❶ 承德已成為京津冀地區規模較大的數據中心了嗎
據報道,日前首批1710個機櫃已經安裝調試完畢並投入使用,另有8棟數據機房樓正在建設,預計內十一月中旬竣工,容承德德鳴大數據產業園將建成2萬個機櫃,成為京津冀地區規模較大的綠色數據中心。
希望京津冀的協同發展可以帶動河北的經濟水平!
❷ 大數據培訓課程都包含哪些內容
老男孩教育的大數據培訓課程內容包括:Java、Linux、內Hadoop、Hive、Avro與Protobuf、ZooKeeper、HBase、Phoenix、Redis、Flume、SSM、Kafka、Scala、Spark、azkaban、Python與大數據容分析等
❸ 資料庫的多表大數據查詢應如何優化
1.應盡量避免在 where 子句中對欄位進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num is null
可以在num上設置默認值0,確保表中num列沒有null值,然後這樣查詢:
select id from t where num=0
2.應盡量避免在 where 子句中使用!=或<>操作符,否則將引擎放棄使用索引而進行全表掃描。優化器簡悉將無法通過索引來確定將要命中的行數,因此需要搜索該表的所有行。
3.應盡量避免在 where 子句中使用 or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢:
select id from t where num=10
union all
select id from t where num=20
4.in 和 not in 也要慎用,因為IN會使系統無法使用索引,而只能直接搜索表中的數據。如:
select id from t where num in(1,2,3)
對於連續的數值,能用 beeen 就不要用 in 了:
select id from t where num beeen 1 and 3
5.盡量避免在索引過的字元數據中,使用非打頭字母搜索。這也使得引擎無法利用索引。
見如下例子:
SELECT * FROM T1 WHERE NAME LIKE 『%L%』
SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=』L』
SELECT * FROM T1 WHERE NAME LIKE 『L%』
即使NAME欄位建有索引,前兩個查詢依然無法利用索引完成加快操作,引擎不得不對全表所有數據逐條操作來完成任務。而第三個查詢能夠使用索引來加快操作。
6.必要時強制查詢優化器使用某個索引,如在 where 子句中使用參數,也會導致全表掃描。因為SQL只有在運行時才會解析局部變數,但優化程序不能將訪問計劃的選擇推遲到運行時;它必須在編譯時進行選擇。然而,如果在編譯時建立訪問計劃,變數的值還是未散罩知的,因而無法作為索引選擇的輸入項。如下面語句將進行全表掃描:
select id from t where num=@num
可以改為強制查詢使用索引:
select id from t with(index(索引名)) where num=@num
7.應盡量避免在 where 子句中對欄位進行表達式操作,這將導致引擎放棄使用索引而進行全表掃描。如:
SELECT * FROM T1 WHERE F1/2=100
應改為:
SELECT * FROM T1 WHERE F1=100*2
SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=』5378』
應改為:
SELECT * FROM RECORD WHERE CARD_NO LIKE 『5378%』
SELECT member_number, first_name, last_name FROM members
WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
應改為:
SELECT member_number, first_name, last_name FROM members
WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何對列的操作都將導致表掃描,它包括資料庫函數、計算表達式等等,查詢時要盡可能將操作移至等號右邊。
8.應盡量避免在where子句中對欄位進行沖咐鬧函數操作,這將導致引擎放棄使用索引而進行全表掃描。如:
select id from t where substring(name,1,3)='abc'--name以abc開頭的id
select id from t where datediff(day,createdate,-11-30')=0--『2005-11-30』生成的id
應改為:
select id from t where name like 'abc%'
select id from t where createdate>=-11-30' and createdate<-12-1'
9.不要在 where 子句中的「=」左邊進行函數、算術運算或其他表達式運算,否則系統將可能無法正確使用索引。
10.在使用索引欄位作為條件時,如果該索引是復合索引,那麼必須使用到該索引中的第一個欄位作為條件時才能保證系統使用該索引,否則該索引將不會被使用,並且應盡可能的讓欄位順序與索引順序相一致。
11.很多時候用 exists是一個好的選擇:
elect num from a where num in(select num from b)
用下面的語句替換:
select num from a where exists(select 1 from b where num=a.num)
SELECT SUM(T1.C1)FROM T1 WHERE(
(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)
SELECT SUM(T1.C1) FROM T1WHERE EXISTS(
SELECT * FROM T2 WHERE T2.C2=T1.C2)
兩者產生相同的結果,但是後者的效率顯然要高於前者。因為後者不會產生大量鎖定的表掃描或是索引掃描。
Statement stmt = null;
ResultSet rs = null;
String query = "select 列名 from 表名 where id=11 and fname='xx' order by 列名 desc limit 1";
stmt = conn.createStatement();
rs = stmt.executeQuery(query);
if (rs.next()) {
result = rs.getInt("列名");
}
樓上的 拼寫錯誤,我來修正 ^^
select count(*) from 表名
傳統資料庫處理大數據很困難吧,不建議使用傳統資料庫來處理大數據。
建議研究下,Hadoop,Hive等,可處理大數據。
如果有預算,可以使用一些商業大數據產品,國內的譬如永洪科技的大數據BI產品,不僅能高性能處理大數據,還可做數據分析。
當然如果是簡單的查詢,傳統資料庫如果做好索引,可能可以提高性能。
有兩種方法
方法1:
select 100 * from tbllendlist where fldserialNo not in ( select 300100 fldserialNo from tbllendlist order by fldserialNo ) order by fldserialNo
方法2:
SELECT TOP 100 * FROM tbllendlist WHERE (fldserialNo > (SELECT MAX(fldserialNo) FROM (SELECT TOP 300100 fldserialNo FROM tbllendlist ORDER BY fldserialNo) AS T)) ORDER BY fldserialNo
影響命中率的因素有四種:字典表活動、臨時段活動、回滾段活動、表掃描, 應用DBA可以對這四種因素進行分析,找出資料庫命中率低的症結所在。 1)字典表活動 當一個SQL語句第一次到達Oracle內核時資料庫對SQL語句進行分析,包含在查詢中的數據字典對象被分解,產生SQL執行路徑。如果SQL語句指向一個不在SGA中的對象?表或視圖,Oracle執行SQL語句到數據典中查詢有關對象的信息。數據塊從數據字典表被讀取到SGA的數據緩存中。由於每個數據字典都很小,因此,我們可緩存這些表以提高對這些表的命中率。但是由於數據字典表的數據塊在SGA中占據空間,當增加全部的命中率時,它們會降低表數據塊的可用空間, 所以若查詢所需的時間字典信息已經在SGA緩存中,那麼就沒有必要遞歸調用。 2)臨時段的活動 當用戶執行一個需要排序的查詢時,Oracle設法對內存中排序區內的所有行進行排序,排序區的大小由資料庫的init.ora文件的數確定。如果排序區域不夠大,資料庫就會在排序操作期間開辟臨時段。臨時段會人為地降低OLTP(online transaction processing)應用命中率,也會降低查詢進行排序的性能。如果能在內存中完成全部排序操作,就可以消除向臨時段寫數據的開銷。所以應將SORT_AREA_SIZE設置得足夠大,以避免對臨時段的需要。這個參數的具體調整方法是:查詢相關數據,以確定這個參數的調整。 select * from v$sysstat where name='sorts(disk)'or name='sorts(memory); 大部分排序是在內存中進行的,但還有小部分發生在臨時段, 需要調整 值,查看init.ora文件的 SORT_AREA_SIZE值,參數為:SORT_AREA_SIZE=65536;將其調整到SORT_AREA_SIZE=131072、這個值調整後,重啟ORACLE資料庫即可生效。 3)回滾段的活動 回滾段活動分為回滾活動和回滾段頭活動。對回滾段頭塊的訪問會降低應用的命中率, 對OLTP系統命中率的影響最大。為確認是否因為回滾段影響了命中率,可以查看監控輸出報表中的「數據塊相容性讀一重寫記錄應用」 的統計值,這些統計值是用來確定用戶從回滾段中訪問數據的發生次數。 4)表掃描 通過大掃描讀得的塊在數據塊緩存中不會保持很長時間, 因此表掃描會降低命中率。為了避免不必要的全表掃描,首先是根據需要建立索引,合理的索引設計要建立人對各種查詢的分析和預測上,筆者會在SQL優化中詳細談及;其次是將經常用到的表放在內存中,以降低磁碟讀寫次數。
1. SQL優化的原則是:將一次操作需要讀取的BLOCK數減到最低,即在最短的時間達到最大的數據吞吐量。
調整不良SQL通常可以從以下幾點切入:
? 檢查不良的SQL,考慮其寫法是否還有可優化內容
? 檢查子查詢 考慮SQL子查詢是否可以用簡單連接的方式進行重新書寫
? 檢查優化索引的使用
? 考慮資料庫的優化器
2. 避免出現SELECT * FROM table 語句,要明確查出的欄位。
3. 在一個SQL語句中,如果一個where條件過濾的資料庫記錄越多,定位越准確,則該where條件越應該前移。
4. 查詢時盡可能使用索引覆蓋。即對SELECT的欄位建立復合索引,這樣查詢時只進行索引掃描,不讀取數據塊。
5. 在判斷有無符合條件的記錄時建議不要用SELECT COUNT (*)和select 1 語句。
6. 使用內層限定原則,在拼寫SQL語句時,將查詢條件分解、分類,並盡量在SQL語句的最里層進行限定,以減少數據的處理量。
7. 應絕對避免在order by子句中使用表達式。
8. 如果需要從關聯表讀數據,關聯的表一般不要超過7個。
9. 小心使用 IN 和 OR,需要注意In集合中的數據量。建議集合中的數據不超過200個。
10. <> 用 < 、 > 代替,>用>=代替,<用<=代替,這樣可以有效的利用索引。
11. 在查詢時盡量減少對多餘數據的讀取包括多餘的列與多餘的行。
12. 對於復合索引要注意,例如在建立復合索引時列的順序是F1,F2,F3,則在where或order by子句中這些欄位出現的順序要與建立索引時的欄位順序一致,且必須包含第一列。只能是F1或F1,F2或F1,F2,F3。否則不會用到該索引。
13. 多表關聯查詢時,寫法必須遵循以下原則,這樣做有利於建立索引,提高查詢效率。格式如下select sum(table1.je) from table1 table1, table2 table2, table3 table3 where (table1的等值條件(=)) and (table1的非等值條件) and (table2與table1的關聯條件) and (table2的等值條件) and (table2的非等值條件) and (table3與table2的關聯條件) and (table3的等值條件) and (table3的非等值條件)。
注:關於多表查詢時from 後面表的出現順序對效率的影響還有待研究。
14. 子查詢問題。對於能用連接方式或者視圖方式實現的功能,不要用子查詢。例如:select name from customer where customer_id in ( select customer_id from order where money>1000)。應該用如下語句代替:select name from customer inner join order on customer.customer_id=order.customer_id where order.money>100。
15. 在WHERE 子句中,避免對列的四則運算,特別是where 條件的左邊,嚴禁使用運算與函數對列進行處理。比如有些地方 substring 可以用like代替。
16. 如果在語句中有not in(in)操作,應考慮用not exists(exists)來重寫,最好的辦法是使用外連接實現。
17. 對一個業務過程的處理,應該使事物的開始與結束之間的時間間隔越短越好,原則上做到資料庫的讀操作在前面完成,資料庫寫操作在後面完成,避免交叉。
18. 請小心不要對過多的列使用列函數和order by,group by等,謹慎使用disti軟體開發t。
19. 用union all 代替 union,資料庫執行union操作,首先先分別執行union兩端的查詢,將其放在臨時表中,然後在對其進行排序,過濾重復的記錄。
當已知的業務邏輯決定query A和query B中不會有重復記錄時,應該用union all代替union,以提高查詢效率。
數據更新的效率
1. 在一個事物中,對同一個表的多個insert語句應該集中在一起執行。
2. 在一個業務過程中,盡量的使insert,update,delete語句在業務結束前執行,以減少死鎖的可能性。
資料庫物理規劃的效率
為了避免I/O的沖突,我們在設計資料庫物理規劃時應該遵循幾條基本的原則(以ORACLE舉例):
?? table和index分離:table和index應該分別放在不同的tablespace中。
?? Rollback Segment的分離:Rollback Segment應該放在獨立的Tablespace中。
?? System Tablespace的分離:System Tablespace中不允許放置任何用戶的object。(mssql中primary filegroup中不允許放置任何用戶的object)
?? Temp Tablesace的分離:建立單獨的Temp Tablespace,並為每個user指定default Temp Tablespace
??避免碎片:但segment中出現大量的碎片時,會導致讀數據時需要訪問的block數量的增加。對經常發生DML操作的segemeng來說,碎片是不能完全避免的。所以,我們應該將經常做DML操作的表和很少發生變化的表分離在不同的Tablespace中。
當我們遵循了以上原則後,仍然發現有I/O沖突存在,我們可以用數據分離的方法來解決。
?? 連接Table的分離:在實際應用中經常做連接查詢的Table,可以將其分離在不同的Taclespace中,以減少I/O沖突。
?? 使用分區:對數據量很大的Table和Index使用分區,放在不同的Tablespace中。
在實際的物理存儲中,建議使用RAID。日誌文件應放在單獨的磁碟中。
給出你的查詢,然後才可以對其進行優化
如果你的查詢比較固定,並且查詢的條件區別度較高,可以建立相應的索引。
其他的一些規則,比如使用exists代替 in都可以試試
查詢速度慢的原因很多,常見如下幾種:
1、沒有索引或者沒有用到索引(這是查詢慢最常見的問題,是程序設計的缺陷)
2、I/O吞吐量小,形成了瓶頸效應。
3、沒有創建計算列導致查詢不優化。
4、內存不足
5、網路速度慢
6、查詢出的數據量過大(可以採用多次查詢,其他的方法降低數據量)
7、鎖或者死鎖(這也是查詢慢最常見的問題,是程序設計的缺陷)
8、sp_lock,sp_who,活動的用戶查看,原因是讀寫競爭資源。
9、返回了不必要的行和列
10、查詢語句不好,沒有優化
可以通過如下方法來優化查詢 :
1、把數據、日誌、索引放到不同的I/O設備上,增加讀取速度,以前可以將Tempdb應放在RAID0上,SQL2000不在支持。數據量(尺寸)越大,提高I/O越重要.
2、縱向、橫向分割表,減少表的尺寸(sp_spaceuse)
3、升級硬體
4、根據查詢條件,建立索引,優化索引、優化訪問方式,限制結果集的數據量。注意填充因子要適當(最好是使用默認值0)。索引應該盡量小,使用位元組數小的列建索引好(參照索引的創建),不要對有限的幾個值的欄位建單一索引如性別欄位
5、提高網速;
6、擴大伺服器的內存,Windows 2000和SQL server 2000能支持4-8G的內存。配置虛擬內存:虛擬內存大小應基於計算機上並發運行的服務進行配置。運行 Microsoft SQL Server? 2000 時,可考慮將虛擬內存大小設置為計算機中安裝的物理內存的 1.5 倍。如果另外安裝了全文檢索功能,並打算運行 Microsoft 搜索服務以便執行全文索引和查詢,可考慮:將虛擬內存大小配置為至少是計算機中安裝的物理內存的 3 倍。將 SQL Server max server memory 伺服器配置選項配置為物理內存的 1.5 倍(虛擬內存大小設置的一半)。
7、增加伺服器 CPU個數; 但是必須明白並行處理串列處理更需要資源例如內存。使用並行還是串列程是MsSQL自動評估選擇的。單個任務分解成多個任務,就可以在處理器上運行。例如耽擱查詢的排序、連接、掃描和GROUP BY字句同時執行,SQL SERVER根據系統的負載情況決定最優的並行等級,復雜的需要消耗大量的CPU的查詢最適合並行處理。但是更新操作Update,Insert, Delete還不能並行處理。
8、如果是使用like進行查詢的話,簡單的使用index是不行的,但是全文索引,耗空間。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查詢時,查詢耗時和欄位值總長度成正比,所以不能用CHAR類型,而是VARCHAR。對於欄位的值很長的建全文索引。
9、DB Server 和APPLication Server 分離;OLTP和OLAP分離
10、分布式分區視圖可用於實現資料庫伺服器聯合體。聯合體是一組分開管理的伺服器,但它們相互協作分擔系統的處理負荷。這種通過分區數據形成資料庫伺服器聯合體的機制能夠擴大一組伺服器,以支持大型的多層 Web 站點的處理需要。有關更多信息,參見設計聯合資料庫伺服器。(參照SQL幫助文件'分區視圖')
a、在實現分區視圖之前,必須先水平分區表
b、在創建成員表後,在每個成員伺服器上定義一個分布式分區視圖,並且每個視圖具有相同的名稱。這樣,引用分布式分區視圖名的查詢可以在任何一個成員伺服器上運行。系統操作如同每個成員伺服器上都有一個原始表的復本一樣,但其實每個伺服器上只有一個成員表和一個分布式分區視圖。數據的位置對應用程序是透明的。
11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收縮數據和日誌 DBCC SHRINKDB,DBCC SHRINKFILE. 設置自動收縮日誌.對於大的資料庫不要設置資料庫自動增長,它會降低伺服器的性能。在T-sql的寫法上有很大的講究,下面列出常見的要點:首先,DBMS處理查詢計劃的過程是這樣的:
1、 查詢語句的詞法、語法檢查
2、 將語句提交給DBMS的查詢優化器
3、 優化器做代數優化和存取路徑的優化
4、 由預編譯模塊生成查詢規劃
5、 然後在合適的時間提交給系統處理執行
6、 最後將執行結果返回給用戶其次,看一下SQL SERVER的數據存放的結構:一個頁面的大小為8K(8060)位元組,8個頁面為一個盤區,按照B樹存放。
12、Commit和rollback的區別 Rollback:回滾所有的事物。 Commit:提交當前的事物. 沒有必要在動態SQL里寫事物,如果要寫請寫在外面如: begin tran exec(@s) mit trans 或者將動態SQL 寫成函數或者存儲過程。
13、在查詢Select語句中用Where字句限制返回的行數,避免表掃描,如果返回不必要的數據,浪費了伺服器的I/O資源,加重了網路的負擔降低性能。如果表很大,在表掃描的期間將表鎖住,禁止其他的聯接訪問表,後果嚴重。
14、SQL的注釋申明對執行沒有任何影響
15、盡可能不使用游標,它佔用大量的資源。如果需要row-by-row地執行,盡量採用非游標技術,如:在客戶端循環,用臨時表,Table變數,用子查詢,用Case語句等等。游標可以按照它所支持的提取選項進行分類: 只進 必須按照從第一行到最後一行的順序提取行。FETCH NEXT 是唯一允許的提取操作,也是默認方式。可滾動性可以在游標中任何地方隨機提取任意行。游標的技術在SQL2000下變得功能很強大,他的目的是支持循環。有四個並發選項 READ_ONLY:不允許通過游標定位更新(Update),且在組成結果集的行中沒有鎖。 OPTIMISTIC WITH valueS:樂觀並發控制是事務控制理論的一個標准部分。樂觀並發控制用於這樣的情形,即在打開游標及更新行的間隔中,只有很小的機會讓第二個用戶更新某一行。當某個游標以此選項打開時,沒有鎖控制其中的行,這將有助於最大化其處理能力。如果用戶試圖修改某一行,則此行的當前值會與最後一次提取此行時獲取的值進行比較。如果任何值發生改變,則伺服器就會知道其他人已更新了此行,並會返回一個錯誤。如果值是一樣的,伺服器就執行修改。選擇這個並發選項OPTIMISTIC WITH ROW VERSIONING:此樂觀並發控制選項基於行版本控制。使用行版本控制,其中的表必須具有某種版本標識符,伺服器可用它來確定該行在讀入游標後是否有所更改。在 SQL Server 中,這個性能由 timestamp 數據類型提供,它是一個二進制數字,表示資料庫中更改的相對順序。每個資料庫都有一個全局當前時間戳值:@@DBTS。每次以任何方式更改帶有 timestamp 列的行時,SQL Server 先在時間戳列中存儲當前的 @@DBTS 值,然後增加 @@DBTS 的值。如果某 個表具有 timestamp 列,則時間戳會被記到行級。伺服器就可以比較某行的當前時間戳值和上次提取時所存儲的時間戳值,從而確定該行是否已更新。伺服器不必比較所有列的值,只需比較 timestamp 列即可。如果應用程序對沒有 timestamp 列的表要求基於行版本控制的樂觀並發,則游標默認為基於數值的樂觀並發控制。 SCROLL LOCKS 這個選項實現悲觀並發控制。在悲觀並發控制中,在把資料庫的行讀入游標結果集時,應用程序將試圖鎖定資料庫行。在使用伺服器游標時,將行讀入游標時會在其上放置一個更新鎖。如果在事務內打開游標,則該事務更新鎖將一直保持到事務被提交或回滾;當提取下一行時,將除去游標鎖。如果在事務外打開游標,則提取下一行時,鎖就被丟棄。因此,每當用戶需要完全的悲觀並發控制時,游標都應在事務內打開。更新鎖將阻止任何其它任務獲取更新鎖或排它鎖,從而阻止其它任務更新該行。然而,更新鎖並不阻止共享鎖,所以它不會阻止其它任務讀取行,除非第二個任務也在要求帶更新鎖的讀取。滾動鎖根據在游標定義的 Select 語句中指定的鎖提示,這些游標並發選項可以生成滾動鎖。滾動鎖在提取時在每行上獲取,並保持到下次提取或者游標關閉,以先發生者為准。下次提取時,伺服器為新提取中的行獲取滾動鎖,並釋放上次提取中行的滾動鎖。滾動鎖獨立於事務鎖,並可以保持到一個提交或回滾操作之後。如果提交時關閉游標的選項為關,則 COMMIT 語句並不關閉任何打開的游標,而且滾動鎖被保留到提交之後,以維護對所提取數據的隔離。所獲取滾動鎖的類型取決於游標並發選項和游標 Select 語句中的鎖提示。鎖提示 只讀 樂觀數值 樂觀行版本控制 鎖定無提示 未鎖定 未鎖定 未鎖定 更新 NOLOCK 未鎖定 未鎖定未鎖定 未鎖定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 錯誤 更新 更新 更新 TABLOCKX 錯誤 未鎖定 未鎖定更新其它 未鎖定 未鎖定 未鎖定 更新 *指定 NOLOCK 提示將使指定了該提示的表在游標內是只讀的。
16、用Profiler來跟蹤查詢,得到查詢所需的時間,找出SQL的問題所在; 用索引優化器優化索引
17、注意UNion和UNion all 的區別。UNION all好
18、注意使用DISTINCT,在沒有必要時不要用,它同UNION一樣會使查詢變慢。重復的記錄在查詢里是沒有問題的
19、查詢時不要返回不需要的行、列
20、用sp_configure 'query governor cost limit'或者SET QUERY_GOVERNOR_COST_LIMIT來限制查詢消耗的資源。當評估查詢消耗的資源超出限制時,伺服器自動取消查詢,在查詢之前就扼殺掉。 SET LOCKTIME設置鎖的時間
21、用select 100 / 10 Percent 來限制用戶返回的行數或者SET ROWCOUNT來限制操作的行
22、在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE '%500'",因為他們不走索引全是表掃描。也不要在Where字句中的列名加函數,如Convert,substring等,如果必須用函數的時候,創建計算列再創建索引來替代.還可以變通寫法:Where SUBSTRING(firstname,1,1) = 'm'改為Where firstname like 'm%'(索引掃描),一定要將函數和列名分開。並且索引不能建得太多和太大。NOT IN會多次掃描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 來替代,特別是左連接,而Exists比IN更快,最慢的是NOT操作.如果列的值含有空,以前它的索引不起作用,現在2000的優化器能夠處理了。相同的是IS NULL,"NOT", "NOT EXISTS", "NOT IN"能優化她,而"<>"等還是不能優化,用不到索引。
23、使用Query Analyzer,查看SQL語句的查詢計劃和評估分析是否是優化的SQL。一般的20%的代碼占據了80%的資源,我們優化的重點是這些慢的地方。
24、如果使用了IN或者OR等時發現查詢沒有走索引,使用顯示申明指定索引: Select * FROM PersonMember (INDEX = IX_Title) Where processid IN ('男','女')
25、將需要查詢的結果預先計算好放在表中,查詢的時候再Select。這在SQL7.0以前是最重要的手段。例如醫院的住院費計算。
26、MIN() 和 MAX()能使用到合適的索引。
27、資料庫有一個原則是代碼離數據越近越好,所以優先選擇Default,依次為Rules,Triggers, Constraint(約束如外健主健CheckUNIQUE……,數據類型的最大長度等等都是約束),Procere.這樣不僅維護工作小,編寫程序質量高,並且執行的速度快。
28、如果要插入大的二進制值到Image列,使用存儲過程,千萬不要用內嵌Insert來插入(不知JAVA是否)。因為這樣應用程序首先將二進制值轉換成字元串(尺寸是它的兩倍),伺服器受到字元後又將他轉換成二進制值.存儲過程就沒有這些動作: 方法:Create procere p_insert as insert into table(Fimage) values (@image), 在前台調用這個存儲過程傳入二進制參數,這樣處理速度明顯改善
❹ 大數據資料庫有哪些
問題一:大數據技術有哪些 非常多的,問答不能發link,不然我給你link了。有譬如Hadoop等開源大數據項目的,編程語言的,以下就大數據底層技術說下。
簡單以永洪科技的技術說下,有四方面,其實也代表了部分通用大數據底層技術:
Z-Suite具有高性能的大數據分析能力,她完全摒棄了向上升級(Scale-Up),全面支持橫向擴展(Scale-Out)。Z-Suite主要通過以下核心技術來支撐PB級的大數據:
跨粒度計算(In-Databaseputing)
Z-Suite支持各種常見的匯總,還支持幾乎全部的專業統計函數。得益於跨粒度計算技術,Z-Suite數據分析引擎將找尋出最優化的計算方案,繼而把所有開銷較大的、昂貴的計算都移動到數據存儲的地方直接計算,我們稱之為庫內計算(In-Database)。這一技術大大減少了數據移動,降低了通訊負擔,保證了高性能數據分析。
並行計算(MPP puting)
Z-Suite是基於MPP架構的商業智能平台,她能夠把計算分布到多個計算節點,再在指定節點將計算結果匯總輸出。Z-Suite能夠充分利用各種計算和存儲資源,不管是伺服器還是普通的PC,她對網路條件也沒有嚴苛的要求。作為橫向擴展的大數據平台,Z-Suite能夠充分發揮各個節點的計算能力,輕松實現針對TB/PB級數據分析的秒級響應。
列存儲 (Column-Based)
Z-Suite是列存儲的。基於列存儲的數據集市,不讀取無關數據,能降低讀寫開銷,同時提高I/O 的效率,從而大大提高查詢性能。另外,列存儲能夠更好地壓縮數據,一般壓縮比在5 -10倍之間,這樣一來,數據佔有空間降低到傳統存儲的1/5到1/10 。良好的數據壓縮技術,節省了存儲設備和內存的開銷,卻大大了提升計算性能。
內存計算
得益於列存儲技術和並行計算技術,Z-Suite能夠大大壓縮數據,並同時利用多個節點的計算能力和內存容量。一般地,內存訪問速度比磁碟訪問速度要快幾百倍甚至上千倍。通過內存計算,CPU直接從內存而非磁碟上讀取數據並對數據進行計算。內存計算是對傳統數據處理方式的一種加速,是實現大數據分析的關鍵應用技術。
問題二:大數據使用的資料庫是什麼資料庫 ORACLE、DB2、SQL SERVER都可以,關鍵不是選什麼資料庫,而是資料庫如何優化! 需要看你日常如何操作,以查詢為主或是以存儲為主或2者,還要看你的數據結構,都要因地制宜的去優化!所以不是一句話說的清的!
問題三:什麼是大數據和大數據平台 大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據平台是為了計算,現今社會所產生的越來越大的數據量。以存儲、運算、展現作為目的的平台。
問題四:常用大型資料庫有哪些 FOXBASE
MYSQL
這倆可算不上大型資料庫管理系統
PB 是資料庫應用程序開發用的ide,根本就不是資料庫管理系統
Foxbase是dos時代的產品了,進入windows時代改叫foxpro,屬於桌面單機級別的小型資料庫系統,mysql是個中輕量級的,但是開源,大量使用於小型網站,真正重量級的是Oracle和DB2,銀行之類的關鍵行業用的多是這兩個,微軟的MS SQLServer相對DB2和Oracle規模小一些,多見於中小型企業單位使用,Sybase可以說是日薄西山,不行了
問題五:幾大資料庫的區別 最商業的是ORACLE,做的最專業,然後是微軟的SQL server,做的也很好,當然還有DB2等做得也不錯,這些都是大型的資料庫,,,如果掌握的全面的話,可以保證數據的安全. 然後就是些小的資料庫access,mysql等,適合於中小企業的資料庫100萬數據一下的數據.如有幫助請採納,謝!
問題六:全球最大的資料庫是什麼 應該是Oracle,第一,Oracle為商業界所廣泛採用。因為它規范、嚴謹而且服務到位,且安全性非常高。第二,如果你學習使用Oracle不是商用,也可以免費使用。這就為它的廣泛傳播奠定了在技術人員中的基礎。第三,Linux/Unix系統常常作為伺服器,伺服器對Oracle的使用簡直可以說極其多啊。建議樓梗多學習下這個強大的資料庫
問題七:什麼是大數據? 大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托・邁爾-舍恩伯格及肯尼斯・庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法[2])大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
說起大數據,就要說到商業智能:
商業智能(Business Intelligence,簡稱:BI),又稱商業智慧或商務智能,指用現代數據倉庫技術、線上分析處理技術、數據挖掘和數據展現技術進行數據分析以實現商業價值。
商業智能作為一個工具,是用來處理企業中現有數據,並將其轉換成知識、分析和結論,輔助業務或者決策者做出正確且明智的決定。是幫助企業更好地利用數據提高決策質量的技術,包含了從數據倉庫到分析型系統等。
商務智能的產生發展
商業智能的概念經由Howard Dresner(1989年)的通俗化而被人們廣泛了解。當時將商業智能定義為一類由數據倉庫(或數據集市)、查詢報表、數據分析、數據挖掘、數據備份和恢復等部分組成的、以幫助企業決策為目的技術及其應用。
商務智能是20世紀90年代末首先在國外企業界出現的一個術語,其代表為提高企業運營性能而採用的一系列方法、技術和軟體。它把先進的信息技術應用到整個企業,不僅為企業提供信息獲取能力,而且通過對信息的開發,將其轉變為企業的競爭優勢,也有人稱之為混沌世界中的智能。因此,越來越多的企業提出他們對BI的需求,把BI作為一種幫助企業達到經營目標的一種有效手段。
目前,商業智能通常被理解為將企業中現有的數據轉化為知識,幫助企業做出明智的業務經營決策的工具。這里所談的數據包括來自企業業務系統的訂單、庫存、交易賬目、客戶和供應商資料及來自企業所處行業和競爭對手的數據,以及來自企業所處的其他外部環境中的各種數據。而商業智能能夠輔助的業務經營決策既可以是作業層的,也可以是管理層和策略層的決策。
為了將數據轉化為知識,需要利用數據倉庫、線上分析處理(OLAP)工具和數據挖掘等技術。因此,從技術層面上講,商業智能不是什麼新技術,它只是ETL、數據倉庫、OLAP、數據挖掘、數據展現等技術的綜合運用。
把商業智能看成是一種解決方案應該比較恰當。商業智能的關鍵是從許多來自不同的企業運作系統的數據中提取出有用的數據並進行清理,以保證數據的正確性,然後經過抽取(Extraction)、轉換(Transformation)和裝載(Load),即ETL過程,合並到一個企業級的數據倉庫里,從而得到企業數據的一個全局視圖,在此基礎上利用合適的查詢和分析工具、數據挖掘工具、OLAP工具等對其進行分析和處理(這時信息變為輔助決策的知識),最後將知識呈現給管理者,為管理者的決策過程提供支持。
企業導入BI的優點
1.隨機查詢動態報表
2.掌握指標管理
3.隨時線上分析處理
4.視覺化之企業儀表版
5.協助預測規劃
導入BI的目的
1.促進企業決策流程(Facilitate the Business Decision-Making Process):BIS增進企業的資訊整合與資訊分析的能力,匯總公司內、外部的資料,整合成有效的決策資訊,讓企業經理人大幅增進決策效率與改善決策品質。
......>>
問題八:資料庫有哪幾種? 常用的資料庫:oracle、sqlserver、mysql、access、sybase 2、特點。 -oracle: 1.資料庫安全性很高,很適合做大型資料庫。支持多種系統平台(HPUX、SUNOS、OSF/1、VMS、 WINDOWS、WINDOWS/NT、OS/2)。 2.支持客戶機/伺服器體系結構及混合的體系結構(集中式、分布式、 客戶機/伺服器)。 -sqlserver: 1.真正的客戶機/伺服器體系結構。 2.圖形化用戶界面,使系統管理和資料庫管理更加直觀、簡單。 3.具有很好的伸縮性,可跨越從運行Windows 95/98的膝上型電腦到運行Windows 2000的大型多處理器等多種平台使用。 -mysql: MySQL是一個開放源碼的小型關系型資料庫管理系統,開發者為瑞典MySQL AB公司,92HeZu網免費贈送MySQL。目前MySQL被廣泛地應用在Internet上的中小型網站中。提供由於其體積小、速度快、總體擁有成本低,尤其是開放源碼這一特點,許多中小型網站為了降低網站總體擁有成本而選擇了MySQL作為網站資料庫。 -access Access是一種桌面資料庫,只適合數據量少的應用,在處理少量數據和單機訪問的資料庫時是很好的,效率也很高。 但是它的同時訪問客戶端不能多於4個。 -
問題九:什麼是大數據 大數據是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 大數據首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機理解自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(putational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
要理解大數據這一概念,首先要從大入手,大是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的......>>
問題十:國內真正的大數據分析產品有哪些 國內的大數據公司還是做前端可視化展現的偏多,BAT算是真正做了大數據的,行業有硬性需求,別的行業跟不上也沒辦法,需求決定市場。
說說更通用的數據分析吧。
大數據分析也屬於數據分析的一塊,在實際應用中可以把數據分析工具分成兩個維度:
第一維度:數據存儲層――數據報表層――數據分析層――數據展現層
第二維度:用戶級――部門級――企業級――BI級
1、數據存儲層
數據存儲設計到資料庫的概念和資料庫語言,這方面不一定要深鑽研,但至少要理解數據的存儲方式,數據的基本結構和數據類型。SQL查詢語言必不可少,精通最好。可從常用的selece查詢,update修改,delete刪除,insert插入的基本結構和讀取入手。
Access2003、Access07等,這是最基本的個人資料庫,經常用於個人或部分基本的數據存儲;MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
SQL Server2005或更高版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台。
BI級別,實際上這個不是資料庫,而是建立在前面資料庫基礎上的,企業級應用的數據倉庫。Data Warehouse,建立在DW機上的數據存儲基本上都是商業智能平台,整合了各種數據分析,報表、分析和展現!BI級別的數據倉庫結合BI產品也是近幾年的大趨勢。
2、報表層
企業存儲了數據需要讀取,需要展現,報表工具是最普遍應用的工具,尤其是在國內。傳統報表解決的是展現問題,目前國內的帆軟報表FineReport已經算在業內做到頂尖,是帶著數據分析思想的報表,因其優異的介面開放功能、填報、表單功能,能夠做到打通數據的進出,涵蓋了早期商業智能的功能。
Tableau、FineBI之類,可分在報表層也可分為數據展現層。FineBI和Tableau同屬於近年來非常棒的軟體,可作為可視化數據分析軟體,我常用FineBI從資料庫中取數進行報表和可視化分析。相對而言,可視化Tableau更優,但FineBI又有另一種身份――商業智能,所以在大數據處理方面的能力更勝一籌。
3、數據分析層
這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
Excel軟體,首先版本越高越好用這是肯定的;當然對excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體;
SAS軟體:SAS相對SPSS其實功能更強大,SAS是平台化的,EM挖掘模塊平台整合,相對來講,SAS比較難學些,但如果掌握了SAS會更有價值,比如離散選擇模型,抽樣問題,正交實驗設計等還是SAS比較好用,另外,SAS的學習材料比較多,也公開,會有收獲的!
JMP分析:SAS的一個分析分支
XLstat:Excel的插件,可以完......>>