❶ 淺議大數據時代如何加強稅收風險管理
內容提要:「大數據」時代的到來,為稅收風險管理提供了新機遇,帶來了新挑戰。本文在分析大數據為稅收風險管理提供契機的基礎上,結合基層稅務機關工作實踐,嘗試提出相應的稅收風險管理策略和建議,提升風險管理水平。
關鍵字:大數據,稅收風險管理
稅收風險管理是提升稅收征管質量、提高納稅人稅收遵從度的重要手段,「大數據含頃」時談局陸代的到來又為稅收風險管理提出了新的要求,如何運用大數據提升稅收風險管理水平,是新形勢下基層稅務機關面臨的巨大挑戰。
一、大數據時代的稅收風險應對的機遇與挑戰
(一)涉稅數據規模大,速度呈現跳躍性增長。大數據時代的進步,給稅務管理以信息管稅帶來了前所未有的機遇:現成的網路資源和真實的數據基礎。「信息管稅」,內涵要求是管住信息,沒有信息談何信息管稅。2011年地稅就實現了征管數據的全國大集中,標志已經步入了「數據驅動決策方法」的大數據時代,據統計,「金稅三期」工程在全國推行後,數據量和業務量將會極大地增長,數據規模的增長速度也會呈跳躍性增長。
(二)涉稅信息採集和掌握比較困難。大數據時代的進步,給稅務管理以信息管稅帶來的挑戰也是前所未有的,理論上客觀存在的這些涉稅信息,稅務系統是既看不著,也摸不著。面對這突變發展的大數據時代,由於落後的稅務征管信息系統背離大數據時代互通特徵與現實應用的網路資源脫節臘拆,所以征管系統現存的數據就不可能做到完整、真實、准確。而由於不重視文明、進步社會管理的基本理理念,至今尚未開展稅源信息標准化的基礎工作,致使社會稅源信息五花八門,其產生只能將就各市場主體自身業務推進的需要,不能滿足稅源信息採集的需要,進入大數據時代就如何採集和掌握現實稅源信息成了信息管理最大的難題。
二、大數據時代下基層稅務機關稅收風險管理現狀
(一)稅收風險管理專業人才匱乏。在大數據時代中,稅收風險管理要通過建立風險監控模型,來進行預測分析。特別是面對海量的數據,監控模型能左右著稅收風險管理的成敗。能建立或者組織建立風險監控模型的人才首先要有專業的稅收業務知識、要熟練掌握稅收應用系統、要有大數據的理念、熟悉數據的來源和構成,同時還要有創新意識和奉獻精神。在基層稅務機關,這種風險管理領域的專業人才少,導致工作實績不明顯。
(二)數據獲取不全面。風險管理必須依靠大量正確的數據信息,金稅三期的推行,解決了內部數據獲取的問題,但是,納稅人的生產經營信息、財務信息以及第三方信息的獲取渠道仍然有限。基層稅務機關無法像總局大企業司的全流程風險監控那樣獲取信息,外部涉稅信息主要來源於自行報送,獲取信息的范圍狹窄、渠道少且不準確。一些對風險分析至關重要的物流、資金流信息數據無法取得。同時,金稅三期等含有無效甚至垃圾數據,嚴重影響了風險監控的准確性。
(三)思想認識上有偏差。風險管理的基礎是信息的採集,也就是對數據的處理。在基層稅務機關,多數人認為稅收數據是信息中心的活。因此,把數據管理也看成了技術活,一方面覺得事不關己高高掛起,另一方面會認為數據管理高深莫測的,遙不可及。其實數據是業務載體和表現形式,是決定風險管理質量的基礎和關鍵所在。
(四)涉稅數據更新不及時。稅務管理包括稅務登記、納稅申報、稅款徵收、發票管理、納稅評估、稅務稽查等產生的涉稅信息資源,構成了稅務機關征管系統的主體數據。由於採集方式多以手工錄入為主,數據在質量上,特別是在完整性、准確性、規范性、邏輯性等方面,依然難以滿足稅收風險管理的需要。另外,不同納稅人的名稱、生產經營地、法人、財務負責人、經營范圍經常變化,使稅務機關征管系統的數據很難做到隨時更新,也給稅收風險管理帶來難題。
(五)數據分析技術能力有待提高。在基層稅務機關,絕大多數的數據分析仍停留在簡單的查詢和比對層面,缺乏行之有效的數據分析工具,使大量沉積在業務操作層的數據尚未有效轉換為管理決策層所需要的信息,即使是納稅人提供的網上申報數據和財務報表數據電子信息,也難以實現所有信息的全面自動讀取、分類加工。稅務機關難以對這些數據進行深層次的分析,獲得更有價值的信息,對數據所反映出的稅收風險、經濟內涵進行分析監控乏力,沒有建立稅收與相關經濟數據之間的關聯模型,難以對現有數據進行數理統計和趨勢預測分析,不能為管理決策提供科學、有效的信息支撐。
三、稅收風險管理適應大數據時代發展的建議與對策
(一)強化以數治稅理念。將該理念貫穿於稅收征管改革和體系建設的全過程,引導基層稅務幹部正確理解大數據的核心理念,培養大數據的思維方式,自覺運用大數據查找風險疑點,開展風險排查和應對,營造用數據管理、用數據決策、用數據創新的風險管理氛圍。強化稅收風險共治理念。立足工作實際,以科學有效的稅收風險共治平台為支撐,持續推進稅務部門、納稅人、政府部門、社會組織在稅收風險管理上的深度合作和協同治理,構 建黨 政領導、稅務主責、部門合作、社會協同、公眾參與的稅收風險共治模式,實現部門之間數據信息的開放共享、互聯互通和深度應用,形成風險管理合力。
(二)建立良性的風險監管工作機制。基層稅務機關可以建立本地區專門的風險監控管理機構。並且明確各崗位的職責許可權:稅源管理和納稅服務部門在變管戶為管事的基礎上,深化納稅服務,同時提供個性化的納稅服務,比如建立對話、幫助簽訂稅收遵從協議等。風險監控部門可以看成是既有稅收業務知識和一定數據管理水平的成員組成的本地區團隊,負責數據管理、設計並更新維護本地區風險監控指標、對稅收風險進行分析識別、向相關部門進行風險推送。納稅評估部門接收推送過來的風險任務、採取納稅評估或者稅務審計等手段進行風險應對、同時將風險應對結果向相關部門推送。綜合業務部門在執行稅收政策的同時,審核風險應對結果,同時向風控部門推送風險應對的審核結果,為其更新和完善風險監控指標提供依據,由此形成了一個協調配合、聯動監督、良性互動的閉環工作模式。
(三)建立以風險管理為導向的扁平化立體式征管模式。為積極應對大數據時代給稅收風險管理帶來的挑戰,應進一步明確職能,規范流程,建立上下聯動、橫向互動的兩級任務中心,形成扁平化立體式征管模式,以適應稅收風險管理工作的開展。同時,按照納稅人的「規模或行業+征管事項分類」的原則,結合稅源結構特點設置與風險管理相適應的稅源管理機構,形成事項分類管理、風險專門應對,科學化、專業化、精細化更加突出的征管模式。通過征管模式的重構,形成市局、基層局相互呼應、互為依託、相互補充、共同提升的工作模式,繼續提升大數據時代地稅部門的工作質效。
(四)提升數據採集和應用能力。稅收大數據是稅務部門最核心和關鍵的征管資源。為了不斷提升稅務機關的核心競爭力,必須加強對稅收大數據的交換共享、智能比對和邏輯相關分析,拓寬採集渠道,全面獲取各方各類涉稅信息。對地稅內部、外部海量涉稅數據信息進行全面歸集採集、整合加工,實現「信息+數據」增值應用,著力突破征納雙方信息不對稱的管理瓶頸,有效促進納稅遵從和管理增效。在信息採集方面,一是繼續做好政府部門涉稅信息採集工作。充分發揮《江西省地方稅收保障條例》的作用,繼續爭取政府和相關職能部門的大力支持,發揮跨部門信息交換和共享平台作用,形成跨部門協同治理格局,全面准確及時地獲取涉稅信息,形成全面實時、動態化的稅源監控網路,有效加強地方稅收征管。二是繼續加強互聯網涉稅信息的採集力度。充分利用互聯網海量資源,甄別、採集、整合上市公司中涉及企業的有效數據,為稅收管理提供數據基礎。
(五)多措並舉,不斷提升數據應用的有效性。一是規范數據質量管理。嚴格規范納稅人的財務報表、基本資料等基礎數據信息,把好數據入口關、校驗關;
同時,對通過風險管理發現的數據質量問題進行跟蹤管理,確保錯誤數據及時得到更正;
注重發揮納稅輔導提示、服務作用,提醒納稅人重視數據質量並及時更正錯誤數據。二是做好數據整合應用。其一,實現稅務系統內部信息的有機整合和結構化存儲。對稅收征管主體軟體、發票系統、風險管理等各系統中的涉稅信息,第三方渠道採集的各類信息,以及稅務人員在實地巡查、約談、評估、稽查中獲取的各類信息,進行有機整合和一戶式歸集,建立起統一規范的納稅人數據倉庫,在各級稅務機關、各稅種管理部門、前台服務人員之間,按照職能許可權實行信息開放和增值應用。其二,加強內外部數據的合作應用。對內,加強市局各業務處的合作,共同探討信息分析應用途徑;
積極徵求基層局意見建議,了解信息的有效性、針對性,通過信息分析方與應用方的對接,形成數據採集、整理、運用的良性互動,進一步提升信息應用效率。對外,加強與國稅、財政等部門的合作,對獲取的數據進行綜合分析,共同應用,互利共贏,共同提升信息應用水平。
(六)建立人才培養機制,打造專業稅收風險分析管理團隊。以風險分析、應對納稅、調整賬務處理、計算機操作技能和評估約談技巧等為主要內容,組織開展風險管理能力培訓,激發幹部業務學習活力;
要優化組合,合理配備資源,使得人盡其才。逐步建立一支綜合素質高、專業技能強的專業化風險管理團隊。加強風險管理隊伍建設。結合「數字人事」和個人績效管理,將管、考、訓、用有效統一, 圍繞打造風險管理專業團隊的目標加強業務培訓,面向風險管理人員定期考核,優化激勵機制,重視工作實績,促進風險管理人員自覺學習業務、鑽研業務,不斷提高風險管理能力和水平。
參考文獻
(1)彭驥鳴曹永旭 韓曉琴 《大數據時代稅源專業化管理面臨的機遇與挑戰》,《稅收經濟研究》,2013年6期
(2)林偉勝 許卓偉 《大數據時代信息系統建設的一些思考》,《信息與電腦》,2013年1期
(3)阿里2014財年數據,2014
(4)趙國棟 《大數據時代的三大發展趨勢》,高科技與產業化,2013
(5)孫開沈昱池 《大數據,構建現代稅收征管體系的推進器》,《稅務研究》,2015年1期
(6)劉暢 《大數據背景下需改革稅收征管模式》,《稅收征納》2014年12期
❷ 大數據風控是什麼
大數據風控指的就是大數據風險控制,是指通過運用大數據構建模型的方法進行風險控制和風險提示。通過採集大量企業或個人的各項指標進行數據建模的大數據風控更為科學有效。
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據風控主要是通過建立數據風險模型,篩選海量數據,提取出對企業有用的數據,再進行分析判斷風險性。
(2)大數據比控擴展閱讀:
大數據風控能解決的問題:
1、有效提高審核的效率和有效性:
引入大數據風控技術手段分析,通過多維度的信息分析、過濾、交叉驗證、匯總,可以形成一張全面的申請人數據畫像,輔助審核決策,可以提高審核的效率和有效性。
2、有效降低信息的不對稱:
引入大數據風控技術手段分析,通過多維度的信息分析、過濾、交叉驗證、匯總,可以形成一張全面的申請人數據畫像,輔助審核決策,可以提高審核的效率和有效性。
3、有效進行貸後檢測:
通過大數據技術手段對貸款人進行多維度動態事件(如保險出險、頻繁多頭借貸、同類型平台新增逾期等)分析,做到及時預警。
參考資料來源:網路-大數據風控
❸ 稅務大數據比對哪些內容
一、正面回答:
比對內容包括表表比對、票表比對和表稅比對。表表比對是指申報表表內、表間邏輯關系比對。票表比對是指各類發票、憑證、備案資格等信息與申報表進行比對。表稅比對是指納稅人當期申報的應納稅款與當期的實際入庫稅款進行比對。
二、詳情分析:
比對信息范圍包括:增值稅納稅申報表及其附列資料信息。增值稅一般納稅人和小規模納稅人開具的增值稅發票信息。增值稅一般納稅人取得的進項抵扣憑證信息。納稅人稅款入庫信息。增值稅優惠備案信息。申報比對所需的其他信息。
三、稅收大數據的概念是什麼
稅收大數據就是指我國的金稅系統,在案件的發現和查處中功不可沒。目前稅務部門使用的是金稅三期,已經實現了對國稅、地稅數據的合並及統一,其功能是對稅務系統業務流程的全監控。金稅四期也於2021正式啟動建設,新的系統將納入非稅業務,實現對業務更全面的監控。同時搭建了各部委、人民銀行以及銀行等參與機構之間信息共享和核查的通道,實現企業相關人員手機號碼、企業納稅狀態、企業登記注冊信息核查三大功能。
❹ 不定期進行大數據比對的意義
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。在實用中,數據分析可以幫助人們做出判斷,以便採取適當行動。
1.數據分析的目的
數據分析的目的就是對過去發生的現象進行評估和分析,尋找事物存在的證據及原因,並在這個基礎上對未來事物的發生和發展做出結論並形成能夠指導未來行為的知識或者依據。
數據分析的核心並不在於數據本身,而在於設計有意義、有價值的數據分析主題與指標體系,通過科學有效的手段去分析,進而發現問題優化迭代。無論分析給出的結果是積極的還是負面的,都是價值承載體,必須以客觀的態度面對。
2.數據分析的意義。數據分析的意義表現在以下幾個方面:
(1)有利於企業加強科學管理,提高經營管理水平。企業推行科學管理,有效發揮決策、計劃、組織、領導、控制等管理職能,都必須採取科學的態度,充分利用各種數據信息,分析企業現實情況。例如,我們所做的每一項決策,都要事先進行科學預測;我們的每一項經營活動,都需要進行量化監控;我們完成的每一項工作,都需要總結、分析與提高。可以說,企業的一切活動都離不開數據分析,它是企業管理必不可少的管理手段,更是改善和提升企業經營管理與決策水平的利器。
(2)有利於企業實現簡化管理,提高經營管理效率。企業的任何管理工作都是圍繞企業的效率與效益展開,數據分析工作也不例外。近百年來,管理學界總結和創建了非常多的數據分析方法與模型,推進了企業規范化、標准化管理工作,只要我們能夠積極地學習與使用,就能極大地提高人們的認識效率和工作效率。
(3)有利於企業提高經濟效益,增強核心競爭力。不斷地提高經濟效益是經濟發展的客觀要求。為了實現這一要求,企業必須對經營活動進行監控,開展數據分析工作。通過經常的和定期的分析,對企業年度預算目標完成進展情況進行比較,找出差距及其原因,及時採取應對策略,有利於企業經濟效益的提升。通過與競爭對手的對標分析,找出競爭上的薄弱環節,以利於增強企業核心競爭力。
(4)有利於企業完善經濟責任制,搞好企業內部分配。通過數據分析,考察客觀經濟環境變化對企業各項經濟活動的影響,分清影響企業及內部各部門、單位經濟效益的主、客觀原因;查明企業內部各單位的經營管理活動對企業實現目標的影響和應付的經濟責任,這對正確評價和考核各部門和各單位的工作業績,分清責任與貢獻大小,搞好企業內部分配,合理獎懲,有著重要的作用。
大數據分析的目的與意義.中琛魔方大數據平台表示大數據分析的結果可以給企業帶來決策影響,也同時關繫到企業的利益體現,大數據分析正在為企業帶來了新的變化,主要是幫助企業分析客戶數據,進一步掌握了解客戶數據,以便做出有針對性的決策。
發布於 1 年前著作權歸作者所有
贊同 3
喜歡 3
分享
評論 0
你見過最陰暗的事情是什麼。?