardians)》在這個秋天的發布,這款游戲已為微軟在全球創收達35億美元。單單這一系列不僅撐起了 Xbox One 的銷售,並且成為索尼 PS4 的有力競爭者。【譯者註:Halo,《光暈》(又名:光環),微軟,發行的第一人稱射擊游戲之一】

然而游戲世界並不是只有這兩家獨大。魔獸世界Steam游戲平台等都促成了市場的生機和繁榮,十餘億的忠實粉絲參與其中。而現如今的游戲業也已經開始利用大數據來進一步改善體驗。從30年前NES游戲平台產生以來,我們已經走過很遠的路。

社交連接性和大型線上多人玩家游戲產生可觀的數據,利用這些數據可以整體提升玩家體驗。隨著游戲的持續迭代和內容更新的下載,得到反饋並且立即做出提升用戶體驗的應對變得相當容易。

1、數據存儲業

最後是數據存儲業。由於數據量很大而且在各行各業都有其不同的特性,亟需找到一種存儲入庫數據的方法,這種方法不需要大量伺服器的要求也沒有笨重的CRM系統。

Box 的解決方案應運而生。他們希望顛覆商業存儲和利用數據的方法,使得各種規模的公司都可以很輕松地分析處理數據並從中獲益。

無論你身處哪個行業,市場版圖已然改變。趕緊打破所在行業和數據的壁壘吧,不然你的公司將淪為市場上落後的一員。

以上是小編為大家分享的關於因為大數據10大行業正在改變的相關內容,更多信息可以關注環球青藤分享更多干貨

❷ 政府利用大數據分析什麼

公共部門或政府部門以創建和利用大量數據而聞名。大數據分析為政府機構提供了節省公共資金的機會。實際上,通過有效利用大數據分析,聯邦政府每年可以節省數百億美元。以下是大數據分析對聯邦和政府的好處:

快速而完善的決策

當識別出鎖定在大數據分析中的趨勢和其他見解時,制定組織決策變得更加容易和快捷。這是通過使用流工具和其他技術處理生成的實時數據來實現的。如果這些工具不可用,則決策可以恢復為猜測或完全避免決策過程。

提高生產力

必要工具的可用性使所有用戶可以有效地使用大數據分析集來查找信息,做出明智的決定並更好地提供服務。政府更好的選擇會轉化為增強對公民的服務。

提高透明度並降低成本

許多政府稅務機構存儲個人信息,這些信息會在整個公共部門中復制。公民不斷被要求填寫表格以收集政府已經擁有的數據。提供預先填寫的表格可以幫助加快處理時間,還可以減少收集到的信息中的錯誤。

如果將數據存儲在中央位置,則所有政府機構都可以輕松地從共享池訪問信息。這也有助於降低效率,並確保僅使用正確的數據。

利用大數據分析集的政府可以使信息自由流通,提高透明度並建立與公民的信任。公民了解政府收集的數據以及政府如何處理數據。這種透明性使公民能夠監控政府支出的效果,並迫使政府明智地支出。組織可以通過處理和共享大數據分析來將信息作為服務提供。

消除欺詐,消除浪費和濫用

政府中大數據分析的核心優勢之一是消除欺詐。此外,組織可以通過識別差異來消除內部浪費。根據任務的不同,這些機構可以消除由政黨或其服務人員造成的濫用和欺詐。

減少犯罪和安全威脅

大數據分析可以幫助政府部門發現對社會構成安全威脅的犯罪和其他非法活動。大數據分析還將協助地方政府和政府共同努力,減少社區的犯罪活動。

對大數據分析的仔細分析可以幫助發現異常行為模式,從而表明存在欺詐行為。該模式可用於提供配置文件和統計參數,以識別可疑交易,然後可以對其進行密切監視。在不同數據集上應用以信息為中心的方法有助於提高刑事司法系統的有效性和效率。

增加投資回報率

大數據分析的主要目的是優化IT系統的使用並增強對財務活動的分析。可以整合其數據和分析工具的政府機構將極大地減少基礎架構和運營成本。

改善任務成果

大數據分析提供了預測結果和對數據場景進行建模的功能。

改善應急響應

大數據分析可用於應對危險的自然災害,發現健康問題,防止水資源短缺問題並協調數千名流離失所者。例如,颶風瑪利亞(Hurricane Maria),分析用於確定需要快速幫助和更好地分配資源的區域。

識別並減少低效率

仔細分析大數據分析有助於政府機構和地方議會了解他們過去犯的錯誤。

勞動力效率

大數據分析可以幫助地方政府或其他機構了解員工離職或退休時造成的勞動力缺口。這些機構可以通過確保新員工填補退休人員引入的空白來提供平穩的運營。

大數據分析在政府中的應用

大數據分析的靈活性使其可以在不同領域中使用。通過實施大數據分析平台,政府機構可以訪問對其日常功能至關重要的大量信息。對這些信息的實時訪問使政府能夠指出需要關注的領域,做出更好,更快速的決策並制定必要的更改。以下是可以在政府中應用大數據分析的領域:

衛生保健

醫療保健是世界各地的大問題。許多衛生系統依靠政府補貼和支持。因此,存在資源浪費或政府補貼分配不公的風險。大數據分析使政府有機會清楚地了解資金分配的位置以及分配背後的原因。這意味著政府機構可以更好地控制資源及其對社區的有效性。

農業

很難追蹤一個國家乃至全球的牲畜和土地。對於政府而言,要跟蹤其公民種植的多種農作物和牲畜將是一項艱巨的任務。大數據分析可以改變政府管理和支持農民及其資源的方式。收集和分析大量

數據的能力使農業管理變得容易。

運輸

每天都有數百萬的市民在開車或步行時使用公共道路。許多因素都會影響道路安全,例如道路狀況,警務人員,車輛安全和天氣狀況。有了這些因素,幾乎不可能控制所有可能導致事故的事情。大數據分析使政府能夠監督

運輸部門,以確保道路更安全,道路更美好,道路更新。

地方政府機構可以分析從不同道路上的交通流獲得的數據。分析工具有助於匯總由道路感測器,攝像機,GPS設備傳輸的實時交通數據。作為回報,這些信息使交通管理人員能夠識別對道路安全的潛在威脅。通過實時調整公共交通路線,可以解決對城市交通流量造成的任何潛在威脅。

教育

大數據分析可幫助政府更好地了解聯邦和地方各級的教育需求。

這確保了青年人獲得最高質量的教育,這將對該國將來帶來極大的好處。

消除貧困

世界上許多國家都試圖消除貧困,這已經有很多年了。

大數據分析為政府提供了必要的工具,以揭示關於如何減少全球貧困水平的更好的創新想法。這些數據使確定緊急需求的領域以及如何滿足這些需求變得更加容易。

政府用例

天氣預報:

中國國家海洋和大氣管理局不斷從海,陸和空基感測器收集數據。當您聽到有關颶風或龍卷風的天氣預報時,數據來自NOAA。該組織使用大數據分析方法來收集和分析大量數據,以提供正確的信息。

國家安全:

NSA從大數據分析獲得其數據處理能力。它利用了由NSA設計的開源項目Accumulo,為用戶提供了將數據存儲在大表中的功能,智慧政務:利用大數據分析政府能做那些事兒從而可以輕松地訪問信息並增強安全性。當代理商將數據集放在一起時,它可以使用Accumulo調查各種細節,同時阻止訪問可能泄露個人信息的信息。

犯罪偵查和預防:

聯合國毒品和犯罪問題辦公室報告說,2009年犯罪分子洗錢超過1.6萬億美元,占國內生產總值的2.7%。中國財政部金融犯罪執法局(FinCEN)使用大數據分析工具來收集和分析大量銀行交易。這有助於打擊洗錢,資助恐怖主義和其他非法活動。

網路安全:

國土安全部為感測器採用了入侵檢測系統,除了檢測惡意軟體和未經授權的訪問嘗試外,該感測器還可以分析進出聯邦系統的互聯網流量。大數據分析用於識別異常和可疑行為。獲得的信息有助於打擊網路犯罪。

改進的服務交付:

在自然資源局已經實施了大數據分析,以幫助保護,恢復和管理國家的歷史,自然和文化資源,為子孫後代。該機構已創建一個共享服務通知,該信息庫包含一個州內其他機構可能需要的每條信息。這種共享的信息池為該機構的利益相關者以及公眾提供了見解和分析。

❸ 互聯網大數據現關心的是什麼

樓主您好:

首先,我認為大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。我會從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;從對大數據的現在和未來去洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。我將分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。我將分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
和大數據相關的理論
? 特徵定義
最早提出大數據時代到來的是麥肯錫:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
業界(IBM 最早定義)將大數據的特徵歸納為4個「V」(量Volume,多樣Variety,價值Value,速Velocity),或者說特點有四個層面:第一,數據體量巨大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T);第二,數據類型繁多。比如,網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低,商業價值高。第四,處理速度快。最後這一點也是和傳統的數據挖掘技術有著本質的不同。
其實這些V並不能真正說清楚大數據的所有特徵,下面這張圖對大數據的一些相關特性做出了有效的說明。
36大數據
古語雲:三分技術,七分數據,得數據者得天下。先不論誰說的,但是這句話的正確性已經不用去論證了。維克托·邁爾-舍恩伯格在《大數據時代》一書中舉了百般例證,都是為了說明一個道理:在大數據時代已經到來的時候要用大數據思維去發掘大數據的潛在價值。書中,作者提及最多的是Google如何利用人們的搜索記錄挖掘數據二次利用價值,比如預測某地流感爆發的趨勢;Amazon如何利用用戶的購買和瀏覽歷史數據進行有針對性的書籍購買推薦,以此有效提升銷售量;Farecast如何利用過去十年所有的航線機票價格打折數據,來預測用戶購買機票的時機是否合適。
那麼,什麼是大數據思維?維克托·邁爾-舍恩伯格認為,1-需要全部數據樣本而不是抽樣;2-關注效率而不是精確度;3-關注相關性而不是因果關系。
阿里巴巴的王堅對於大數據也有一些獨特的見解,比如,
「今天的數據不是大,真正有意思的是數據變得在線了,這個恰恰是互聯網的特點。」
「非互聯網時期的產品,功能一定是它的價值,今天互聯網的產品,數據一定是它的價值。」
「你千萬不要想著拿數據去改進一個業務,這不是大數據。你一定是去做了一件以前做不了的事情。」
特別是最後一點,我是非常認同的,大數據的真正價值在於創造,在於填補無數個還未實現過的空白。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。
? 價值探討
大數據是什麼?投資者眼裡是金光閃閃的兩個字:資產。比如,Facebook上市時,評估機構評定的有效資產中大部分都是其社交網站上的數據。
如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
Target 超市以20多種懷孕期間孕婦可能會購買的商品為基礎,將所有用戶的購買記錄作為數據來源,通過構建模型分析購買者的行為相關性,能准確的推斷出孕婦的具體臨盆時間,這樣Target的銷售部門就可以有針對的在每個懷孕顧客的不同階段寄送相應的產品優惠卷。
Target的例子是一個很典型的案例,這樣印證了維克托·邁爾-舍恩伯格提過的一個很有指導意義的觀點:通過找出一個關聯物並監控它,就可以預測未來。Target通過監測購買者購買商品的時間和品種來准確預測顧客的孕期,這就是對數據的二次利用的典型案例。如果,我們通過採集駕駛員手機的GPS數據,就可以分析出當前哪些道路正在堵車,並可以及時發佈道路交通提醒;通過採集汽車的GPS位置數據,就可以分析城市的哪些區域停車較多,這也代表該區域有著較為活躍的人群,這些分析數據適合賣給廣告投放商。
不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。
從大數據的價值鏈條來分析,存在三種模式:
1- 手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。
2- 沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。
3- 既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。
未來在大數據領域最具有價值的是兩種事物:1-擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;2-還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。
Wal-Mart作為零售行業的巨頭,他們的分析人員會對每個階段的銷售記錄進行了全面的分析,有一次他們無意中發現雖不相關但很有價值的數據,在美國的颶風來臨季節,超市的蛋撻和抵禦颶風物品竟然銷量都有大幅增加,於是他們做了一個明智決策,就是將蛋撻的銷售位置移到了颶風物品銷售區域旁邊,看起來是為了方便用戶挑選,但是沒有想到蛋撻的銷量因此又提高了很多。
還有一個有趣的例子,1948年遼沈戰役期間,司令員林彪要求每天要進行例常的「每日軍情匯報」,由值班參謀讀出下屬各個縱隊、師、團用電台報告的當日戰況和繳獲情況。那幾乎是重復著千篇一律枯燥無味的數據:每支部隊殲敵多少、俘虜多少;繳獲的火炮、車輛多少,槍支、物資多少……有一天,參謀照例匯報當日的戰況,林彪突然打斷他:「剛才念的在胡家窩棚那個戰斗的繳獲,你們聽到了嗎?」大家都很茫然,因為如此戰斗每天都有幾十起,不都是差不多一模一樣的枯燥數字嗎?林彪掃視一周,見無人回答,便接連問了三句:「為什麼那裡繳獲的短槍與長槍的比例比其它戰斗略高?」「為什麼那裡繳獲和擊毀的小車與大車的比例比其它戰斗略高?」「為什麼在那裡俘虜和擊斃的軍官與士兵的比例比其它戰斗略高?」林彪司令員大步走向掛滿軍用地圖的牆壁,指著地圖上的那個點說:「我猜想,不,我斷定!敵人的指揮所就在這里!」果然,部隊很快就抓住了敵方的指揮官廖耀湘,並取得這場重要戰役的勝利。
這些例子真實的反映在各行各業,探求數據價值取決於把握數據的人,關鍵是人的數據思維;與其說是大數據創造了價值,不如說是大數據思維觸發了新的價值增長。
? 現在和未來
我們先看看大數據在當下有怎樣的傑出表現:
大數據幫助政府實現市場經濟調控、公共衛生安全防範、災難預警、社會輿論監督;
大數據幫助城市預防犯罪,實現智慧交通,提升緊急應急能力;
大數據幫助醫療機構建立患者的疾病風險跟蹤機制,幫助醫葯企業提升葯品的臨床使用效果,幫助艾滋病研究機構為患者提供定製的葯物;
大數據幫助航空公司節省運營成本,幫助電信企業實現售後服務質量提升,幫助保險企業識別欺詐騙保行為,幫助快遞公司監測分析運輸車輛的故障險情以提前預警維修,幫助電力公司有效識別預警即將發生故障的設備;
大數據幫助電商公司向用戶推薦商品和服務,幫助旅遊網站為旅遊者提供心儀的旅遊路線,幫助二手市場的買賣雙方找到最合適的交易目標,幫助用戶找到最合適的商品購買時期、商家和最優惠價格;
大數據幫助企業提升營銷的針對性,降低物流和庫存的成本,減少投資的風險,以及幫助企業提升廣告投放精準度;
大數據幫助娛樂行業預測歌手,歌曲,電影,電視劇的受歡迎程度,並為投資者分析評估拍一部電影需要投入多少錢才最合適,否則就有可能收不回成本;
大數據幫助社交網站提供更准確的好友推薦,為用戶提供更精準的企業招聘信息,向用戶推薦可能喜歡的游戲以及適合購買的商品。
其實,這些還遠遠不夠,未來大數據的身影應該無處不在,就算無法准確預測大數據終會將人類社會帶往到哪種最終形態,但我相信只要發展腳步在繼續,因大數據而產生的變革浪潮將很快淹沒地球的每一個角落。
比如,Amazon的最終期望是:「最成功的書籍推薦應該只有一本書,就是用戶要買的下一本書。」
Google也希望當用戶在搜索時,最好的體驗是搜索結果只包含用戶所需要的內容,而這並不需要用戶給予Google太多的提示。
而當物聯網發展到達一定規模時,藉助條形碼、二維碼、RFID等能夠唯一標識產品,感測器、可穿戴設備、智能感知、視頻採集、增強現實等技術可實現實時的信息採集和分析,這些數據能夠支撐智慧城市,智慧交通,智慧能源,智慧醫療,智慧環保的理念需要,這些都所謂的智慧將是大數據的採集數據來源和服務范圍。
未來的大數據除了將更好的解決社會問題,商業營銷問題,科學技術問題,還有一個可預見的趨勢是以人為本的大數據方針。人才是地球的主宰,大部分的數據都與人類有關,要通過大數據解決人的問題。
比如,建立個人的數據中心,將每個人的日常生活習慣,身體體征,社會網路,知識能力,愛好性情,疾病嗜好,情緒波動……換言之就是記錄人從出生那一刻起的每一分每一秒,將除了思維外的一切都儲存下來,這些數據可以被充分的利用:
醫療機構將實時的監測用戶的身體健康狀況;
教育機構更有針對的制定用戶喜歡的教育培訓計劃;
服務行業為用戶提供即時健康的符合用戶生活習慣的食物和其它服務;
社交網路能為你提供合適的交友對象,並為志同道合的人群組織各種聚會活動;
政府能在用戶的心理健康出現問題時有效的干預,防範自殺,刑事案件的發生;
金融機構能幫助用戶進行有效的理財管理,為用戶的資金提供更有效的使用建議和規劃;
道路交通、汽車租賃及運輸行業可以為用戶提供更合適的出行線路和路途服務安排;
……
當然,上面的一切看起來都很美好,但是否是以犧牲了用戶的自由為前提呢?只能說當新鮮事物帶來了革新的同時也同樣帶來了「病菌」。比如,在手機未普及前,大家喜歡聚在一起聊天,自從手機普及後特別是有了互聯網,大家不用聚在一起也可以隨時隨地的聊天,只是「病菌」滋生了另外一種情形,大家慢慢習慣了和手機共渡時光,人與人之間情感交流彷彿永遠隔著一張「網」。
? 大數據隱私
你或許並不敏感,當你在不同的網站上注冊了個人信息後,可能這些信息已經被擴散出去了,當你莫名其妙的接到各種郵件,電話,簡訊的滋擾時,你不會想到自己的電話號碼,郵箱,生日,購買記錄,收入水平,家庭住址,親朋好友等私人信息早就被各種商業機構非法存儲或賤賣給其它任何有需要的企業或個人了。
更可怕的是,這些信息你永遠無法刪除,它們永遠存在於互聯網的某些你不知道的角落。除非你更換掉自己的所有信息,但是這代價太大了。
用戶隱私問題一直是大數據應用難以繞開的一個問題,如被央視曝光過的分眾無線、羅維鄧白氏以及網易郵箱都涉及侵犯用戶隱私。目前,中國並沒有專門的法律法規來界定用戶隱私,處理相關問題時多採用其他相關法規條例來解釋。但隨著民眾隱私意識的日益增強,合法合規地獲取數據、分析數據和應用數據,是進行大數據分析時必須遵循的原則。
說到隱私被侵犯,愛德華?斯諾登應該占據一席之地,這位前美國中央情報局(CIA)雇員一手引爆了美國「棱鏡計劃」(PRISM)的內幕消息。「棱鏡」項目是一項由美國國家安全局(NSA)自2007年起開始實施的絕密電子監聽計劃,年耗資近2000億美元,用於監聽全美電話通話記錄,據稱還可以使情報人員通過「後門」進入9家主要科技公司的伺服器,包括微軟、雅虎、谷歌、Facebook、PalTalk、美國在線、Skype、YouTube、蘋果。這個事件引發了人們對政府使用大數據時對公民隱私侵犯的擔心。
再看看我們身邊,當微博,微信,QQ空間這些社交平台肆意的吞噬著數億用戶的各種信息時,你就不要指望你還有隱私權了,就算你在某個地方刪除了,但也許這些信息已經被其他人轉載或保存了,更有可能已經被網路或Google存為快照,早就提供給任意用戶搜索了。
因此在大數據的背景下,很多人都在積極的抵制無底線的數字化,這種大數據和個體之間的博弈還會一直繼續下去……
專家給予了我們一些如何有效保護大數據背景下隱私權的建議:1-減少信息的數字化;2-隱私權立法;3-數字隱私權基礎設施(類似DRM數字版權管理);4-人類改變認知(接受忽略過去);5-創造良性的信息生態;6-語境化。
但是這些都很難立即見效或者有實質性的改善。
比如,現在有一種職業叫刪帖人,專門負責幫人到各大網站刪帖,刪除評論。其實這些人就是通過黑客技術侵入各大網站,破獲管理員的密碼然後進行手工定向刪除。只不過他們保護的不是客戶的隱私,而大多是丑聞。還有一種職業叫人肉專家,他們負責從互聯網上找到一個與他們根本就無關系用戶的任意信息。這是很可怕的事情,也就是說,如果有人想找到你,只需要兩個條件:1-你上過網,留下過痕跡;2-你的親朋好友或僅僅是認識你的人上過網,留下過你的痕跡。這兩個條件滿足其一,人肉專家就可以很輕松的找到你,可能還知道你現在正在某個餐廳和誰一起共進晚餐。
當很多互聯網企業意識到隱私對於用戶的重要性時,為了繼續得到用戶的信任,他們採取了很多辦法,比如google承諾僅保留用戶的搜索記錄9個月,瀏覽器廠商提供了無痕沖浪模式,社交網站拒絕公共搜索引擎的爬蟲進入,並將提供出去的數據全部採取匿名方式處理等。
在這種復雜的環境裡面,很多人依然沒有建立對於信息隱私的保護意識,讓自己一直處於被滋擾,被精心設計,被利用,被監視的處境中。可是,我們能做的幾乎微乎其微,因為個人隱私數據已經無法由我們自己掌控了,就像一首詩里說到的:「如果你現在繼續麻木,那就別指望這麻木能抵擋得住被」扒光」那一刻的驚恐和絕望……」
和大數據相關的技術
? 雲技術
大數據常和雲計算聯繫到一起,因為實時的大型數據集分析需要分布式處理框架來向數十、數百或甚至數萬的電腦分配工作。可以說,雲計算充當了工業革命時期的發動機的角色,而大數據則是電。
雲計算思想的起源是麥卡錫在上世紀60年代提出的:把計算能力作為一種像水和電一樣的公用事業提供給用戶。
如今,在Google、Amazon、Facebook等一批互聯網企業引領下,一種行之有效的模式出現了:雲計算提供基礎架構平台,大數據應用運行在這個平台上。
業內是這么形容兩者的關系:沒有大數據的信息積淀,則雲計算的計算能力再強大,也難以找到用武之地;沒有雲計算的處理能力,則大數據的信息積淀再豐富,也終究只是鏡花水月。
那麼大數據到底需要哪些雲計算技術呢?
這里暫且列舉一些,比如虛擬化技術,分布式處理技術,海量數據的存儲和管理技術,NoSQL、實時流數據處理、智能分析技術(類似模式識別以及自然語言理解)等。
雲計算和大數據之間的關系可以用下面的一張圖來說明,兩者之間結合後會產生如下效應:可以提供更多基於海量業務數據的創新型服務;通過雲計算技術的不斷發展降低大數據業務的創新成本。
36大數據
如果將雲計算與大數據進行一些比較,最明顯的區分在兩個方面:
第一,在概念上兩者有所不同,雲計算改變了IT,而大數據則改變了業務。然而大數據必須有雲作為基礎架構,才能得以順暢運營。
第二,大數據和雲計算的目標受眾不同,雲計算是CIO等關心的技術層,是一個進階的IT解決方案。而大數據是CEO關注的、是業務層的產品,而大數據的決策者是業務層。
詳情:http://ke..com/view/9424571.htm

❹ 大數據的應用領域有哪些

1.了解和定位客戶

這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。

利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。

滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。

除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。

2.

改善醫療保健和公共衛生

大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!

蘋果公司的一款健康APPResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。

大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。

更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。

3.提供個性化服務

大數據不僅適用於公司和政府,也適用於我搏衫們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。

4.

了解和優化業務流程

大數據也困畢越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。

人力資源業務流程也在使用大數據進行優化。SociometricSolutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。

如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。

5.

改善城市和國家建設

大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。

加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。

6.提升科學研究

大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政汪銀芹府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。

7.提升機械設備性能

大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。XcelEnergy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。

8.強化安全和執法能力

大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。

2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。

9.

提高體育運動技能

如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBMSlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。

還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。

10.金融交易

大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。

❺ 大數據的應用領域有哪些

1.了解和定位客戶
這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。
利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。
滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。
除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。
2.了解和優化業務流程
大數據也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
人力資源業務流程也在使用大數據進行優化。Sociometric Solutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。
如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。
3.提供個性化服務
大數據不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。
4.改善醫療保健和公共衛生
大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!
蘋果公司的一款健康APP ResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。
大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。
更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。
5.提高體育運動技能
如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBM SlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。
還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。
6.提升科學研究
大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7.提升機械設備性能
大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。Xcel Energy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。
8.強化安全和執法能力
大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。
2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。
9.改善城市和國家建設
大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。
10.金融交易
大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。

❻ 什麼是大數據。。大數據是什麼

大數據,IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理內和處理的數據集合,容是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。

大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。



(6)大數據nsa擴展閱讀:
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。

據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。

大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了。

閱讀全文

與大數據nsa相關的資料

熱點內容
dnf鬼泣90版本打安圖恩 瀏覽:668
245倒角編程怎麼計算 瀏覽:599
可以買生活用品的app有哪些 瀏覽:175
cad在c盤產生的文件夾 瀏覽:541
聯想手機解鎖工具 瀏覽:696
瑞銀3887win10 瀏覽:833
學網路編程哪個好 瀏覽:805
手機vmos導入的文件在哪裡 瀏覽:115
蘋果手機可以把文件傳到華為嗎 瀏覽:63
海川化工下載的文件默認到哪裡 瀏覽:343
學唱粵語歌app 瀏覽:975
qq游戲生死狙擊玩不了 瀏覽:120
win10郵件不顯示圖片 瀏覽:922
口袋妖怪所有版本下載 瀏覽:504
我們身邊都有哪些大數據例子 瀏覽:25
震旦adc307掃描的文件在哪裡 瀏覽:999
圖片打開變成文件 瀏覽:194
松下微單電腦傳文件軟體 瀏覽:574
蘋果藍牙鍵盤surface 瀏覽:170
mindmaplinux 瀏覽:733

友情鏈接