1. 大數據的挑戰和局限
大數據的挑戰和局限
每個人都知道互聯網改變了企業經營、政府運作以及人們生活的方式。但是一種新的、不那麼明顯的技術趨勢卻有著同樣巨大的變革能力,那就是「大數據」。大數據的趨勢發端於下面這個事實:如今到處傳播的信息比以往任何時候都多出了許多,而且這一趨勢正在應用於非同尋常的新用途。大數據與互聯網截然不同,雖然互聯網使數據的收集和共享方便了很多。大數據的意義並不僅僅是通信:其本質是我們可以從大量的信息中學習到從較少量的信息中無法獲取的東西。
將改變人類思考方式
早在公元前3世紀,亞歷山大圖書館被認為收藏了全部的人類知識。而如果把當今全世界的信息平分給每一個活著的人,那麼每個人擁有的信息量將足足超過當年亞歷山大圖書館全部藏書的320倍。如果把所有這些信息刻到光碟上並且分五摞疊起來的話,那麼這些光碟可以一直堆到月球。
這種數據爆炸是相對新鮮的現象。僅僅在2000年的時候,全世界全部的存儲信息中還只有四分之一是數字化的,其餘的都保存在紙張、膠片和其他模擬介質上。但是由於數字數據數量的增長十分迅速——幾乎每三年就翻一番,這種情形很快發生了逆轉。如今,在所有存儲信息中只有不到2%是非數字化的。
鑒於如此懸殊的比例,人們免不了在理解大數據的時候僅僅從數量上進行考慮。然而這將會產生誤導。大數據的另一個特徵是它能夠用數據來表現世界的眾多層面,而這些層面以往從來都沒有被量化過——這種特徵可以被稱為「數據化」。例如,位置信息的數據化最早是由於經緯度的發明,而最近又有了GPS。當計算機對幾個世紀內的書籍進行取樣時,文字便成了被處理的數據。甚至連友誼和愛好也被數據化了——例如通過Facebook。
藉助於廉價的電腦內存、高性能處理器、智能演算法、聰明軟體以及從基本統計學中借鑒來的數學知識,這樣的一類數據正在被應用於難以置信的新用途中。這種新方法並不是試圖「教會」計算機去從事駕駛或翻譯這樣的事情,而是要向計算機輸入足夠多的信息,從而使它們能夠推斷概率,例如交通指示綠燈亮、紅燈不亮的概率,或者是在特定語境下「light」一詞意為「光」而不是「輕」的概率。
以這種方式對大量數據加以利用,要求人們在三個方面徹底改變對數據的態度。第一是收集和使用大量數據,而不是像統計學家們在過去100多年裡所做的那樣,只滿足於少量的數據或樣本。第二是拋棄人們對有條理和純凈的數據的偏愛,轉而接受雜亂無章——在越來越多的情形下,少許的不精確是可以容忍的。第三,在許多場合,人們需要放棄對事情原委的追究,而代之以對相關性的接納。利用大數據,而不是試圖弄懂發動機拋錨或葯物副作用消失的確切原因,研究人員可以收集和分析大量有關此類事件的信息及一切相關素材,找出可能有助於預測未來事件發生的規律。大數據有助於回答是什麼、而不是為什麼的問題——通常有這樣的回答就足夠了。
互聯網重塑了人類交流的方式。大數據則不同:它標志著社會處理信息方式的變化。隨著時間的推移,大數據可能會改變人們思考世界的方式。隨著人們利用越來越多的數據來理解事情和作出決定,人們很可能會發現生活的許多層面是隨機的、而不是確定的。
從因果關繫到相關性
人們看待數據的方式的兩個變化——從局部變為全部以及從純凈變為凌亂——催生了第三個變化:從因果關繫到相關性。這代表著告別總是試圖了解世界運轉方式背後深層原因的態度,而走向僅僅需要弄清現象之間的聯系以及利用這些信息來解決問題。
加拿大的研究人員正在開發一種大數據手段,以便能在明顯症狀出現之前發現早產嬰兒體內的感染。通過把包括心率、血壓、呼吸和血氧水平等16種生命體征轉化成每秒1000多個數據點的信息流,他們已經能夠找到極其輕微的變化與較為嚴重的問題之間的相關性。最終,這項技術將使醫生能夠提前採取行動,從而拯救生命。
大數據所產生的影響將遠遠超出醫學和消費品的范疇:它將深遠地改變政府的運作方式和政治的性質。在推動經濟增長、提供公共服務或進行戰爭等方面,那些能夠有效利用大數據的人將擁有勝過別人的巨大優勢。迄今為止,最令人興奮的成果出現在市級,在這個級別上獲取數據和利用這些信息進行實驗要容易一些。紐約市長邁克爾·布隆伯格(他本人就是靠著數據行業發家的)率先進行了一項努力:該市正在利用大數據改善公共服務和降低成本。其中一個例子就是新的火災預防策略。
非法在屋內打隔斷的建築物著火的可能性比其他建築物高很多。紐約市每年接到2.5萬宗有關房屋住得過於擁擠的投訴,但市裡只有200名處理投訴的巡視員。市長辦公室一個分析專家小組覺得大數據可以幫助解決這一需求與資源的落差。該小組建立了一個市內全部90萬座建築物的資料庫,並在其中加入市裡19個部門所收集到的數據:欠稅扣押記錄、水電使用異常、繳費拖欠、服務切斷、救護車使用、當地犯罪率、鼠患投訴,諸如此類。接下來,他們將這一資料庫與過去5年中按嚴重程度排列的建築物著火記錄進行比較,希望找出相關性。果然,建築物類型和建造年份是與火災相關的因素。不過,一個沒怎麼預料到的結果是,獲得外磚牆施工許可的建築物與較低的嚴重火災發生率之間存在相關性。
利用所有這些數據,該小組建立了一個可以幫助他們確定哪些住房擁擠投訴需要緊急處理的系統。他們所記錄的建築物的各種特徵數據都不是導致火災的原因,但這些數據與火災隱患的增加或降低存在相關性。這種知識被證明是極具價值的:過去房屋巡視員出現場時簽發房屋騰空令的比例只有13%,在採用新辦法之後,這個比例上升到了70%——效率大大提高了。
大數據的挑戰和局限
大數據也正在幫助提高民主政府的透明度。一個建立在「開放數據」概念上的運動已經形成,其訴求超出了目前在發達民主國家已經十分常見的信息自由法。這一運動的支持者呼籲政府把手上浩如煙海的普通數據向公眾開放。
與此同時,在政府推動使用大數據的同時,它們還需要保護公眾免受不正當市場壟斷的侵害。管理大數據的法規甚至可能成為國家間的角斗場。出於對反托拉斯和保護隱私的關切,歐洲各國政府已經在嚴查谷歌公司。臉譜網可能會成為世界各地類似行動的打擊目標,因為它持有太多的個人數據。外交官們應該准備好圍繞是否像對待自由貿易那樣對待信息流動展開交鋒。
大數據勢必將改變人們生活、工作和思考的方式。建立在強調因果關系基礎上的世界觀正在受到推崇相關性的挑戰。知識的佔有曾經意味著對歷史的了解,而現在卻意味著預言未來的能力。解決大數據所帶來的挑戰將不是易事。
在決策越來越多地受到數據支配的世界裡,人、直覺或是不顧事實的蠻干還有什麼用武之地呢?如果每個人都求助於數據,都利用大數據工具的話,那麼不可預測性——例如人類的本能、冒險、意外甚至失誤——也許將會成為差異的關鍵。如果真是這樣的話,那麼需要專門為人為因素辟出一席之地——即為直覺、常識、運氣留出空間,以確保它們不會被數據和機器生成的答案擠走。
這將對社會進步的觀念產生重要影響。大數據使我們可以更快地進行實驗,對更多的線索展開探索。這些優勢應該會導致更多創新的產生。但在有些時候,發明的火花迸發是數據所無法表現的。倘若亨利·福特當初求助於大數據演算法系統來研究顧客希望得到的東西,演算法系統得到的答案會是「更快的馬匹」,也就不會有福特著名的汽車生產線了。在大數據的世界裡,需要培養的恰恰是與人類關系最密切的特性——創造力、直覺和上進心,因為人的聰明才智才是進步的源泉。
大數據是一種資源和一種工具。它的目的是告知,而不是解釋;它意在促進理解,但仍然會導致誤解——關鍵在於人們對它的掌握程度。人們必須以一種不僅欣賞其力量,而且承認其局限的態度來接納這種技術。
2. 大數據時代的挑戰、價值與應對策略
大數據時代的挑戰、價值與應對策略
隨著移動互聯網、物聯網、雲計算等的快速發展,及視頻監控、智能終端、應用商店等的快速普及,全球數據量出現爆炸式增長。在此背景下,電信運營商在其網路無休止擴容的同時,卻面臨「增量不增收」的困境;而一些採用「數據驅動型決策」模式經營的公司,則可將其生產力提高5%~6%。因此,有必要深入研究大數據時代(Big Data Era)的挑戰、價值與務實應對策略。
1大數據時代的基本特徵
據統計,2010年以互聯網為基礎所產生的數據比之前所有年份的總和還要多;而且不僅是數據量的激增,數據結構亦在演變。Gartner預計,2012年半結構和非結構化的數據,諸如文檔、表格、網頁、音頻、圖像和視頻等將佔全球網路數據量的85%左右;而且,整個網路體系架構將面臨革命性改變。由此,所謂大數據時代已經來臨!
對於大數據時代,目前通常認為有下述四大特徵,稱為「四V」特徵:
(1)量大(Volume Big)。數據量級已從TB(1012位元組)發展至PB乃至ZB,可稱海量、巨量乃至超量。
(2)多樣化(Variable Type)。數據類型繁多,愈來愈多為網頁、圖片、視頻、圖像與位置信息等半結構化和非結構化數據信息。
(3)快速化(VelocityFast)。數據流往往為高速實時數據流,而且往往需要快速、持續的實時處理;處理工具亦在快速演進,軟體工程及人工智慧等均可能介入。
(4)價值高和密度低(Value HighandLowDensity)。以視頻安全監控為例,連續不斷的監控流中,有重大價值者可能僅為一兩秒的數據流;360°全方位視頻監控的「死角」處,可能會挖掘出最有價值的圖像信息。
2大數據時代面臨的挑戰
(1)運營商帶寬能力與對數據洪流的適應能力面臨前所未有的挑戰,管道化壓力化解及「雲-管-端」的有效裝備也均面臨新挑戰。
(2)大數據的「四V」特徵在數據存儲、傳輸、分析、處理等方面均帶來本質變化。數據量的快速增長,對存儲技術提出了挑戰;同時,需要高速信息傳輸能力支持,與低密度有價值數據的快速分析、處理能力。
(3)海量數據洪流中,在線對話與在線交易活動日益增加,其安全威脅更為嚴峻;而且現今黑客的組織能力、作案工具、作案手法及隱蔽程度更上一層樓,典型的有APT(Advanced Persistent Threat,高級持續性安全威脅)。
(4)大數據環境下通過對用戶數據的深度分析,很容易了解用戶行為和喜好,乃至企業用戶的商業機密,對個人隱私問題必須引起充分重視。
(5)大數據時代的基本特徵,決定其在技術與商業模式上有巨大的創新空間,這將對可持續發展起關鍵作用。
(6)大數據時代的基本特徵及安全挑戰,對政府制訂規則與監管部門發揮作用提出了新的挑戰。
3大數據帶來的價值
(1)利用大數據特徵,藉助雲計算等有效工具,深度挖掘流量與數據價值,可幫助運營商實施好流量經營,減輕管道化風險,發揚「雲-管-端」的智能管道的威力。
(2)多業務環境下掌握用戶體驗效果尤為重要,可從海量用戶數據中深度分析、挖掘出用戶的行為習慣和消費愛好,以實施精準營銷及網路優化,掌控數據增值的「金鑰匙」。
(3)掌握好大數據的存儲、分類、挖掘、快速調用和決策支撐,並應用於企業的日常運營、維護及戰略轉型中,成為企業可持續發展、維持競爭優勢的當務之急與重要途徑。
(4)充分利用對大數據的分析、挖掘,可幫助找到隱蔽性極強的APT之類的安全威脅,助力信息安全部門找到應對新型安全威脅的有效途徑。
(5)通過對公共大數據的分析、挖掘與利用,可減少欺詐行為及錯誤數據的負面作用、追收逃稅漏稅及刺激公共機構生產力等,幫助政府節省開支。例如英國政府即通過此途徑節省大約330億英鎊/年。
4大數據時代的應對策略
(1)大數據時代應以智慧創新理念融合大數據與雲計算,在大數據洪流中提升知識價值洞察力,實施高效實時個性化運作,建立有效增值的商業模式,確保應對APT之類的新型安全威脅。
(2)電信運營商轉型中流量經營已成共識,即以智能管道與聚合平台為基礎,以擴大流量規模、提升流量層次及豐富流量內涵作為基本經營方向,並以釋放流量價值為基本目標,可見大數據和雲計算的深度融合與此流量經營目標十分吻合。實際上已經有一些運營商藉助大數據Hadoop雲工具管理與分析網路中的用戶數據,為日常運維及制定市場戰略等提供有效支撐。
(3)針對大數據時代的基本特徵,加強全方位創新。包括IBM、EMC、HP、Microsoft等在內的IT巨頭,紛紛加速收購相關大數據公司進行技術整合,尋找數據洪流大潮中新的立足點。而涉及人工智慧、機器學習等新技術的創新應用,已初顯效益。
(4)將大數據時代全方位創新工作和智慧城市發展緊密結合。藉助移動互聯網、大數據與雲計算的融合、智能運營管道等,建立智能平台,優化配置城市資源,向真正的智慧城市邁進。
(5)藉助大數據創新處理技術應對APT安全攻擊。APT安全攻擊的最主要特徵為單點隱蔽能力強、攻擊空間路徑不確定、攻擊渠道不確定;同時APT攻擊一旦入侵成功則長期潛伏,攻擊時間上具有持續性。目前,全流量審計方案具備強大的實時檢測能力與事後回溯能力,並可將安全工作人員的分析能力、計算機存儲與運算能力組合在一起,是一種較完整的解決方案。
3. 互聯網最尖端的競爭集中在大數據
互聯網最尖端的競爭集中在大數據
2015中關村大數據日的峰會上,中國科學院院士張平文舉了一個有趣例子:前一陣,他有家人甲狀腺不適,院士有天晚上查了甲狀腺知識,第二天就收到微信好友申請,有專治甲狀腺的醫生想加他為好友,院士感概說,「沒有人懷疑我們就生活在大數據時代,」
2015年以來,從「大眾創業、萬眾創新」,一直到「互聯網+」以及大數據發展行動綱要,國家利好政策不斷,行業領軍者開拓創新,中國大數據產業群正快速形成,大數據在交通、工業、社交等領域的應用也日新月異。大數據,正在開啟一個認知的新時代,這是一座新的商業寶藏,也正醞釀著一場全新的較量。
「最尖端的競爭」
過去3年,打車應用真正改變了大眾出行,滴滴快的CEO程維在大數據日峰會分享說,「中國80%的計程車司機通過滴滴連接在一起,又順勢推出了滴滴專車、快車、順風車、巴士等系列新業務,希望將有相同出行需求的人連接在一起,實現任何人在任何時間、任何地點在3分鍾內叫到一輛車。」
美好的願景完全依賴於大數據的支持。直到現在,程維依然清晰地記得一宗「事故」:2013年有一次北京大雨,CBD國貿地區用戶打不到車,滴滴技術團隊梳理訂單後發現,絕大多數的訂單根本發不出去,「我們最初德爾大數據演算法是將一個訂單發給附近1-3公里的司機,在訂單非常多的時候,司機信道變成稀缺資源,就無法接到更多的訂單。」
程維很快發現,當一個城市日均訂單超過1萬單後,原始的大數據演算法即成為瓶頸,於是,滴滴將建設中國最好的大數據團隊當成公司戰略,為實現用戶和司機的快速匹配,迄今後台已經多個版本的大數據結構和演算法。
大數據在交通的應用,並不限於打車。構建了完整大數據產業平台的北京久其軟體公司,曾為江蘇省提供智能化交通統計監測系統,將所有江蘇省內高速出入口的視頻以及海運、河運、港口等所有的音視頻的數據全部納入體系,進行實時監控。久其軟體副總裁錢暉分享說,「在江蘇省內,如果你的車被偷或者號牌模糊,系統在一秒鍾之內就能實現號牌識別。」
錢暉表示,智慧交通系統積累的數據,服務范圍不限於交通,比如經濟學有所謂「克強指數」(即以工業用電量新增、鐵路貨運量新增和銀行中長期貸款新增的數據,評判GDP的增長),利用智能系統可以監測高速公路出入口大貨車的運量,分析實體經濟狀況,用於經濟決策。
提供便利的同時,大數據交通雲的難度和復雜度,也遠超過一般人的想像。以江蘇省的智能交通系統為例,實現數據實時入庫、動態更新以及查詢,數據量非常大,每年要更新12億條以上的信息量。
程維認為,交通大數據能力的構建,其復雜程度甚至超過搜索,他將其總結為三大特點:實時性,每過1分鍾交通情況以及車的位置都會發生變化;雙向互動,需求方用戶和供給方司機相互影響,除了滿足用戶,系統要根據司機喜好推薦最好的訂單;集群擾動,比如,100個人或10000人搜索,結果不會有什麼區別,但是10個人還是200人一起叫車,運算結果完全不同,「滴滴代表的交通雲,涉及深度學習、人工智慧等技術前沿,令雲平台更智能、更高效,這是公司最重要的事情。」
「互聯網的競爭,已從早期的產品競爭、營銷競爭、資本競爭,實實在在進入雲端、大數據端的競爭,」程維表示,「全球大的互聯網出行領域,最尖端的競爭就集中在大數據領域。」
占據技術制高點的背後,是頂尖人才的爭奪。滴滴的全球競爭對手,幾乎早於他們動手前的半年,就開始收羅全球頂尖大學的大數據研究人員,從主任、專家到一線工作人員,幾乎一網打盡,甚至有公司專門派一支隊伍在MIT實驗室旁蹲守兩個月,「先從副主任挖起,再找主任,一個帶一個把30多個實驗室的人徹底挖空。」
關鍵在頂層設計
6年前即深耕工業大數據,美林數據總裁王璐深有感觸,「大數據對整個工業帶來的沖擊是太大太大了」,而美林只專注兩件事:工業大數據中心的建設以及對數據的分析、挖掘、高維可視化。「『兩化融合』核心是什麼?我們認為是數據的管理,只有在工業4.0時代,才實現了『兩化』的強連接,代表工業化和信息化高度嵌入到一個整體系統。」
在王璐看來,大數據時代,就是會用數據說話、決策、管理、創新,如今,整體氛圍和思維方式的條件已具備,核心在於大數據技術的挑戰,其中,首要的挑戰在於組織的頂層設計,「美林幫助很多企業進行頂層設計,兩化融合和大數據融合的戰略需要復雜組織系統的設計,尤其是數據管理的長效機制,其中,流程和組織最直接的挑戰,就是尋找一批懂業務、懂數據還懂分析的人才隊伍。」
國家電網信通部主任王繼業在峰會分享了其基於頂層設計、布實施後的運營實踐。在大數據方面,國家電網首先規劃建立了企業級大數據平台,通過大數據平台實現數據的採集、傳輸以及存儲和處理;在大數據平台之上建立決策支持類、實施採集類、在線監測類、計算分析類等大數據業務應用,其中分成10大場景,在不同單位進行相應試點工作。
以電力負荷預測為例,國家電網組織了江蘇電力、山東電力兩家地區公司,利用大數據技術,基於電力負荷用戶檔案數據,結合氣侯、氣溫變化等數據,建立用電數據分析模型,實現用電負荷特性分析並且預測未來用點負荷曲線。
比如,江蘇電力就構建了數百個分析模型,在2015年4月對於全省的電力用電高峰進行了預測,其判斷用電高峰出現在8月6號,預測最高電量為8481萬千瓦時,結果,真正出現時間是8月5號,僅僅差一天,而實際發生的最高值為8440萬千瓦時,誤差率非常之低。
王繼業表示,基於頂層設計、有序推進,大數據帶來的威力十分之大,國家電網也嘗到了甜頭,「通過前期試點,負荷預測准確率提高到99.5%,最高負荷發生時間偏差1天,峰谷差率下降了5%;對配電網搶修精益化大數據預測,實時監測、故障預測、搶修達標率析,設備故障預測准確率提升40%,搶修達標率達到15%,搶修時長縮短30分鍾。」
事實上,不只工業領域,響應整個社會大數據化,凝聚共識,全力推動大數據產業創新發展,形成政府、社會、市場共同推動、聯合治理的發展格局,一樣需要頂層設計;而商業公司內部的許多數據,若能在一套規則清晰的制度下進行共享,完全可以應用到宏觀經濟和社會管理,實現數據價值的最大化。
龍信數據董事長李鈺就認為,應用是衡量數據價值唯一標准,龍信即將發布的是中關村企業大數據平台,可記錄北京市百萬家企業每天的動態的經營和稅收情況,可以洞悉全國5千萬市場主體與宏觀經濟內在關系,有百億的節點在秒級可以進行運算,有深度學習能力,是未來企業數據的智慧大腦,這對於宏觀經濟決策一樣極具價值。
LinkedIn全球副總裁Michael Korcuska在峰會分享了過去3年的領英(LinkedIn)數據積累,也有非常有趣的洞察:基於中國強勁的經濟增長,越來越多的人才從全球來到中國,其核心技能主要是經濟學、統計分析、化學、社交媒體等領域,而部分離開中國的人士,其所擅長的是城市規劃、海洋、導航、水庫管理以及傳統中醫等。Michael Korcuska建議,利用領英的職位資料庫,政府可以做兩件事:為稀缺人才提供激勵機制,與大學合作培養針對性的人才。
峰會最後,寬頻資本董事長田溯寧以獨有的歷史視角,對於大數據應用的前景進行了展望。他認為,人類歷史上曾有地理大發現的時代,發現新大陸改變了人類的時空觀念,開啟了工業革命,而現在,人類社會正邁入「一個數據大發現的時代」,將開啟無限的新機會。
4. 大數據的預測功能是增值服務的核心
大數據的預測功能是增值服務的核心
從走在大數據發展前沿的互聯網新興行業,到與人類生活息息相關的醫療保健、電力、通信等傳統行業,大數據浪潮無時無刻不在改變著人們的生產和生活方式。大數據時代的到來,給國內外各行各業帶來諸多的變革動力和巨大價值。
最新發布的報告稱,全球大數據市場規模將在未來五年內迎來高達26%的年復合增長率——從今年的148.7億美元增長到2018年的463.4億美元。全球各大公司、企業和研究機構對大數據商業模式進行了廣泛地探索和嘗試,雖然仍舊有許多模式尚不明朗,但是也逐漸形成了一些成熟的商業模式。
兩種存儲模式為主
互聯網上的每一個網頁、每一張圖片、每一封郵件,通信行業每一條短消息、每一通電話,電力行業每一戶用電數據等等,這些足跡都以「數據」的形式被記錄下來,並以幾何量級的速度增長。這就是大數據時代帶給我們最直觀的沖擊。
正因為數據量之大,數據多為非結構化,現有的諸多存儲介質和系統極大地限制著大數據的挖掘和發展。為更好地解決大數據存儲問題,國內外各大企業和研究機構做了許許多多的嘗試和努力,並不斷摸索其商業化前景,目前形成了如下兩種比較成熟的商業模式:
可擴展的存儲解決方案。該存儲解決方案可幫助政府、企業對存儲的內容進行分類和確定優先順序,高效安全地存儲到適當存儲介質中。而以存儲區域網路(SAN)、統一存儲、文件整合/網路連接存儲(NAS)的傳統存儲解決方案,無法提供和擴展處理大數據所需要的靈活性。而以Intel、Oracle、華為、中興等為代表的新一代存儲解決方案提供商提供的適用於大、中小企業級的全系存儲解決方案,通過標准化IT基礎架構、自動化流程和高擴展性,來滿足大數據多種應用需求。
雲存儲。雲存儲是一個以數據存儲和管理為核心的雲計算系統,其結構模型一般由存儲層、基礎管理、應用介面和訪問層四層組成。通過易於使用的API,方便用戶將各種數據放到雲存儲裡面,然後像使用水電一樣按用量進行收費。用戶不用關心數據的存儲介質、網路狀況以及安全性的管理,只需按需向提供方購買空間。
源數據價值水漲船高
在紅紅火火的大數據時代,隨著數據的累積,數據本身的價值也在不斷升值,這種情況很好地反應了事物由量變到質變的規律。例如有一種罕見的疾病,得病率為十萬分之一,如果從小樣本數據來看非常罕見,但是擴大到全世界70億人,那麼數量就非常龐大。以前技術落後,不能將該病情數字化集中研究,所以很難攻克。但是,我們現在把各種各樣的數據案例搜集起來統一分析,我們很快就能攻克很多以前想像不到的科學難題。類似的例子,不勝枚舉。
正是由於可以通過大數據挖掘到很多看不見的價值,源數據本身的價值也水漲船高。一些掌握海量有效數據的公司和企業找到了一條行之有效的商業路徑:對源數據直接或者經過簡單封裝銷售。在互聯網領域,以Facebook、twitter、微博為代表的社交網站擁有大量的用戶和用戶關系數據,這些網站正嘗試以各種方式對該源數據進行商業化銷售,Google、Yahoo!、網路[微博]等搜索公司擁有大量的搜索軌跡數據以及網頁數據,他們可以通過簡單API提供給第三方並從中盈利;在傳統行業中,中國聯通[微博](3.44, 0.03, 0.88%)、中國電信[微博]等運營商擁有大量的底層用戶資料,可以通過簡單地去隱私化,然後進行銷售盈利。
各大公司或者企業通過提供海量數據服務來支撐公司發展,同時以免費的服務補償用戶,這種成熟的商業模式經受住了時間的考驗。但是對於任何用戶數據的買賣,還需處理好用戶隱私信息,通過去隱私化方式,來保護好用戶隱私。
預測是增值服務的核心
在大數據基礎上進行深度挖掘,所衍生出來的增值服務,是大數據領域最具想像空間的商業模式。大數據增值服務的核心是什麼?預測!大數據引發了商業分析模式轉變,從過去的樣本模式到現在的全數據模式,從過去的小概率到現在的大概率,從而能夠得到比以前更准確的預測。目前形成了如下幾種比較成熟的商業模式。
個性化的精準營銷。一提起「垃圾簡訊」,大家都很厭煩,這是因為本來在營銷方看來是有價值的、「對」的信息,發到了「錯」的用戶手裡。通過對用戶的大量的行為數據進行詳細分析,深度挖掘之後,能夠實現給「對」的用戶發送「對」的信息。比如大型商場可以對會員的購買記錄進行深度分析,發掘用戶和品牌之間的關聯。然後,當某個品牌的忠實用戶收到該品牌打折促銷的簡訊之後,一定不是厭煩,而是欣喜。如優捷信達、中科嘉速等擁有強大數據處理技術的公司在數據挖掘、精準廣告分析等方面擁有豐富的經驗。
企業經營的決策指導。針對大量的用戶數據,運用成熟的數據挖掘技術,分析得到企業運營的各種趨勢,從而給企業的決策提供強有力的指導。例如,汽車銷售公司,可以通過對網路上用戶的大量評論進行分析,得到用戶最關心和最不滿意的功能,然後對自己的下一代產品進行有針對性的改進,以提升消費者的滿意度。
總體來說,從宏觀層面來看,大數據是我們未來社會的新能源;從企業微觀層面來看,大數據分析和運用能力正成為企業的核心競爭力。深入研究和積極探索大數據的商業模式,對企業的未來發展有至關重要的意義。