導航:首頁 > 網路數據 > 大數據中3v特徵

大數據中3v特徵

發布時間:2023-09-23 14:48:56

大數據分析需全面解決方案

大數據分析需全面解決方案
當前,越來越多企業將大數據的分析結果作為其判斷未來發展的依據。同時,傳統的商業預測邏輯正日益被新的大數據預測所取代。但是,我們要謹慎管理大家對大數據的期望值,因為海量數據只有在得到有效治理的前提下才能進一步發展其業務價值。

最廣為人知的大數據定義是Gartner給出的大數據的3V特性:巨大的數據量(Volume)、數據的快速處理(Velocity)、多變的數據結構和類型(Variety)。根據這一定義,大家首先想到的是IT系統中一直難以處理卻又不容忽視的非結構化數據。也就是說,大數據不僅要處理好交易型數據的分析,還把社交媒體、電子商務、決策支持等信息都融入進來。現在,分布式處理技術Hadoop和NoSQL已經能對非結構化數據進行存儲、處理、分析和挖掘,但未能為滿足客戶的大數據需求提供一個全面的解決方案。
事實上,普遍意義上的大數據范圍更加廣泛,任何涉及海量數據及多數據源的復雜計算,均屬大數據范疇,而不僅局限於非結構化數據。因此,諸如電信運營商所擁有的巨量用戶的各類詳細數據、手機開關機信息、手機在網注冊信息、手機通話計費信息、手機上網詳細日誌信息、用戶漫遊信息、用戶訂閱服務信息和用戶基礎服務信息等,均可劃歸為大數據。
與幾年前興起的雲計算相比,大數據實現其業務價值所要走的路或許更為長遠。但是企業用戶已經迫不及待,越來越多企業高層傾向於將大數據分析結果作為其商業決策的重要依據。在這種背景下,我們必須找到一種全面的大數據解決方案,不僅要解決非結構化數據的處理問題,還要將功能擴展到海量數據的存儲、大數據的分布式採集和交換、海量數據的實時快速訪問、統計分析與挖掘和商務智能分析等。
典型的大數據解決方案應該是具有多種能力的平台化解決方案,這些能力包括結構化數據的存儲、計算、分析和挖掘,多結構化數據的存儲、加工和處理,以及大數據的商務智能分析。這種解決方案在技術應具有以下四個特性:軟硬集成化的大數據處理、全結構化數據處理的能力、大規模內存計算的能力、超高網路速度的訪問。

⑵ 互聯網3V分析方法

互聯網3V分析方法是指大數據時代的三大特徵,即俗稱的「3V」:第一個是回Volume(海量),數據容量越來答越大;第二個是Velocity(速度),數據量增長越來越快,需要處理的速度和響應越來越快;第三個是Variety(多樣性),指各種各樣類型的數據出現,類型多樣。
可以通過以上三個方面對互聯網逐層進行分析。

⑶ 你需要知道的7個大數據定義

你需要知道的7個大數據定義

大數據究竟是什麼?很多人可能仍然有些混淆,本文讓我們來看看大數據的一些主要的定義。首先要注意的是,行業內的所有人都普遍認同,大數據不只是更多的數據。

(1)最初的大數據

大數據的特徵可以用很多詞來描述。2001年Doug Laney最先提出「3V」模型, 包括數量 (Volume)、速度(Velocity)和種類(Variety)。在那以後,業界很多人把3V擴展到了11V,還包括有效性、真實性、價值和可見性等。

(2)大數據:技術

為什麼12年前的老術語突然被放在聚光燈下?這不僅是因為我們現在擁有比十年前更多的數量、速度和種類。而是因為大數據受到新技術的推動,特別是快速發展的開源技術,例如Hadoop和其他存儲和處理數據的NoSQL方式。

這些新技術的用戶需要一個術語來將它們區別於以前的技術,於是大數據成了他們的最佳選擇。如果你去參加大數據會議,你肯定會發現,涉及關系型資料庫的會議會很少,無論他們鼓吹多少個V。

(3)大數據與數據的區別

大數據技術的問題是,大數據有些含糊不清,以至於行業中的每個供應商都可以跳進來聲稱自己的技術是大數據技術。以下是兩種很好的方法來幫助企業理解現在的大數據與過去單純的大數據的區別。

交易、交互和觀察:這是由Hortonworks公司負責企業戰略的副總裁Shaun Connolly提出的。交易是我們過去收集、存儲和分析的主要數據。交互是人們點擊網頁等操作得到的數據。觀察是自動收集的數據。

過程介導數據、人類產生的信息以及機器生成的數據。

(4)大數據:信號

SAP公司的Steve Lucas認為,應該根據意圖和時機來劃分這個世界,而不是根據數據的類型。「舊世界」主要是關於交易,當這些交易被記錄時,我們已經無法對它們採取任何行動:企業都在不斷管理「失效的數據」。而在「新世界」,企業可以使用新的「信號」數據來預測將會發生什麼,並進行干預來改善情況。

相關的案例有,追蹤社交媒體上人們對品牌的態度,以及預測性維護(用復雜的演算法幫助你決定何時需要更換零部件)。

(5)大數據:機會

這是來自451 Research的Matt Aslett,他將大數據定位為「之前因為技術限制而被忽略的數據」。(雖然在技術上,Matt使用了「暗數據」,而不是大數據,但已經非常接近)。這是筆者最喜歡的定義,因為它符合大部分文章和討論中的說法。

(6)大數據:隱喻

Rick Smolan在其書中寫道,大數據是「幫助這個星球生成神經系統的過程,其中我們人類只是另一種類型的感測器」。很深奧吧?

(7)大數據:新瓶裝舊酒

很多項目基本上是使用以前的技術,這些過去被稱為BI或者分析的技術突然跳入大數據的行列中。

底線:盡管大家對大數據的定義有很多爭議,但所有人都同意這個事實:大數據是一個大事件,在未來幾年將帶來巨大的機遇。

以上是小編為大家分享的關於你需要知道的7個大數據定義的相關內容,更多信息可以關注環球青藤分享更多干貨

⑷ 大數據正在如何改變資料庫格局

大數據正在如何改變資料庫格局

提及「資料庫」,大多數人會想到擁有30多年風光歷史的RDBMS。然而,這可能很快就會發生改變。

一大批新的競爭者都在爭奪這一塊重要市場,他們的方法是多種多樣的,卻都有一個共同點:極其專注於大數據。推動新的數據迭代衍生品大部分都是基於底層大數據的3V特徵:數量,速度和種類。本質上來講,今天的數據比以往任何時候都要傳輸更快,體積更大, 同時更加多樣化。這是一個新的數據世界,換言之,傳統的關系資料庫管理系統並沒有真正為此而設計。「基本上,他們不能擴展到大量,或快速,或不同種類的數據。」一位數據分析、數據科學咨詢機構的總裁格雷戈里認為。這就是哈特漢克斯最近發現。截至到2013年左右,營銷服務機構使用不同的資料庫,包括Microsoft SQL Server和Oracle真正應用集群(RAC)的組合。「我們注意到,數據隨著時間的增長,我們的系統不能足夠快速的處理信息」一位科技發展公司的負責人肖恩說到。「如果你不斷地購買伺服器,你只能繼續走到這幺遠,我們希望確保自己有向外擴展的平台。」最小化中斷是一個重要的目標,Iannuzzi說到,因此「我們不能只是切換到Hadoop。」相反,卻選擇了拼接機器,基本上把完整的SQL資料庫放到目前流行的Hadoop大數據平台之上,並允許現有的應用程序能夠與它連接,他認為。哈特漢克斯現在是在執行的初期階段,但它已經看到了好處,Iannuzzi說,包括提高容錯性,高可用性,冗餘性,穩定性和「性能全面提升」。一種完美風暴推動了新的資料庫技術的出現,IDC公司研究副總裁Carl Olofson說到。首先,「我們正在使用的設備與過去對比,處理大數據集更加快速,靈活性更強」Olofson說。在過去,這樣的集合「幾乎必須放在旋轉磁碟上」,而且數據必須以特定的方式來結構化,他解釋說。現在有64位定址,使得能夠設置更大的存儲空間以及更快的網路,並能夠串聯多台計算器充當單個大型資料庫。「這些東西在不可用之前開辟了可能性」Olofson說。與此同時,工作負載也發生了變化。10年前的網站主要是靜態的,例如,今天我們享受到的網路服務環境和互動式購物體驗。反過來,需要新的可擴展性,他說。公司正在利用新的方式來使用數據。雖然傳統上我們大部分的精力都放在了對事務處理 – 銷售總額的記錄,比如,數據存儲在可以用來分析的地方 – 現在我們做的更多。應用狀態管理就是一個例子假設你正在玩一個網路游戲。該技術會記錄你與系統的每個會話並連接在一起,以呈現出連續的體驗,即使你切換設備或各種移動,不同的伺服器都會進行處理,Olofson解釋說。數據必須保持連續性,這樣企業才可以分析問題,例如「為什麼從來沒有人穿過水晶廳」。在網路購物方面,為什麼對方點擊選擇顏色後大多數人不會購買某個特殊品牌的鞋子。「以前,我們並沒試圖解決這些問題,或者我們試圖扔進盒子也不太合適」Olofson說。Hadoop是當今新的競爭者中一個重量級的產品。雖然他本身不是一個資料庫,它的成長為企業解決大數據扮演關鍵角色。從本質上講,Hadoop是一個運行高度並行應用程序的數據中心平台,它有很強的可擴展性。通過允許企業擴展「走出去」的分布方式,而不是通過額外昂貴的伺服器「向上」擴展,「它使得我們可以低成本地把一個大的數據集匯總,然後進行分析研究成果」Olofson說。其他新的RDBMS的替代品如NoSQL家族產品,其中包括MongoDB -目前第四大流行資料庫管理系統,比照DB引擎和MarkLogic非結構化數據存儲服務。「關系型資料庫一直是一項偉大的技術持續了30年,但它是建立在不同的時代有不同的技術限制和不同的市場需求,」MarkLogic的執行副總裁喬·產品帕卡說。大數據是不均勻的,他說。許多傳統的技術,這仍然是一個基本要求。「想像一下,你的筆記本電腦上唯一的程序是Excel」帕卡說。「設想一下,你要和你的朋友利用網路保持聯系 – 或者你正在寫一個合約卻不適合放進行和列中。」拼接數據集是特別棘手的「關系型,你把所有這些數據集中在一起前,必須先決定如何去組織所有的列,」他補充說。「我們可以採取任何形式或結構,並立即開始使用它。」NoSQL資料庫沒有使用關系數據模型,並且它們通常不具有SQL介面。盡管許多的NoSQL存儲折中支持速度等其他因素,MarkLogic為企業定身量做,提供更為周全的選擇。NoSQL儲存市場有相當大的增長,據市場研究媒體,不是每個人都認為這是正確的做法-至少,不是在所有情況下。NoSQL系統「解決了許多問題,他們橫向擴展架構,但他們卻拋出了SQL,」一位CEO-Monte Zweben說。這反過來,又為現有的代碼構成問題。Splice Machine是一家基於Hadoop的實時大數據技術公司,支持SQL事務處理,並針對OLAP 和OLAP應用進行實時優化處理。它被稱為替代NewSQL的一個例子,另一類預期會在未來幾年強勁增長。「我們的理念是保持SQL,但橫向擴展架構」Zweben說。「這是新事物,但我們正在努力試圖使它讓人們不必重寫自己的東西。」深度信息科學選擇並堅持使用SQL,但需要另一種方法。公司的DeepSQL資料庫使用相同的應用程序編程介面(API)和關系模型如MySQL,意味著沒有應用變化的需求而使用它。但它以不同的方式處理數據,使用機器學習。DeepSQL可以自動適應使用任何工作負載組合的物理,虛擬或雲主機,該公司表示,從而省去了手動優化資料庫的需要。該公司的首席戰略官Chad Jones表示,在業績大幅增加的同時,也有能力將「規模化」為上千億的行。一種來自Algebraix數據完全不同的方式,表示已經開發了數據的第一個真正的數學化基礎。而計算器硬體需在數學建模前建成,這不是在軟體的情況下,Algebraix首席執行官查爾斯銀說。「軟體,尤其是數據,從未建立在數學的基礎上」他說,「軟體在很大程度上是語言學的問題。」經過五年的研發,Algebraix創造了所謂的「數據的代數」集合論,「數據的通用語言」Silver說。「大數據骯臟的小秘密是數據仍然放在不與其他數據小倉融合的地方」Silver解釋說。「我們已經證明,它都可以用數學方法來表示所有的集成。」配備一個基礎的平台,Algebraix現在為企業提供業務分析作為一種服務。改進的性能,容量和速度都符合預期的承諾。時間會告訴我們哪些新的競爭者取得成功,哪些沒有,但在此期間,長期的領導者如Oracle不會完全停滯不前。「軟體是一個非常時尚行業」安德魯·門德爾松,甲骨文執行副總裁資料庫伺服器技術說。「事情經常去從流行到不受歡迎,回再次到流行。」今天的許多創業公司「帶回炒冷飯少許拋光或旋轉就可以了」他說。「這是一個新一代孩子走出學校和重塑的東西。」SQL是「唯一的語言,可以讓業務分析師提出問題並得到答案,他們沒有程序員,」門德爾松說。「大市場將始終是關系型。」至於新的數據類型,關系型資料庫產品早在上世紀90年代發展為支持非結構化數據,他說。在2013年,甲骨文的同名資料庫版本12C增加了支持JSON(JavaScript對象符號)。與其說需要一個不同類型的資料庫,它更是一種商業模式的轉變,門德爾松說。「雲,若是每個人都去,這將破壞這些小傢伙」他說。「大家都在雲上了,所以在這里有沒有地方來放這些小傢伙?「他們會去亞馬遜的雲與亞馬遜競爭?」 他補充說。「這將是困難的。」甲骨文有「最廣泛的雲服務」門德爾松說。「在現在的位置,我們感覺良好。」Gartner公司的研究主任里克·格林沃爾德,傾向於採取了類似的觀點。「對比傳統強大的RDBMS,新的替代品並非功能齊全」格林沃爾德說。「一些使用案例可以與新的競爭者來解決,但不是全部,並非一種技術」。展望未來,格林沃爾德預計,傳統的RDBMS供貨商感到價格壓力越來越大,並為他們的產品增加新的功能。「有些人會自由地帶來新的競爭者進入管理自己的整個數據生態系統」他說。至於新的產品,有幾個會生存下來,他預測「許多人將被收購或資金耗盡」。今天的新技術並不代表傳統的RDBMS的結束,「正在迅速發展自己」IDC的Olofson。贊成這種說法,「RDBMS是需要明確定義的數據 – 總是會有這樣一個角色。」但也會有一些新的競爭者的角色,他說,特別是物聯網技術和新興技術如非易失性內存晶元模塊(NVDIMM)占據上風。

以上是小編為大家分享的關於大數據正在如何改變資料庫格局的相關內容,更多信息可以關注環球青藤分享更多干貨

⑸ 3v信息分布的名詞解釋

大數據時代的三大特徵,即俗稱的「3V」。第一個是Volume(海量),數據容量越來內越大;第二個容是Velocity(速度),數據量增長越來越快,需要處理的速度和響應越來越快;第三個是Variety(多樣性),指各種各樣類型的數據出現,過去的數據更多的是結構化的,現在越來越多的數據是半結構,甚至是完全沒有結構的數據,如文本、郵件甚至於語音、視頻等。「3V」是對大數據最基本特徵的歸納,得到業界的共識。

雖然後續不斷有人增加對V的理解,如Value(價值),強調大數據中的總體價值大,但是價值密度低;也有Veracity(真實和准確),強調真實而准確的數據才能讓對數據的管控和治理真正有意義,也有Vitality(動態性)強調數據體系的動態性等,這些都有一定的道理,但都不及最初的「3V」具有代表性。

⑹ 什麼是3V,4v,5V特徵,這些特徵對大數據計算過程帶來什麼樣的挑戰

IBM提出了大數據」5V」特點:

一、Volume:數據量大,包括採集、存儲和計算的量都非常大。大數據的專起始計屬量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。

二、Variety:種類和來源多樣化。包括結構化、半結構化和非結構化數據,具體表現為網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。

三、Value:數據價值密度相對較低,或者說是浪里淘沙卻又彌足珍貴。隨著互聯網以及物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何結合業務邏輯並通過強大的機器演算法來挖掘數據價值,是大數據時代最需要解決的問題。

四、Velocity:數據增長速度快,處理速度也快,時效性要求高。比如搜索引擎要求幾分鍾前的新聞能夠被用戶查詢到,個性化推薦演算法盡可能要求實時完成推薦。這是大數據區別於傳統數據挖掘的顯著特徵。

五、Veracity:數據的准確性和可信賴度,即數據的質量。
————————————————
版權聲明:本文為CSDN博主「arsaycode」的原創文章.........

⑺ 大數據存儲與應用特點及技術路線分析

大數據存儲與應用特點及技術路線分析

大數據時代,數據呈爆炸式增長。從存儲服務的發展趨勢來看,一方面,對數據的存儲量的需求越來越大;另一方面,對數據的有效管理提出了更高的要求。大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。

大數據存儲與應用的特點分析

「大數據」是由數量巨大、結構復雜、類型眾多數據構成的數據集合,是基於雲計算的數據處理與應用模式,通過數據的整合共享,交叉復用形成的智力資源和知識服務能力。其常見特點可以概括為3V:Volume、Velocity、Variety(規模大、速度快、多樣性)。

大數據具有數據規模大(Volume)且增長速度快的特性,其數據規模已經從PB級別增長到EB級別,並且仍在不斷地根據實際應用的需求和企業的再發展繼續擴容,飛速向著ZB(ZETA-BYTE)的規模進軍。以國內最大的電子商務企業淘寶為例,根據淘寶網的數據顯示,至2011年底,淘寶網最高單日獨立用戶訪問量超過1.2億人,比2010年同期增長120%,注冊用戶數量超過4億,在線商品數量達到8億,頁面瀏覽量達到20億規模,淘寶網每天產生4億條產品信息,每天活躍數據量已經超過50TB.所以大數據的存儲或者處理系統不僅能夠滿足當前數據規模需求,更需要有很強的可擴展性以滿足快速增長的需求。

(1)大數據的存儲及處理不僅在於規模之大,更加要求其傳輸及處理的響應速度快(Velocity)。

相對於以往較小規模的數據處理,在數據中心處理大規模數據時,需要服務集群有很高的吞吐量才能夠讓巨量的數據在應用開發人員「可接受」的時間內完成任務。這不僅是對於各種應用層面的計算性能要求,更加是對大數據存儲管理系統的讀寫吞吐量的要求。例如個人用戶在網站選購自己感興趣的貨物,網站則根據用戶的購買或者瀏覽網頁行為實時進行相關廣告的推薦,這需要應用的實時反饋;又例如電子商務網站的數據分析師根據購物者在當季搜索較為熱門的關鍵詞,為商家提供推薦的貨物關鍵字,面對每日上億的訪問記錄要求機器學習演算法在幾天內給出較為准確的推薦,否則就丟失了其失效性;更或者是計程車行駛在城市的道路上,通過GPS反饋的信息及監控設備實時路況信息,大數據處理系統需要不斷地給出較為便捷路徑的選擇。這些都要求大數據的應用層可以最快的速度,最高的帶寬從存儲介質中獲得相關海量的數據。另外一方面,海量數據存儲管理系統與傳統的資料庫管理系統,或者基於磁帶的備份系統之間也在發生數據交換,雖然這種交換實時性不高可以離線完成,但是由於數據規模的龐大,較低的數據傳輸帶寬也會降低數據傳輸的效率,而造成數據遷移瓶頸。因此大數據的存儲與處理的速度或是帶寬是其性能上的重要指標。

(2)大數據由於其來源的不同,具有數據多樣性的特點。

所謂多樣性,一是指數據結構化程度,二是指存儲格式,三是存儲介質多樣性。對於傳統的資料庫,其存儲的數據都是結構化數據,格式規整,相反大數據來源於日誌、歷史數據、用戶行為記錄等等,有的是結構化數據,而更多的是半結構化或者非結構化數據,這也正是傳統資料庫存儲技術無法適應大數據存儲的重要原因之一。所謂存儲格式,也正是由於其數據來源不同,應用演算法繁多,數據結構化程度不同,其格式也多種多樣。例如有的是以文本文件格式存儲,有的則是網頁文件,有的是一些被序列化後的比特流文件等等。所謂存儲介質多樣性是指硬體的兼容,大數據應用需要滿足不同的響應速度需求,因此其數據管理提倡分層管理機制,例如較為實時或者流數據的響應可以直接從內存或者Flash(SSD)中存取,而離線的批處理可以建立在帶有多塊磁碟的存儲伺服器上,有的可以存放在傳統的SAN或者NAS網路存儲設備上,而備份數據甚至可以存放在磁帶機上。因而大數據的存儲或者處理系統必須對多種數據及軟硬體平台有較好的兼容性來適應各種應用演算法或者數據提取轉換與載入(ETL)。

大數據存儲技術路線最典型的共有三種:

第一種是採用MPP架構的新型資料庫集群,重點面向行業大數據,採用Shared Nothing架構,通過列存儲、粗粒度索引等多項大數據處理技術,再結合MPP架構高效的分布式計算模式,完成對分析類應用的支撐,運行環境多為低成本 PC Server,具有高性能和高擴展性的特點,在企業分析類應用領域獲得極其廣泛的應用。

這類MPP產品可以有效支撐PB級別的結構化數據分析,這是傳統資料庫技術無法勝任的。對於企業新一代的數據倉庫和結構化數據分析,目前最佳選擇是MPP資料庫。

第二種是基於Hadoop的技術擴展和封裝,圍繞Hadoop衍生出相關的大數據技術,應對傳統關系型資料庫較難處理的數據和場景,例如針對非結構化數據的存儲和計算等,充分利用Hadoop開源的優勢,伴隨相關技術的不斷進步,其應用場景也將逐步擴大,目前最為典型的應用場景就是通過擴展和封裝 Hadoop來實現對互聯網大數據存儲、分析的支撐。這裡面有幾十種NoSQL技術,也在進一步的細分。對於非結構、半結構化數據處理、復雜的ETL流程、復雜的數據挖掘和計算模型,Hadoop平台更擅長。

第三種是大數據一體機,這是一種專為大數據的分析處理而設計的軟、硬體結合的產品,由一組集成的伺服器、存儲設備、操作系統、資料庫管理系統以及為數據查詢、處理、分析用途而特別預先安裝及優化的軟體組成,高性能大數據一體機具有良好的穩定性和縱向擴展性。

以上是小編為大家分享的關於大數據存儲與應用特點及技術路線分析的相關內容,更多信息可以關注環球青藤分享更多干貨

⑻ 大數據,也就是國外常說的Big Data。IBM把大數據概括成了三個V,請問是哪三個

大數據,也就是國外常說的Big Data。IBM把大數據概括成3個V,即大量化(Volume)、多樣化(Variety)和快速化(Velocity)。這些特點也反映了大數據潛藏的價值(Value),46V也高度概括了大數據的基本特徵。目前對大數據比較一致的定義是:大數據是指無法在—定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。

⑼ 大數據傳統的 3V 基本特徵是指什麼

大數據傳統的3V基本特徵是指Volume、Variety和Velocity。

Volume 代表數據總量大。Variety 代表數據數據的類型多。velocity 代表:數據的處理速度快。

大數據管理的挑戰來自於所有三個屬性的擴展,而不僅僅是數據的數量 ( 需要管理的大量數據)。

後來又建議增加兩個:variability:易變性,大數據集中典型值范圍的增加。value: 價值,處理企業數據評估的需要。

(9)大數據中3v特徵擴展閱讀

如果說把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,並且通過「加工」實現數據的「增值」。

它的意義不僅僅在於掌握龐大的數據信息,而更在於對這些含有意義的數據進行專業化處理之後產生的價值。重點並不是我們擁有了多少數據,而是我們拿數據去做了什麼。核心就在於:整理、分析、預測、控制。

不論是哪個行業的大數據分析和應用場景,可以看到一個典型的特點還是無法離開以人為中心所產生的各種用戶行為數據,用戶業務活動和交易記錄,用戶社交數據,這些核心數據構成一個完整的大數據生態環境。

閱讀全文

與大數據中3v特徵相關的資料

熱點內容
電腦怎麼生成ppt數據大屏 瀏覽:434
n900分區文件 瀏覽:459
wordpress主題笑話 瀏覽:836
ps文件掃描去褶皺 瀏覽:430
12306忘記密碼郵箱找回失敗 瀏覽:557
免流app為什麼還會扣流量 瀏覽:759
qq群文件夾內存 瀏覽:394
java里assest 瀏覽:298
手機相冊視頻文件名 瀏覽:822
如何下載手機拍照的文件 瀏覽:22
為什麼qq遠程是黑屏 瀏覽:55
找二手房源用哪個APP好 瀏覽:722
小蘋果紅領巾 瀏覽:656
蘋果小游戲知乎 瀏覽:628
新版pdf怎麼插入文件 瀏覽:544
怎麼邀請qq好友入群 瀏覽:175
查蘋果手機id怎麼查看 瀏覽:516
資料庫視圖是什麼表 瀏覽:413
怎麼將excel圖表插入word 瀏覽:802
魅族數據搶救能備份哪些數據 瀏覽:877

友情鏈接