導航:首頁 > 網路數據 > 軟科學大數據

軟科學大數據

發布時間:2023-09-22 23:07:10

『壹』 數據科學與大數據技術專業怎麼樣學成之後可以從事的職業有哪些

隨著電子技術和信息科學的發展,近兩年每個網民都有機會在社交媒體發出自己的聲音,留下海量的信息。人類生產信息的速度可謂風馳電掣,每兩年就會增長一倍,近兩年產生的數據總量相當於人類有史以來所有數據量的總和。科研領域、企業運營及日常生活中的數字、文字、圖像、音頻都是數據,大數據的處理速度快、價值密度低、商業價值高。擁有海量數據的國家或企業如果能合理地解釋運用這些數據,就會增強自身的競爭力。大數據專業就在這樣的背景下應運而生,很多學校看到該領域的前景,競相申請設立數據科學與大數據技術專業。今天小編將帶你深入了解數據科學與大數據技術專業。



什麼樣的人適合學數據科學與大數據專業

扎實的數學功底

由課程設置可以看出本專業對學生的數學基礎有一定要求,通識課部分就設置了三門數學課,學科基礎課依然有離散數學,數字邏輯與數學系統。建議想報考的同學提前觀看一些入門課程,客觀評估自己的數學能力。盲目報考無益於個人發展,會造成掛科過多、學習壓力過大、就業困難等不良後果。

有耐心有毅力

大數據專業和計算機專業比較像,是注重實踐的專業。學生需要獨立編寫程序,對程序進行修改與調試,需要注意每一個細節才能順利查錯並運行程序。有耐心有毅力的學生顯然更能坐的住,心浮氣躁的學生則需要一番磨練才能成功。

自主學習能力強

一般情況下,大數據專業無法向學生傳授大數據核心技術之外的知識技能,如果學生需要進入全新領域去實習就業,就必須要迅速掌握新領域的相關知識。假如學生到金融行業從事數據挖掘工作,就必須對金融產品及用戶有所了解。

該專業畢業生的發展

工作

畢業生就業主要集中在一線城市,畢業於985院校的畢業生常常被各大企業一搶而空,就業行業以互聯網、金融、通信、教育、文化娛樂、電子商務等行業為主。薪資待遇令人羨慕,即使是剛畢業的學生,平均月薪就在12000-15000之間,工作3-5年比較有經驗的人可以拿到20-35k的月薪。

考研

主要方向有:計算機科學與技術、計算機系統結構、計算機軟體與理論、計算機應用技術、科學與信息技術(清華、北大、復旦、北京航空航天大學等少數學校開設)。

留學

該專業留學首推美國。國外的大學設置了數據科學專業,數據科學就是從數據中提取信息知識,是數據挖掘與預測分析的延伸,亦是發掘知識與數據的過程。所以,數據科學專業不僅包含了大數據也包含了數據分析。推薦學校有:哥倫比亞大學、加州大學伯克利分校、斯坦福大學、麻省理工學院、卡耐基梅隆大學等。



『貳』 軟體工程,數據科學與大數據技術哪個就業好

1、軟體開發專業。軟體開發這個專業,對於很多人來說是最為熟知的,也就是我們俗稱的程序員。日常生活中,無論我們用到的哪個智能產品,都離不開這個專業的人才。而且現在我們可以發現,軟體的迭代更新速度非常快,哪怕是我們手機里的智能app,每隔一段時間就會有更新提示。所以相關人才到了市場上是非常搶手的,薪資待遇也非常的可觀。
2、大數據管理專業。近幾年我們可以發現,大數據這個詞彙一直頻頻出現在我們的視野中,很多互聯網巨頭都對大數據變得越來越重視。但由於這個細分學科的出現,很多大學都沒有開辦類似的課程,但是絕大多數的公司都對於類似的專業人才有著迫切的需求,所以在這種情況下,應屆畢業生只要能夠進入一家大型的互聯網公司,月薪1萬元起步。
3、網路安全專業。網路安全也是各大互聯網公司一直都在處理的一塊心頭病,因為網路安全無比的重要,而相關的專業人才在市場上多是,由其它專業的人調崗來擔任的,所以這也就導致整個市場對於人才的需求非常的迫切。

『叄』 如何通過抓取教育大數據來深化課堂教學改革

現代信息技術的發展為大數據的收集和分析提供了無限的可能,大數據時代的這一趨勢也對教育產生了巨大的影響:一方面,在科技理性的指導下,通過多維度收集學生行為的數據並進行模型建構,可以對學生的學習行為進行預測;另一方面,大數據時代的人文主義轉向使人們更關注教學活動的適應性,教育大數據的挖掘和利用可以更好地實現適應個人需求的定製化教學。

國際數據公司(IDC)認為大數據時代數據有4大特點——數據的規模大、價值大、數據流轉速度快以及數據類型多。大數據的挖掘和利用對教育——特別是課堂教學——產生著深遠的影響。學習科學家索耶認為:越來越多的學習將經過計算機中介發生, 並產生越來越多的數據,我們有必要運用這些數據分析什麼時候有效的學習正在發生。所以數據挖掘可以用於探究行為與學習之間的關系,如學習者的個體差異與學習行為之間有何關系,不同行為又會導致何種不同的學習結果等。2012年美國發布《通過教育數據挖掘和學習分析促進教與學》(Enhancing Teaching and Learning through Ecational Data Miningand Learning Analytics)提出大數據時代教育數據的特點:具有層級性、時序性和情境性,其中數據的層級性指,既收集教師層面的數據也收集學生層面的數據,既收集課堂數據也收集活動數據,為後期模型的建立提供了多維度的資源;數據的時序性是指,數據是實時的、連續的,為材料的前沿性提供了保障;而數據的情境性是指,數據是基於真實情境脈的,保證了模型的信度。

大數據技術能夠促進以學生為本的學習,數據不僅僅是科技理性指導下收集數據和擬合成模型,並針對學生的群體行為做出預測判斷,還可能在固有模型的基礎上,通過診斷學生在課堂中的行為表現,對固有模型進行修改,使課程內容更加適合學生的長尾需求,實現個性化教學。大數據的利用可以支持對教育活動行為的建模預測,還可能支持教育實踐中的適應性教學。前者是後者的基礎,後者是前者的深化。

建模與預測導向的大數據應用

大數據時代數據促進教育變革的方法之一是收集和分析處理數據,並進行預測。現如今,由於數據記錄、存儲與運算的便捷性,海量的、多層次的數據可以便捷地加以收集,由隨機抽樣帶來的誤差因此減小,建模和預測可以基於全數據和真實數據,因而就更為精確。大數據時代通過探求海量數據的相關關系獲得盈利的最成功的案例是亞馬遜的市場營銷,亞馬遜收集讀者網上查閱行為和購買行為數據,建立讀者偏愛閱讀模型,預測讀者購買的群體行為,實現書籍的推薦。近幾年,教育研究的對象逐漸關注學生的學習行為,其背後是一種學習觀的轉變,學習被視為一種識知的過程(knowing about),識知是一個活動,而不是將知識作為一個物品加以傳遞。識知總是境脈化的,而不是抽象的和脫離於具體情境的。識知是在個體與環境的互動中交互建構的,而不是客觀准確的,也不是主觀創造的。所以,學生的行為活動數據被認為是可以反映學生在學習過程這一情境化的動態變化進程中的情況。海量、多層次、連續的行為數據在收集後被擬合成模型,實現預測,如學習管理系統(LMS)的運用。然而,由於建模和預測依賴的基本原理為數理統計,其預判對象主要是學生的群體行為。

1.案例分析

學習管理系統(Learning Manage System)簡稱LMS,是基於網路的管理系統平台,用於監控學生學習活動行為,識別和預測學困生(student at-risk),並為其提供相應的幫助。大多數LMS包括5個部分:有和課程相關的學習資料、用於確保學生提交作業與完成測試的評價工具、用於溝通的交流工具(如郵件、聊天室等)、用於確保教師記錄和存儲學生的學習活動並發布活動截止日期的課程管理工具、用於幫助學生學習回顧和跟蹤學習進程的學習管理工具。在高校大量使用的BB(Blackboard)平台就是一個常見的學習管理系統。系統記錄了學生參與選修的網上課程的種類、在線時長、閱讀和瀏覽的文章數量,反映學習者的學習行為。2008年,Leah P.Macfadyen和Shane Dawson教授在加拿大不列顛哥倫比亞大學通過分析5個本科班級使用BB平台選修生物課的數據,建立了預測模型。平台記錄了學生課程材料的使用情況、參與學業交流情況和完成作業提交和考試情況。大數據時代教育數據記錄的層級性在這裏充分顯現,課程材料的使用包括記錄在線時長、郵件的閱讀時間、郵件的發送時間、討論信息的閱讀時間等。參與學業交流記錄了發布新討論的時間、回復討論的時間、使用搜索工具所花的時間、訪問個人信息的時間、文件的瀏覽時間、瀏覽誰同時在線的時間、瀏覽網頁連結的時間等等。評價模塊記錄了評價的閱讀時長和提交評價的時間等。通過應用統計工具描述散點圖,發現了在LMS記錄下學生在線時長和學業表現呈相關關系。在進行多元回歸時,研究者發現,學業成就處在後四分之一的學生在線時間略長於平均時間,而學業成就處於前四分之一的學生的在線學習時間低於平均水平。緊接著,研究人員為了作出預測,利用邏輯斯特回歸生成了一個預測模型,通過收集學生的新的行為數據,預測學生是否處於真正參與了學習活動,並得出如下結論:討論舉行的次數、郵件信息發送量和測評的完成情況這三個維度構成的模型可以預測學生的學業水平情況。

大數據時代,通過探求學生行為與學業水平之間的相關關系,建立模型,實現預測,能夠對課堂教學產生重要影響。然而,數據建模過程中,為了保證模型的效度與信度,極端個別數據被處理,使模型只能實現群體行為的預測,不能針對學習者個體實現定製化和個性化。

2.建模與預測的不足

數據建模與預測的背後充分體現了實證主義的思想和方法。19世紀上半葉,以孔德為代表的社會學家提出了實證主義的基本信條:利用觀察、分類,探求彼此的關系,得到科學定律。實證主義的哲學思潮到20世紀60年代,演變成一種科技理性,實踐知識逐漸染上了工具性的色彩,專業活動存在於工具性的解決問題之中,所有的專業活動都被視為釐定目標、套用已知的方法解決問題的過程。這一期間,大量的學科被系統地整合發展,甚至包括教育學和社會學這樣的「軟科學」。用證據解決未知的問題,用數據預測未來一時成為潮流。

學生活動行為數據的建模尤其側重體驗實證主義的思想,模型注重成功教學行為的共性,忽視教師與學生群體的獨特性需求時,科技理性的主導有可能使課堂教學被視為獨立於真實境脈的模塊,只要教學行為取得成功,就會被數據抽象化,形成模型,對學生群體行為產生預測。科技理性有賴於人們認同的共有目標,教學實踐目標的釐定極其復雜,包含巨大的不確定性和獨特性,甚至,由於社會角色的不同,還會帶來價值沖突。一個穩定的、為所有人所認同的目標不復存在,依據科技理性精神和方法推理預測的行為模式並不可能滿足每一個人的需求,教育變革在大數據時代下出現新的取向。

從數據模型到支持適應性學習

在數據建模的基礎上實現教學的適應性是大數據時代促進教育變革的另一成果。數據建模及行為預測依舊屬於科技理性指導下的行為模式,可能會造成忽視學生個性需求的現象,而個性化需求正是知識社會的重要特徵,個性化的教育也受到教育研究者、政策制定者和教育實踐者越來越多的關注。教育系統設計專家賴格盧斯認為,教育投入沒有達到效果的一個很重要的原因是忽視了社會的轉型。「社會已經從工業社會步入了資訊時代,勞動力市場對人才的要求不再是工業時代在流水線上操作的工人,而是具有創新性思維、決斷力強的知識性人才。」教學面臨從產生清一色的勞工轉向產生有判斷力和適應性能力的人群。2010年,OECD的報告《The Nature Of Learning》中指出,適應性能力(adaptive competence)是21世紀核心競爭力,包括在真實的境脈中靈活並有創造力地使用有意義的知識和技能。吳剛在《大數據時代的個性化教育:策略與實踐》中提出了個性化教育的必要性和必然性,指出「只有利用信息技術所提供的強大支持,才有可能真正實現個性化學習」。大數據時代的來臨,正是個性化教育發展的一個良好契機。2012年,美國頒布了《通過教育數據挖掘和學習分析促進教與學》,提出大數據時代,通過收集在線學習數據,對數據進行分類和探尋數據之間關聯的方式挖掘數據,形成數據模型。通過學生行為和模型的互動,形成適應性學習系統。概言之,我們可以以對行為數據的充分利用為基礎,改變教學的內容和進度,構建適應性評價和教學系統,充分實現教育的定製化,滿足學生的長尾需求。

1.案例分析:
適應性教學系統又稱適應性學習系統,(Adaptive Learning Support System),簡稱ALSS系統,強調基於資源的主動學習,認為學習不是知識的傳遞,而是學習者的自我建構。自上世紀90年代以來,研究者開發了不少適應性學習系統,如1998年De Bra開發的AHA系統,2003年,Brandsford和Smith開發的針對任務型學習的MLtutor系統,以及近幾年頗受關注的翻轉課堂(Flipped Classroom Model)簡稱FCM系統。

學習者學習相關學科內容時,學習行為被記錄跟蹤下來,學生的學習行為數據被傳送到後台,記錄在學習者資料庫內,作用於預測模塊。預測模塊通過改變內容傳遞模塊,再次作用於學習者。在整個過程中,教師、教學管理者起干涉作用。

適應性學習系統是一個交互的動態系統,系統往往會提供給學生一些學習行為建議。奧地利針對學生的問題解決的過程設計了一個適應性學習系統。適應性學習系統的第一步是教育數據挖掘(ecational data mining),簡稱EDM。數據挖掘的過程包括數據收集、數據預處理、應用數據的挖掘和詮釋評價發展結果。Moodle提出了CMS數據挖掘系統(Course Management System)。研究者先使用原始數據進行建模,第一步是原始數據的收集,原始數據大約包含2007年73名用戶產生的28000活動例子,2008年97名用戶產生的265000份解決問題的案例和2009年45名用戶產生的115000個活動案例。除了記錄學生解答問題時產生的數據,原始數據還收集了學生的信息、問題的信息和解決問題的步驟;在對數據進行分類後,歸納出問題解決的類型,利用很擅長擬合連續數據的Markvo Models(MMs)的一個子模型DMMs擬合了如上的連續性數據,通過添加判斷學生學習行為的結果模型和一系列監控和調節模塊,構成了整個面向問題解決的適應性系統。當學生使用這個模型時,模型會根據學生的行為數據為學生提供他們所偏愛的解決問題的過程與方法。

除了適應性教學系統,還有適應性評測系統。LON-CAPA(Learning Online Network with Computer-Assisted Personalized Approach)是一個計算機輔助的個性化網路學習測評平台,平台不提供課程設計和課程目標,而是一個教學工具。CAPA通過後台記錄學生的基本資料,學生參與的互動交流、學業情況,針對學業課程中的疑難點,提供個性化的考試資源。

2.適應性轉向的意義

在大數據時代,科技理性指導下的模型預判在面對結構不良的問題時顯得應對能力不足。科技理性指導下的數據建模忽視學習的真實境脈,只能支持群體行為的預判,模型的推廣可能會使人們忽視其實踐成功背後的個體經驗與具體情境,從而導致科技理性與哲學思辨對抗。然而,完全依靠哲學思辨和經驗進行教學不僅不利於教育學科系統理論性的發展,也不利於課堂實踐的管理與教師的培訓。唐納德·A.舍恩提出了一種適應性思維模式。他指出:「如果科技理性的模式在面對『多樣』的情境時,是無法勝任、不完整的,甚至更遭的話,那麼,讓我們重新尋找替代的、較符合實踐的、富有藝術性及直覺性的實踐認識。」適應性學習是在系統理論知識的指導下,針對個體差異,使學習內容和活動高度個性化的學習方式。

適應性平衡了理性與經驗的兩難,英國學者Hargreaves(1996)首次提出基於證據的教育研究向醫療診斷學靠攏。臨床診斷學和教育的相似之處在於,他們都要面對變動不居、極其復雜的環境,在這樣一個結構不良的系統中,充分意識到客體(患者或者學生)的獨特性與共性,利用系統的專業知識解決問題。

Ralf St. Clair教授在參考醫學臨床實踐研究的三要素後提出基於證據的教育研究的三要素——研究的證據、教育工作者的經驗、學習者的環境與特點。其中,行為預測關注的是研究的證據,而適應性學習系統的建設則關注的是教育工作者的經驗和學習者的環境與特點。

從預測行為到支持適應性教學的轉向,是一種人文主義的轉向,教育研究的重點從關注研究的證據走向關注教育工作者的經驗與學習環境特點,關注以證據支持個性化學習的實踐變革。證據不再是其在科技理性時代所處的指導決策的角色,而是被視作一種資源,教育工作者在大量的基於證據的課堂教學決策中找尋最適合自己特點和學生特點的方式,推進課堂教學流程。也就是說,大數據的更重要價值在於支持適應性學習,滿足個性化學習和個性化發展的時代需要。數據的預測功能依賴於大數據收集數據的全面性與處理數據的便捷性,根據統計學原理對群體行為做出預測,一定程度上弱化了個體特徵和具體情境。其主要指向行為預判。而適應性是在模型與客體的交互作用上改變模型,如圖3所示,數據的適應性運轉模型比預測模型多了一個循環(loop until)系統,使其更加契合個人需求,其主要指向實踐改進。預測是支持個性化學習的基礎,而支持個性化學習是預測功能的深化和轉化——從整體人群到個體學習者、從理論模型到實踐策略的轉化。

分析與啟示

大數據時代由於數據量大,數據收集與攜帶便捷,使海量學生行為數據被挖掘、收集,通過數據建模對學習者行為的分析變得比前大數據時代更為全面和可靠。數據時代在數據的挖掘和預測上固然潛力十足,但是大數據時代更多的價值是滿足學習者的適應性長尾需求,在預測行為的基礎上,修改教學模式,使之個性化與定製化。從數據建模走向支持適應性教學,支持對象從群體轉向了個人,對教育活動的影響從對行為的認識轉向了教育活動的實踐,從科技理性指導下的去境脈轉向了基於真實情境的教學活動。

走向適應性,不僅改變人類行為方式,更重要的是改變了認知方式。前大數據時代人們在科技理性的指導下完全被數據證據左右(driven by the data),教師和學生、教育決策者和學校形成傳統社會契約關系,當事人把自己百分之百地交給專業工作人員,而專業工作人員遵守契約,對當事人全心全意地負責,從而使專業工作人員享受至高無上的壟斷性地位。大數據時代,教師不再是知識的控制者,他通過參與學生的學習活動,根據學生的先擁知識和認知特點、個性需求,不斷地調整教學步驟、教學進度和難度。學生不用完全將自己有如病人交付給醫生一般完全託付給教師。在學習的過程中,通過與教師的互動交流,在教師的協助下,成為自己學習的主體,控制並對自己的學習負責。由於教師精力有限,大數據時代下網路計算機輔助學習系統可以為教師和學生提供輔助指導的機會。

盡管如此,一方面,我們要擁抱大數據給我們帶來的便捷的生活和高質量的教育,另一方面,我們需要保持警惕和防止因果關系和相關關系的誤用,並且維護數據安全。

在推理方面,教育工作者需要警惕將相關關系和因果關系誤用,以Leah P.Macfadyen教授的前述案例為例,BB平台在線時間的長短和學生的學業成就有相關關系,而非因果關系,成績優異的學生在線時間低於平均在線時間,但不能說低於平均在線時間的學習導致學生成績優異而要求學生減少在線學習時間。

此外,在信息安全方面,學生和教師的大量信息被收集和使用,在使用的過程中,必須制定相關私隱保護法,保證信息的安全,警惕數據濫用。學生的行為數據也不可以作為教師教學評優的依據,讓大數據真正成為支持教學變革、提升教學效能、促進學生發展的手段,而不是控制教師和學生的工具。

『肆』 塗子沛大數據第十章講了什麼

塗子沛大數據第十章講了胡適批評差不多先生,黃仁宇求索數目字管理,作者從太平洋對面看到中美兩國的差距,深知中國缺少什麼。
大數據2012年7月出版的《大數據》是中國大數據領域第一本著作,引領了中國社會對大數據戰略、數據治國和開放數據的討論,該書先後獲得國家圖書館文津圖書獎、第四屆中國軟科學前沿探索獎、2012年度十大好書等獎項。
塗子沛,知名信息管理專家,曾居美國矽谷,現任阿里巴巴副總裁。畢業於華中科技大學、中山大學和卡內基梅隆大學。赴美留學之前,曾在省、市、縣幾級政府的不同部門磨礪10年,做過職業程序員,擔任過公安邊防巡邏艇的指揮官,也從事過政府統計工作。在美期間,先後擔任軟體公司的數據倉庫程序員、數據部門經理、數據中心主任、亞太事務總監、首席研究員等職務。除了工作、寫作,還熱心公益,曾任中國旅美科技協會匹茲堡分會主席,現任中國旅美科技協會副主席,上海真愛夢想公益基金會理事。

『伍』 數據科學與大數據技術專業怎麼樣

比較不錯,數據科學與大數據技術專業是一個軟硬體結合,以計算技術為基礎,以數據科學與大數據技術為特色的寬口徑專業。該專業的畢業生具體就業方向主要有:計算機和互聯網領域從事數據分析、系統分析、大數據工程應用開發;還可以成為信息分析師、商業分析師、資料庫協調員、開發機器學習系統等等。

人工智慧是勢不可擋的發展趨勢,大數據技術又是人工智慧的重要支撐。大數據科學將成為引領人工智慧技術、物聯網應用、計算機科學、數字經濟及商業發展的核心。

(5)軟科學大數據擴展閱讀

主要課程

C語言程序設計、數據結構、資料庫原理與應用、計算機操作系統、計算機網路、Java語言程序設計、Python語言程序設計、大數據演算法、人工智慧、應用統計(統計學)、機器學習、數據建模、大數據平台核心技術、大數據分析與可視化、大數據預處理、大數據管理、大數據實踐等課程。

閱讀全文

與軟科學大數據相關的資料

熱點內容
linux埠鏡像 瀏覽:820
iphone5屏幕清塵 瀏覽:157
機頂盒密碼怎麼改 瀏覽:672
w7系統下載32位教程 瀏覽:618
pcb文件包括哪些內容 瀏覽:598
g00文件 瀏覽:607
用bat程序刪除程序 瀏覽:516
dnf鬼泣90版本打安圖恩 瀏覽:668
245倒角編程怎麼計算 瀏覽:599
可以買生活用品的app有哪些 瀏覽:175
cad在c盤產生的文件夾 瀏覽:541
聯想手機解鎖工具 瀏覽:696
瑞銀3887win10 瀏覽:833
學網路編程哪個好 瀏覽:805
手機vmos導入的文件在哪裡 瀏覽:115
蘋果手機可以把文件傳到華為嗎 瀏覽:63
海川化工下載的文件默認到哪裡 瀏覽:343
學唱粵語歌app 瀏覽:975
qq游戲生死狙擊玩不了 瀏覽:120
win10郵件不顯示圖片 瀏覽:922

友情鏈接